JPS63171877A - Composit target material - Google Patents
Composit target materialInfo
- Publication number
- JPS63171877A JPS63171877A JP296487A JP296487A JPS63171877A JP S63171877 A JPS63171877 A JP S63171877A JP 296487 A JP296487 A JP 296487A JP 296487 A JP296487 A JP 296487A JP S63171877 A JPS63171877 A JP S63171877A
- Authority
- JP
- Japan
- Prior art keywords
- metal
- target material
- matrix
- composition
- rare earth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013077 target material Substances 0.000 title claims abstract description 35
- 229910052751 metal Inorganic materials 0.000 claims abstract description 46
- 239000002184 metal Substances 0.000 claims abstract description 45
- 239000011159 matrix material Substances 0.000 claims abstract description 26
- 239000002131 composite material Substances 0.000 claims abstract description 18
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 15
- 150000002910 rare earth metals Chemical class 0.000 claims abstract description 15
- 229910052723 transition metal Inorganic materials 0.000 claims abstract description 14
- 150000003624 transition metals Chemical class 0.000 claims abstract description 14
- 150000002739 metals Chemical class 0.000 claims abstract description 5
- 229910052703 rhodium Inorganic materials 0.000 claims abstract description 5
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 5
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 4
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 3
- 229910052738 indium Inorganic materials 0.000 claims abstract description 3
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 3
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 3
- 229910052802 copper Inorganic materials 0.000 claims abstract 2
- 229910052745 lead Inorganic materials 0.000 claims abstract 2
- 229910052718 tin Inorganic materials 0.000 claims abstract 2
- 230000005496 eutectics Effects 0.000 claims description 24
- 229910000765 intermetallic Inorganic materials 0.000 claims description 21
- 239000006104 solid solution Substances 0.000 claims description 12
- 229910052702 rhenium Inorganic materials 0.000 claims description 3
- 229910052697 platinum Inorganic materials 0.000 claims 1
- 230000007797 corrosion Effects 0.000 abstract description 12
- 238000005260 corrosion Methods 0.000 abstract description 12
- 230000000694 effects Effects 0.000 abstract description 3
- 229910052732 germanium Inorganic materials 0.000 abstract description 3
- 229910052689 Holmium Inorganic materials 0.000 abstract description 2
- 239000007787 solid Substances 0.000 abstract 3
- 229910052692 Dysprosium Inorganic materials 0.000 abstract 1
- 229910052691 Erbium Inorganic materials 0.000 abstract 1
- 229910052688 Gadolinium Inorganic materials 0.000 abstract 1
- 229910052779 Neodymium Inorganic materials 0.000 abstract 1
- 229910052771 Terbium Inorganic materials 0.000 abstract 1
- 229910052742 iron Inorganic materials 0.000 abstract 1
- 229910052759 nickel Inorganic materials 0.000 abstract 1
- 229910052710 silicon Inorganic materials 0.000 abstract 1
- 229910052719 titanium Inorganic materials 0.000 abstract 1
- 239000000203 mixture Substances 0.000 description 50
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 28
- 239000000843 powder Substances 0.000 description 26
- 238000000034 method Methods 0.000 description 25
- 239000010408 film Substances 0.000 description 23
- 238000004544 sputter deposition Methods 0.000 description 21
- 239000007789 gas Substances 0.000 description 18
- 229910052786 argon Inorganic materials 0.000 description 14
- 239000012298 atmosphere Substances 0.000 description 12
- 238000009826 distribution Methods 0.000 description 12
- 239000011521 glass Substances 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 8
- 238000005245 sintering Methods 0.000 description 7
- 238000002441 X-ray diffraction Methods 0.000 description 5
- 238000005266 casting Methods 0.000 description 5
- 229910000831 Steel Inorganic materials 0.000 description 4
- 239000011261 inert gas Substances 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000002775 capsule Substances 0.000 description 3
- 238000011049 filling Methods 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 238000010298 pulverizing process Methods 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 229910052775 Thulium Inorganic materials 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- 241000234282 Allium Species 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- 206010011224 Cough Diseases 0.000 description 1
- 101100145155 Escherichia phage lambda cIII gene Proteins 0.000 description 1
- LFVLUOAHQIVABZ-UHFFFAOYSA-N Iodofenphos Chemical compound COP(=S)(OC)OC1=CC(Cl)=C(I)C=C1Cl LFVLUOAHQIVABZ-UHFFFAOYSA-N 0.000 description 1
- 229910001125 Pa alloy Inorganic materials 0.000 description 1
- 235000015076 Shorea robusta Nutrition 0.000 description 1
- 244000166071 Shorea robusta Species 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000009689 gas atomisation Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 238000001513 hot isostatic pressing Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000010587 phase diagram Methods 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Landscapes
- Physical Vapour Deposition (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は光磁気記録用薄膜をスパッタにより製造するに
適した複合ターゲット材に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a composite target material suitable for producing a magneto-optical recording thin film by sputtering.
光磁気ディスク用膜組成として、希土類金属と遷移金属
の各糧の組合せが報告されている。A combination of rare earth metals and transition metals has been reported as a film composition for magneto-optical disks.
例えば、τb−IF m、T b−F e −Oo、
G d−T b −IP e、G(1−τb−7m−O
o、 T b−Oo、 T b−D y−F e −0
0%I)7−F・%Q(1−’O等があげられる。For example, τb-IF m, Tb-F e -Oo,
G d-T b -IP e,G(1-τb-7m-O
o, T b-Oo, T b-D y-F e -0
Examples include 0%I)7-F and %Q(1-'O).
また最近、上記の様な光磁気ディスク用膜の成膜の耐食
性向上について検討され、例えば前記希土類金属と遷移
金属とのマトリックスよりなるターゲット材表面にT1
%OQ、Zr%Ge。Recently, studies have been made to improve the corrosion resistance of films for magneto-optical disks such as those described above. For example, T1
%OQ, Zr%Ge.
sl、 sn%P’b、工!L、 Cr、Mo、 W、
N b、 Ta、 Pt。sl, sn%P'b, engineering! L, Cr, Mo, W,
Nb, Ta, Pt.
