JPS5968854A - Photomagnetic recording medium - Google Patents

Photomagnetic recording medium

Info

Publication number
JPS5968854