Rh、Reから選択され九金属チップを載置して、これ
にスパッターを行い成膜を得る方法が提案されている(
例えば、特開昭40−21/!140号公報参照)。A method has been proposed in which nine metal chips selected from Rh and Re are placed and sputtered to form a film (
For example, JP-A-40-21/! (See Publication No. 140).
しかしながら、このようなスパッター法では、ディスク
面内成膜組成分布が大きくなったシ、長時間スパッター
するとディスク面内成膜組成が変化する。この結果、デ
ィスク面内全域にわた)耐食性向上を図ることが困難で
あり、より優れた方法が求められていた。However, in such a sputtering method, the composition distribution within the disk surface becomes large, and when sputtering is performed for a long time, the composition of the film formed within the disk surface changes. As a result, it is difficult to improve corrosion resistance over the entire disk surface, and a better method has been sought.
c問題点を解決するための手段】
本発明者等は、上記の問題点にかんがみ、鋭意検討した
結果、成膜の耐食性向上をはかる金属とマトリックス金
属からなる金、mr!1化合物または固溶体を均一分散
させることにより、スパッター後のディスク面内成膜組
成分布が著しく改善され、ディスク面内金域にわたって
耐食性が向上することを知得して、本発明に到達した。cMeans for Solving the Problems] In view of the above problems, the inventors of the present invention have made extensive studies, and as a result, the present inventors have developed mr! The present invention was achieved based on the knowledge that uniformly dispersing one compound or a solid solution significantly improves the compositional distribution of a film formed within the disk surface after sputtering, and improves the corrosion resistance over the entire metal region of the disk surface.
])7%Ho、Ir及びTmからなる群から選択された
希土類金属並びにWe、00及びMlからなる群から選
択された遷移金属とよりなるマトリックス中に% T
i @ ’ us Z r s G 8 s ’ i
% B”% ’ 6%In、 Or、 MO,W、 M
b、 Ta、 Pt%Rh及びReからなる詳から選択
された金属とマトリックスを構成する一種又は二種以上
の金属の金属間化合物及び/又は固溶体を均一分散して
なる複合ターゲット材に存する。]) 7% T in a matrix consisting of a rare earth metal selected from the group consisting of Ho, Ir and Tm and a transition metal selected from the group consisting of We, 00 and Ml.
i @ ' us Z r s G 8 s ' i
% B"% ' 6%In, Or, MO, W, M
The target material is a composite target material formed by uniformly dispersing an intermetallic compound and/or solid solution of one or more metals constituting a matrix and a metal selected from the group consisting of: b, Ta, Pt%Rh, and Re.
以下、本発明の詳細な説明する。The present invention will be explained in detail below.
本発明では、耐食性向上に効果のある金属として、T1
.0u1Zr、Go、sl、8n、 Pb、工n10r
、 Mo、 W、 Wb、 Ta、 Pt、 Rh及び
R11から選択される一種又は二種以上の金属(以下、
「耐食性向上金属」と略す)を用いるが、耐食性の点か
ら特に%’ri、Ou%Zr、 Ge、 Eiiが好ま
しい。In the present invention, T1 is used as a metal that is effective in improving corrosion resistance.
.. 0u1Zr, Go, sl, 8n, Pb, Eng n10r
, Mo, W, Wb, Ta, Pt, Rh, and one or more metals selected from R11 (hereinafter referred to as
%'ri, Ou%Zr, Ge, and Eii are particularly preferred from the viewpoint of corrosion resistance.
本発明の複合ターゲット材はMd%G(1%Tt+。The composite target material of the present invention has Md%G (1%Tt+).
Dy%Ha、Kr及びTmからなる群から選択された一
種又は二種以上の希土類金属(以下、「希土類金属」と
略す)とre、Oo及びMlからなる群から選択された
一種又は二種以上の遷移金属(以下、「遷移金属」と略
す)とよ〕なるマトリックス中に上記耐食性向上金属と
マトリックスを構成、する一種又は二種以上の金属との
金属間化合物及び/又は固溶体を形成させ、これを均一
分散させる。この均一分散し九組織がスパッタ一時に金
属元素の飛び方に方向性をなくし、ディスク面内成膜組
成分布が殆どなくディスク面内全域にわたプ耐食性向上
が計られると思われる。Dy% One or more rare earth metals selected from the group consisting of Ha, Kr and Tm (hereinafter abbreviated as "rare earth metals") and one or more selected from the group consisting of re, Oo and Ml forming an intermetallic compound and/or solid solution of the corrosion resistance improving metal and one or more metals constituting the matrix in a matrix consisting of a transition metal (hereinafter abbreviated as "transition metal"); Disperse this uniformly. It is thought that this uniformly dispersed structure eliminates the directionality in the flight of metal elements during sputtering, so that there is almost no in-plane compositional distribution of the film formed on the disk, and the corrosion resistance is improved over the entire disk surface.
この均一分散させる金属間化合物、固溶体の量は選択さ
れる金属の種類によって若干具なるが、通常ターゲット
材中の7−λ〇N子Xである。少なすぎると耐食性向上
効果が無く、多すぎるとカー角度、保持力等のディスク
の特性が劣化する。好ましくは3〜10原子%である。The amount of the intermetallic compound or solid solution to be uniformly dispersed varies depending on the type of metal selected, but is usually 7-λ〇N atoms in the target material. If it is too small, there will be no effect of improving corrosion resistance, and if it is too large, the properties of the disk such as Kerr angle and holding force will deteriorate. Preferably it is 3 to 10 at%.
一方、上記しえ如く、マトリックスは希土類金属と遷移
金属からなるが、組織は通常金属間化合物組織、共晶組
織、単体金属組織、またこれらの混在した組織からな石
。スパッター後。On the other hand, as mentioned above, the matrix is composed of rare earth metals and transition metals, but the structure is usually an intermetallic compound structure, a eutectic structure, an elemental metal structure, or a mixture of these structures. After sputtering.
ディスク面内成膜全金属組成分布の均一性を考慮すると
、好ましくはマトリックスが、希土類金属と遷移金属と
の共晶組織及び該共晶組織を構成する金属成分と同一又
は異なる金属組織より構成されて−るのが良い、これは
、希土類金属と遷移金属類の共晶組織は均一で微細な構
造を有し、この均一で微細な構造がスパッタ一時に、成
膜元素の飛び方に方向性をなくシ、且つスパッターされ
た合金ターゲット材の表面がフラットとなるため、ディ
スク面内組成分布が殆どなく、且つ長時間スパッターし
てもディスク面内組成が変化しないと思われる。Considering the uniformity of the total metal composition distribution within the disk plane, the matrix is preferably composed of a eutectic structure of a rare earth metal and a transition metal, and a metal structure that is the same as or different from the metal components constituting the eutectic structure. This is because the eutectic structure of rare earth metals and transition metals has a uniform and fine structure, and this uniform and fine structure gives directionality to the flight of the film-forming elements during sputtering. Since the surface of the sputtered alloy target material is flat, there is almost no in-plane composition distribution of the disk, and the in-plane composition of the disk does not change even if sputtered for a long time.
この場合、共晶組織が多く存在する共晶組成量付近が好
ましいが、必ずしも共晶組成量である必要はなく、粉砕
性等を考慮して亜共晶組成量、過共晶組成量としても共
晶組織が得られればよい。共晶組織の量としては、io
重量X以上、好ましくはλj重重量板上が良い。また、
共晶組織以外に該共晶組at構成する金属成分と同一又
は異なる金属組織を含むが、共晶組織の微細・均一構造
を活用するうえで、その量は20重量%以下、好ましく
は75重量%以下が良い。In this case, it is preferable to have a eutectic composition where there is a large amount of eutectic structure, but it does not necessarily have to be a eutectic composition, and it can also be used as a hypoeutectic composition or a hypereutectic composition in consideration of grindability, etc. It is sufficient if a eutectic structure is obtained. The amount of eutectic structure is io
Weight X or more, preferably λj weight plate. Also,
In addition to the eutectic structure, it contains a metal structure that is the same as or different from the metal components constituting the eutectic structure, but in order to utilize the fine and uniform structure of the eutectic structure, the amount thereof is 20% by weight or less, preferably 75% by weight. % or less is better.
以上の本発明の複合ターゲット材を得る一般的な製造法
について説明する。A general manufacturing method for obtaining the above composite target material of the present invention will be explained.
所望する複合ターゲット材を構成する各金属の組み合わ
せにお−て、マトリックスを構成する一種又は二種以上
の金属と、耐食性向上金属とから、金属間化合物及び/
又は固溶体を形成するような系及びその組成を選択する
。その組成で鋳造し、金属間化合物及び/又は固溶体の
塊を得る。In the combination of each metal constituting the desired composite target material, intermetallic compounds and/or
Or select a system and its composition that form a solid solution. Cast with that composition to obtain a mass of intermetallic compound and/or solid solution.
一方、マ) IJラックス希土類金属と遷移金属とから
所望の組成となるように形成すれば、その金属組織は特
に限定されない。例えば、マトリックスの組織を希土類
金属と遷移金属の金属間化合物組織にする場合には、所
望の組成となるよう鋳造、合金し塊を得る。tな、マト
リックスを単体金属組織にする場合には、各元累の粉末
を別々に用意し、所望の組成になるよう混合すればよい
。更に1共晶組織を含む組織にする場合は、平衡状態図
より希土類金属と遷移金属との共晶組成を調べ、該共晶
組成となるように配合、鋳造する。この場合、均一・微
細な共晶組織を得るには、鋳造時の冷却速度が0.07
℃/秒、特11CdO,l”07秒以上のアーク・メル
ター法で塊を得ることが好ましい。On the other hand, the metal structure is not particularly limited as long as it is formed to have a desired composition from an IJ lux rare earth metal and a transition metal. For example, when the matrix structure is an intermetallic compound structure of rare earth metals and transition metals, a lump is obtained by casting and alloying to obtain the desired composition. If the matrix is to have a single metal structure, powders of each element may be separately prepared and mixed to obtain the desired composition. Furthermore, in the case of forming a structure containing one eutectic structure, the eutectic composition of the rare earth metal and the transition metal is investigated from the equilibrium phase diagram, and the composition is blended and cast to obtain the eutectic composition. In this case, in order to obtain a uniform and fine eutectic structure, the cooling rate during casting is 0.07
It is preferable to obtain the lump by an arc melter method at a temperature of 11CdO,l''07 seconds or more.
ζうして得られた各金属塊の粉砕は通常の機械的粉砕法
でよい。機械的粉砕が困難な場合は、ガス噴霧等で直接
溶湯から粉末を得ることも可能である。ζ The thus obtained metal lumps may be pulverized by a conventional mechanical pulverization method. If mechanical pulverization is difficult, it is also possible to obtain powder directly from the molten metal by gas atomization or the like.
転刃のついたカッター・ミル機で7〜よoottm程度
まで粉砕し、更に微粉砕を必要とする場合は振動ミルや
ジェット・ミルなどを用−る。粗粉砕機はハンマ一式や
ローラ一式のクラッシャーを用いてもよく、上記カッタ
ー・ミルの外にボール・ミル、スタンプ・きル、ロッド
・ミルなどを使用しても構わない。Grind it to about 7 to 000 m with a cutter mill equipped with rolling blades, and if further pulverization is required, use a vibrating mill, jet mill, etc. A crusher with a set of hammers or a set of rollers may be used as the coarse pulverizer, and in addition to the cutter mill, a ball mill, stamp mill, rod mill, etc. may also be used.
なお、希土類金属又はその合金のように活性な材料の粉
砕は、乾式の場合は不活性ガス雰囲気の中で、湿式の場
合は水分や酸素を含まないアルー−ル、アセトン、ベン
ゼン、四塩化炭素、フレオン等の溶剤を用いて行うこと
が好ましい。Note that active materials such as rare earth metals or their alloys can be crushed in an inert gas atmosphere in the case of a dry process, or in an atmosphere of allium, acetone, benzene, or carbon tetrachloride that does not contain moisture or oxygen in the case of a wet process. It is preferable to use a solvent such as , Freon or the like.
及び/又は固溶体は均一分散を計るため、l004m以
下がよい。And/or the solid solution is preferably 1004m or less in order to ensure uniform dispersion.
得られた各粉末等を所望の組成になるよう配合し、均一
に混合する。The obtained powders and the like are blended to a desired composition and mixed uniformly.
次すで該粉末を焼結成形して複合ターゲット材を得るが
、これは一般的方法でよい。ホットプレス法の場合の一
例を示すと、アルゴンガスなどの不活性雰囲気下で内面
をボロンナイトナイド(Bli)等の離型剤を塗布した
ダイスの中に該粉末を充填し、同様にアルゴンガスなど
の不活性ガスあるいは真空雰−気中で加圧焼結する。温
度は圧力によって異なるが、該粉末の融点以下が適当で
ある。また好ましい加圧力は1、大きすぎると液相の漏
れ、ダイス、ポンチの破損を生じるのでノOo−2oo
kg/lyt?が好ましい。なシダイス、ポンチの材質
は通常、黒鉛とするが、耐熱鋼やセラ建ツクスでもよ−
。Next, the powder is sintered and shaped to obtain a composite target material, which may be done by a conventional method. As an example of the hot press method, the powder is filled into a die whose inner surface is coated with a release agent such as boron nitride (Bli) under an inert atmosphere such as argon gas. Pressure sintering is performed in an inert gas such as gas or a vacuum atmosphere. Although the temperature varies depending on the pressure, it is suitably below the melting point of the powder. The preferable pressure is 1. If it is too large, leakage of the liquid phase and damage to the die and punch may occur.
kg/lyt? is preferred. The material of the die and punch is usually graphite, but heat-resistant steel or ceramics may also be used.
.
焼結成形法として熱間等方圧プレス法を行なう場合は、
例えば該粉末をアルゴンガスなどの不活性雰囲気下で、
炭素鋼、ステンレス鋼ある−はガラスの容器に充填後、
真空引きしながら封じ、それをヒップ装置にて加圧焼結
する。温度は上記ホットプレスより低い温度が適当であ
る。ただしガラス容器の場合は、その温度がガラスの転
位点以上の温度であることが必要である。加圧力は該温
度で容器の変形が追随出来れば、特に制限はないが通常
コ000Icg/cIII以下とする。小さすぎると変
形が不充分となシ、高い密度が得られないためtooo
〜l!00に4/crIが好ましい。When using hot isostatic pressing as a sintering forming method,
For example, the powder is placed in an inert atmosphere such as argon gas,
After filling carbon steel and stainless steel into glass containers,
It is sealed while being evacuated, and then sintered under pressure using a hip device. The temperature is suitably lower than the hot press temperature described above. However, in the case of a glass container, the temperature must be higher than the transition point of the glass. The pressure is not particularly limited as long as the deformation of the container can be followed at the temperature, but it is usually less than 000 Icg/cIII. If it is too small, the deformation will be insufficient and high density will not be obtained.
~l! 00 to 4/crI is preferred.
更に、焼結法の場合は、例えばアルゴンガスなどの不活
性雰囲気下で、油圧プレス等で咳粉末を所定の形状に予
備成形し焼結炉にて焼結する。雰囲気は不活性ガスか、
真空がよ匹。温度はホットプレスの場合よ)、高いほう
が適当である。Furthermore, in the case of the sintering method, cough powder is preformed into a predetermined shape using a hydraulic press or the like under an inert atmosphere such as argon gas, and then sintered in a sintering furnace. Is the atmosphere an inert gas?
There's a vacuum. The higher the temperature, the better (if using a hot press).
以上のように製造され九本発明の複合ターゲット材を用
いて、光磁気記録用薄膜等を得る際のスパッター条件は
一般的な方法でよい。例を挙げると、成膜中の酸素混入
による特性劣化を防ぐため、所期真空到達度は/ o
−” torr以下にする。その後アルゴンガス等の不
活性ガスを所望の圧力まで注入する。ガス圧力は/ #
j 0711torrの範囲、ガス流量は/NN10
0eaaの範囲が適当である。The sputtering conditions for obtaining a magneto-optical recording thin film, etc. using the composite target material of the present invention manufactured as described above may be a general method. For example, in order to prevent property deterioration due to oxygen contamination during film formation, the desired degree of vacuum attainment is /o
-” torr or less. Then, inject an inert gas such as argon gas to the desired pressure. The gas pressure is / #
j 0711 torr range, gas flow rate is /NN10
A range of 0eaa is appropriate.
スパッター電源は直流、高周波が主である。Sputter power sources are mainly DC and high frequency.
高周波電源はスパッター用、成膜中に採シ込まれる酸素
等不純物を除去し、特性の劣化を防止する効果がある。High-frequency power supplies are used for sputtering, and are effective in removing impurities such as oxygen introduced during film formation and preventing deterioration of properties.
成膜する基盤はガラス、ポリカーボネイト、エポキシ樹
脂等でよい。The substrate on which the film is formed may be glass, polycarbonate, epoxy resin, or the like.
以下、実施例によ)本発明を更に詳細に説明する。 The present invention will be explained in more detail below by way of examples.
実施例1
Tb:IFe:τ1=λj:gz=io (原子X)の
複合ターゲット材を製造した。即ち、まずjl −IP
eの金属間化合物を形成させるためTl:Fe;l:λ
(原子比)の組成でアーク・メルター法で鋳造し、金属
間化合物の塊を得た。Example 1 A composite target material of Tb:IFe:τ1=λj:gz=io (atom X) was manufactured. That is, first jl-IP
Tl:Fe; l:λ to form an intermetallic compound of e
(atomic ratio) was cast using the arc melter method to obtain a lump of intermetallic compound.
一方、マトリックスとして% 71) 金JL Fe金
属を所望の組成になるよう配合しアーク・メルター法で
鋳造塊を得た。On the other hand, as a matrix, %71) Gold JL Fe metal was blended to a desired composition and a cast ingot was obtained by an arc melter method.
各々の金属塊をショークラッシャー、カッター・ミルに
よ)アルゴンガス雰囲気中で粉砕し。Each metal lump was crushed using a show crusher, cutter mill) in an argon gas atmosphere.
1100ta以下の粉末を得た。各粉末を上記の組成と
なるように配合、混合し、鋼製カプセルに充填後、1o
oo℃、1ooo気圧の熱間等方圧プレスで焼結した。A powder of 1100 ta or less was obtained. Blend and mix each powder so that it has the above composition, fill it into a steel capsule, and then
Sintering was carried out using a hot isostatic press at 100 degrees Celsius and 1000 atmospheric pressures.
この焼結体の組織はX線回折、KPMA観察結果、マト
リックス中にTi−Pa金属間化合物が均一に分散して
bた。As a result of X-ray diffraction and KPMA observation, the structure of this sintered body showed that the Ti-Pa intermetallic compound was uniformly dispersed in the matrix.
これをスパッター用に直径74.2■に加工し、ターゲ
ット材とした。該ターゲット材を用い直流電源、300
W%j分、アルゴンガス圧数罵torr、マグネトロン
方式でスパッターを行なった。成膜するディスクは直径
300−のガラスを使用した。得られ大成膜組成を螢光
xfiI法でJam間隔で分析することによ)、ディス
ク面内成膜組成分布を調べた。結果を表/に示す。This was processed into a diameter of 74.2 cm for sputtering and used as a target material. DC power supply using the target material, 300
Sputtering was carried out using a magnetron method at an argon gas pressure of 10 torr for W%j minutes. A glass disk with a diameter of 300 mm was used for the film formation. By analyzing the obtained large film composition at Jam intervals using the fluorescent xfiI method), the film composition distribution within the disk plane was investigated. The results are shown in Table/.
なお比較のため、純T1金属チップg’r’b−Pa合
金ターゲット材表面に11を置し、面積比が上記組成に
なるようにした以外は上記と同一条件で試験した。結果
を表7に示す。For comparison, a test was conducted under the same conditions as above except that a pure T1 metal chip 11 was placed on the surface of the g'r'b-Pa alloy target material and the area ratio was made to have the above composition. The results are shown in Table 7.
ff/ ディスク面内成膜組成分布(T1:原子%
)実施例コ
Tb:?e:Qo:Ge=JO:40:10:10 (
fi。ff/ Disc in-plane film composition distribution (T1: atomic %
)Example Tb:? e:Qo:Ge=JO:40:10:10 (
fi.
子%)の複合ターゲット材を製造し念。即ち、まずGo
−Feの金属間化合物を形成させるためG・ニア6w/
:J (原子比)の組成でアーク・メルター法で鋳造し
、金属間化合物の塊を得た。%) to manufacture composite target materials. That is, first Go
-G.Nia 6w/ to form an intermetallic compound of Fe
:J (atomic ratio) was cast by an arc melter method to obtain a lump of an intermetallic compound.
一方、マトリックスを共晶組織にするため。On the other hand, to make the matrix a eutectic structure.
Tb:IFez72:al (原子%)の組成で共晶組
織塊をアーク−メルター法で得た。A eutectic structure mass with a composition of Tb:IFez72:al (atomic %) was obtained by an arc-melter method.
各々の金属塊をショークラッシャー、カッター・ミルに
よ〕アルゴンガス−雰囲気中で粉砕し、100μm以下
の粉末を得六。また1003m以下のl1le粉末、C
o粉末を準備した。Each metal lump was crushed using a show crusher and a cutter mill in an argon gas atmosphere to obtain a powder of 100 μm or less. In addition, l1le powder below 1003 m, C
o powder was prepared.
所望の組成のなるよう上記の各粉末を配合、混合し、黒
鉛製ダイス内に粉末を充填後、 100果、マトリック
ス中[Ge−Feの金属間化合物が均一に分散していた
。これをスパッター用に直径76、−一に加工し、ター
ゲット材とじ九。After blending and mixing the above powders to obtain the desired composition and filling the powders into a graphite die, the intermetallic compound of Ge-Fe was uniformly dispersed in the matrix. This was processed to have a diameter of 76 mm for sputtering, and the target material was bound to 9.
該ターゲット材を用い直流電源、loowl)1分、ア
ルゴンガス圧数mtorr、 マグネトロン方式でス
パッターを行なった。成膜するディスクは直径JOOw
mのガラス全使用した。Using the target material, sputtering was performed using a magnetron method using a DC power supply, 1 minute of argon gas pressure, and several mtorr of argon gas. The disk to be deposited has a diameter of JOOw.
All m glass was used.
得られた成り組成を実施例1と同様に分析した。その結
果を表2に示す。The resulting composition was analyzed in the same manner as in Example 1. The results are shown in Table 2.
なお比較のため、Go−Feの金属間化合物の代わ)に
06金属粉末を用Aた以外は上記と同一条件で焼結した
。この焼結体の組織はX線回折、EiPMA観察結果、
マ) リツクス中に純Ge金jAll織が存在していた
。この焼結体を上記と同様にスパッターした結果を表λ
に示す。For comparison, sintering was performed under the same conditions as above, except that 06 metal powder was used instead of the Go-Fe intermetallic compound. The structure of this sintered body is determined by X-ray diffraction, EiPMA observation results,
M) Pure Ge gold jAll fabric was present in the ricks. The results of sputtering this sintered body in the same manner as above are shown in Table λ
Shown below.
表2 ディスク面内成膜組成分布(Gs:原子X)実
施例J
Tb:ao:0r=J7:At:zO(Jjfi、子X
)の複合ターゲット材yk裂造し念。即ち、まず0r−
00の金属間化合物を形成させるため0r−00=j
: J (i子比)の組成でアーク・メルター法で鋳造
、金属間化合物の塊を得た。Table 2 Disk in-plane film formation composition distribution (Gs: atom X) Example J Tb:ao:0r=J7:At:zO (Jjfi, child
) Composite target material yk is broken. That is, first 0r-
0r-00=j to form an intermetallic compound of 00
A lump of intermetallic compound was obtained by casting with an arc melter method with a composition of: J (i element ratio).
一方、マトリックスとして、Tt)金属、G。On the other hand, as a matrix, Tt) metal, G.
金属を所望の組成になるようアーク・メルター法で鋳造
塊を得た。A cast ingot was obtained using an arc melter method so that the metal had the desired composition.
各々の金属塊をショークラッシャー、カッター・ミルに
よりアルゴンガス雰囲気中で粉砕し。Each metal lump was crushed in an argon gas atmosphere using a show crusher and a cutter mill.
/ 00 tsm以下の粉末を得た。最終的に上記の組
成となるよう各粉末を配合、混合し、鋼製カプセルに充
填後、1000℃、10DD気圧の熱間等方圧プレスで
焼結し九。/00 tsm or less powder was obtained. The powders were blended and mixed to finally have the above composition, filled into a steel capsule, and then sintered in a hot isostatic press at 1000°C and 10DD atmospheric pressure.9.
この焼結体の組織はX線回折、IIIPMム観察結果、
マトリックス中KOr−Ooの金属間化合物が均一に分
散してい念。The structure of this sintered body is determined by X-ray diffraction, IIIPM observation results,
Make sure that the KOr-Oo intermetallic compound in the matrix is uniformly dispersed.
とれをスパッター用に直径76.2■に加工し。Process the tore into a diameter of 76.2cm for sputtering.
ターゲット材とした。該ターゲット材を用い、直流電源
%10011%l1分、アルゴンガス正数+mtorr
、マグネトロン方式でスパッターを行なった。成膜する
ディスクは直径300■のガラスを使用した。得られた
成膜組成を実施例Iと同様に分析した。結果を!!3に
示す。It was used as a target material. Using the target material, DC power supply %10011%l1 minute, argon gas positive number + mtorr
, sputtering was performed using a magnetron method. A glass disk with a diameter of 300 square meters was used for film formation. The obtained film composition was analyzed in the same manner as in Example I. Results! ! Shown in 3.
なお比較のため、純Or金属チップをτ)−〇o合金タ
ーゲット材表面に載置し1面積比が上記組成になるよう
にした以外は上記と同一条件で試験した結果をiJK示
す。For comparison, iJK shows the results of a test conducted under the same conditions as above, except that a pure Or metal chip was placed on the surface of a τ)-〇o alloy target material so that the 1 area ratio had the above composition.
!!!!J ディスク面内成膜組成分布(□ r:原
子X)実施例弘
Tb:Ga:Il’f:Zr=/J:/J:44:10
(原子%)の複合ターゲット材を製造した。即ち、まず
Zr−IF@の金属間化合物を形成させる九めZr:F
・=Z:2(原子比)の組成でアーク・メルター法で鋳
造し、金属間化合物塊を得た。! ! ! ! J Disk in-plane film formation composition distribution (□ r: atom X) Example HiroTb:Ga:Il'f:Zr=/J:/J:44:10
(atomic %) composite target material was manufactured. That is, first, Zr:F is used to form an intermetallic compound of Zr-IF@.
An intermetallic compound lump was obtained by casting using an arc melter method with a composition of .=Z:2 (atomic ratio).
一方、マトリックスを共晶組織にするため。On the other hand, to make the matrix a eutectic structure.
T h e、 ]F e=72 : J t (原子
X)s Ga:]Fs=j7:/J(原子X)の組成
で各々の共晶組織塊をア−り・メルター法で得た。Each eutectic structure mass was obtained by the Arry-melter method with a composition of T he, ]Fe=72: J t (atom X) s Ga: ]Fs=j7:/J (atom X).
各々金属塊をショークラッシャー、カッター・ミルによ
りアルボンガス雰囲気中で粉砕し、100μm以下の粉
末を得た。また1100t1以下の1・粉末を準備した
。Each metal lump was crushed in an arbon gas atmosphere using a show crusher and a cutter mill to obtain powder of 100 μm or less. In addition, 1 powder of 1100 t1 or less was prepared.
最終的に所望の組成のなるよう各粉末を配合。Blend each powder to achieve the final desired composition.
混合し、黒鉛製ダイス内に充填後、700℃、果、マト
リックス中KZr−y・の金属間化合物が均−拳分散し
ていた。After mixing and filling into a graphite die at 700°C, the intermetallic compound of KZr-y was uniformly dispersed in the matrix.
これをスパッター用に直径76.2■に加工し、ターゲ
ット材とした。該ターゲット材を用い、直流電源zoo
v%3分、アルゴンガス圧a馬torr、マグネトロン
方式でスパッターを行なった。成膜するディスクは直径
JOO■のガラスを使用した。This was processed into a diameter of 76.2 cm for sputtering and used as a target material. Using the target material, a DC power supply zoo
Sputtering was performed using a magnetron method at v% 3 minutes, argon gas pressure, and torr. The disk on which the film was formed was made of glass with a diameter of JOO.
成膜組成を実施例1と同様に分析し九結果を表弘に示す
。The film composition was analyzed in the same manner as in Example 1, and the results are shown in Table 1.
なお比較のため、zr金属粉末を用いた以外は上記と同
一条件で焼結した。この焼結体の組織はX線回折、II
iPMA観察結果、マ) Uツクス中に純zr金属組織
が存在していた。この焼結体を上記と同様にスパッター
した結果を表μに示す。For comparison, sintering was performed under the same conditions as above except that Zr metal powder was used. The structure of this sintered body was determined by X-ray diffraction, II
As a result of iPMA observation, a pure Zr metal structure was present in the matrix. This sintered body was sputtered in the same manner as above, and the results are shown in Table μ.
表≠ ディスク面内成膜組成分布(Zr:i子S)実
施例!
T1+:Fe:C1u=Jj:47:#)(原子%)の
複合ターゲット材を製造した。即ち−まず0u−Faの
固溶体を形成させるためOu:F@z/:/(原子比)
の組成でアーク・メルター法で鋳造し、固溶体の塊を得
た。Table ≠ Disk in-plane film composition distribution (Zr: i-S) Example! A composite target material of T1+:Fe:C1u=Jj:47:#) (atomic %) was manufactured. That is, - First, to form a solid solution of Ou-Fa, Ou:F@z/:/(atomic ratio)
A solid solution lump was obtained by casting using the arc melter method with the following composition.
一方、マトリックスを共晶組織にするため、τb−ν・
=7コ:コt(原子%)の組成でアーク・メルター法で
共晶組織塊を製造した。On the other hand, in order to make the matrix a eutectic structure, τb−ν・
A eutectic structure mass was produced by an arc melter method with a composition of =7 co:cot (atomic %).
各々の金属塊をショークラッシャー、カッター・ミルに
よ)アルゴンガス雰囲気中で粉砕し、1005m以下の
粉末を得た。また100μm以下のν・粉末を準備した
。Each metal lump was crushed in an argon gas atmosphere using a show crusher and a cutter mill to obtain a powder of 1005 m or less. In addition, ν powder of 100 μm or less was prepared.
上記の組成のなるよう各粉末を配合、混合し、鋼製カプ
セルに充填後、600℃、10DD気圧の熱間等方圧プ
レスで焼結した。Each powder was blended and mixed to have the above composition, filled into a steel capsule, and then sintered in a hot isostatic press at 600° C. and 10 DD atmospheric pressure.
この焼結体の組織はxm回折、IltPMム観察結果、
w)リツクス中にΩu−?e固溶体組織が均一に分散し
ていた。The structure of this sintered body is the result of xm diffraction, IltPM observation,
w) Ωu-? e The solid solution structure was uniformly dispersed.
これをスパッター用に直径76.2■に加工し、ターゲ
ット材とした。該ターゲット材を用い、直流電源、30
θW、3分、アルゴンガス正数5tory、マグネトロ
ン方式でスパッターを行なった。成膜するディスクは直
径3θθ■のガラスを使用した。得られ大成膜組成を実
施例1と同様に分析し九結果をNZに示す。This was processed into a diameter of 76.2 cm for sputtering and used as a target material. Using the target material, a DC power source, 30
Sputtering was performed using a magnetron method at θW for 3 minutes, argon gas positive number 5 tories. A glass disk having a diameter of 3θθ■ was used for film formation. The obtained large film composition was analyzed in the same manner as in Example 1, and the results are shown in NZ.
なシ比較のため、0u−Feの固溶体の代わ)KOu金
属粉末を用りた以外は上記と同一条件で焼結し穴。この
焼結体の組織はX線回折、)lム観察結果、!トリック
ス中に純Ou金属組織が存在してiた。この焼結体を上
記と同様にスパッターした結果t−表7に示す。For comparison, holes were sintered under the same conditions as above, except that KOU metal powder (instead of Ou-Fe solid solution) was used. The structure of this sintered body is the result of X-ray diffraction, )lm observation,! A pure Ou metal structure was present in the trix. This sintered body was sputtered in the same manner as above, and the results are shown in Table 7.
表! ディスク面内成膜組成分布(Ou:原子比)〔発
明の効果〕
以上の如く本発明の複合ターゲット材を用いると、スパ
ッターにより得られた薄膜の組成分布の均一度が極めて
向上し、そのため薄膜全体にわたって耐食性が向上でき
るので、本発明は工業的に優れたターゲット材を提供す
るものである。table! Disk in-plane film formation composition distribution (Ou: atomic ratio) [Effects of the invention] As described above, when the composite target material of the present invention is used, the uniformity of the composition distribution of the thin film obtained by sputtering is extremely improved, and therefore the thin film Since the corrosion resistance can be improved throughout, the present invention provides an industrially excellent target material.
Claims (2)
d、Gd、Td、Dy、Ho、Er及びTmからなる群
から選択された希土類金属並びに Fe、Co及びNiからなる群から選択された遷移金属
とよりなるマトリックス中に、Ti、Cu、Zr、Ge
、Si、Sn、Pb、In、Cr、Mo、W、Nb、T
a、Pt、Rh及びReからなる群から選択された金属
とマトリックスを構成する一種又は二種以上の金属との
、金属間化合物及び/又は固溶体を均一分散してなる複
合ターゲット材。(1) In the composite target material for magneto-optical disks, N
Ti, Cu, Zr, Ge
, Si, Sn, Pb, In, Cr, Mo, W, Nb, T
A composite target material formed by uniformly dispersing an intermetallic compound and/or solid solution of a metal selected from the group consisting of a, Pt, Rh, and Re and one or more metals constituting a matrix.
組織及び該共晶組織を構成する金属成分と同一又は異な
る金属組織より構成されていることを特徴とする特許請
求の範囲第1項記載の複合ターゲット材。(2) The matrix is composed of a eutectic structure of a rare earth metal and a transition metal, and a metal structure that is the same as or different from the metal components constituting the eutectic structure. composite target material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP296487A JPS63171877A (en) | 1987-01-09 | 1987-01-09 | Composit target material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP296487A JPS63171877A (en) | 1987-01-09 | 1987-01-09 | Composit target material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63171877A true JPS63171877A (en) | 1988-07-15 |
Family
ID=11544050
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP296487A Pending JPS63171877A (en) | 1987-01-09 | 1987-01-09 | Composit target material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63171877A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0308201A1 (en) * | 1987-09-17 | 1989-03-22 | Seiko Epson Corporation | Method of forming a sputtering target for use in producing a magneto-optic recording medium |
JPH02107762A (en) * | 1988-10-15 | 1990-04-19 | Sumitomo Metal Mining Co Ltd | Alloy target for magneto-optical recording |
JPH02118065A (en) * | 1988-10-26 | 1990-05-02 | Sumitomo Metal Mining Co Ltd | Alloy target for magneto optical recording |
JPH02118066A (en) * | 1988-10-26 | 1990-05-02 | Sumitomo Metal Mining Co Ltd | Alloy target for magnet-optical recording |
US5952094A (en) * | 1991-09-03 | 1999-09-14 | U.S. Philips Corporation | Magneto-optical recording medium |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5968854A (en) * | 1982-09-28 | 1984-04-18 | Seiko Instr & Electronics Ltd | Photomagnetic recording medium |
JPS616807A (en) * | 1984-06-20 | 1986-01-13 | Oki Electric Ind Co Ltd | Photomagnetic recording material |
JPS6191336A (en) * | 1984-10-09 | 1986-05-09 | Mitsubishi Metal Corp | Production of alloy target material |
JPS61107555A (en) * | 1984-10-31 | 1986-05-26 | Nec Corp | Optomagnetic recording medium |
JPS6247475A (en) * | 1985-08-26 | 1987-03-02 | Seiko Epson Corp | Production of alloy target |
JPS62205556A (en) * | 1986-03-06 | 1987-09-10 | Mitsubishi Metal Corp | Sputtering target for forming photoelectromagnetic recording medium |
-
1987
- 1987-01-09 JP JP296487A patent/JPS63171877A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5968854A (en) * | 1982-09-28 | 1984-04-18 | Seiko Instr & Electronics Ltd | Photomagnetic recording medium |
JPS616807A (en) * | 1984-06-20 | 1986-01-13 | Oki Electric Ind Co Ltd | Photomagnetic recording material |
JPS6191336A (en) * | 1984-10-09 | 1986-05-09 | Mitsubishi Metal Corp | Production of alloy target material |
JPS61107555A (en) * | 1984-10-31 | 1986-05-26 | Nec Corp | Optomagnetic recording medium |
JPS6247475A (en) * | 1985-08-26 | 1987-03-02 | Seiko Epson Corp | Production of alloy target |
JPS62205556A (en) * | 1986-03-06 | 1987-09-10 | Mitsubishi Metal Corp | Sputtering target for forming photoelectromagnetic recording medium |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0308201A1 (en) * | 1987-09-17 | 1989-03-22 | Seiko Epson Corporation | Method of forming a sputtering target for use in producing a magneto-optic recording medium |
JPH02107762A (en) * | 1988-10-15 | 1990-04-19 | Sumitomo Metal Mining Co Ltd | Alloy target for magneto-optical recording |
JPH02118065A (en) * | 1988-10-26 | 1990-05-02 | Sumitomo Metal Mining Co Ltd | Alloy target for magneto optical recording |
JPH02118066A (en) * | 1988-10-26 | 1990-05-02 | Sumitomo Metal Mining Co Ltd | Alloy target for magnet-optical recording |
US5952094A (en) * | 1991-09-03 | 1999-09-14 | U.S. Philips Corporation | Magneto-optical recording medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7311874B2 (en) | Sputter target and method for fabricating sputter target including a plurality of materials | |
JP4405610B2 (en) | Manufacturing method of sputtering target | |
US20070189916A1 (en) | Sputtering targets and methods for fabricating sputtering targets having multiple materials | |
US6042777A (en) | Manufacturing of high density intermetallic sputter targets | |
US4824481A (en) | Sputtering targets for magneto-optic films and a method for making | |
TWI225893B (en) | AlRu sputtering target and manufacturing method thereof | |
TW201103999A (en) | Method for manufacturing nickel alloy target | |
WO2015146311A1 (en) | SPUTTERING TARGET COMPRISING Al-Te-Cu-Zr ALLOY, AND METHOD FOR PRODUCING SAME | |
US5397533A (en) | Process for producing TiB2 -dispersed TiAl-based composite material | |
JPS5841772A (en) | Titanium borate base sintering composition and use for manufacturing sintered article | |
JPS6191336A (en) | Production of alloy target material | |
JPS63171877A (en) | Composit target material | |
US5778302A (en) | Methods of making Cr-Me sputter targets and targets produced thereby | |
JPH02107762A (en) | Alloy target for magneto-optical recording | |
JPH0247261A (en) | Silicide target and production thereof | |
JP2894695B2 (en) | Rare earth metal-iron group metal target and method for producing the same | |
JPH01136969A (en) | Manufacture of target for titanium silicide sputtering | |
KR100241407B1 (en) | Target for magneto-optical recording medium and manufacturing method thereof | |
JPS63143255A (en) | Alloy target material | |
JP2002212607A (en) | Method for producing high melting point alloy | |
JP3328921B2 (en) | Target for magneto-optical recording media | |
US20160298228A1 (en) | Soft-magnetic based targets having improved pass through flux | |
JPH0791637B2 (en) | Sputtering alloy target and manufacturing method thereof | |
JPH02250964A (en) | Sendust alloy target and production thereof | |
TW555609B (en) | Method for producing powder of metal glass composite material with broad super-cooled liquid region |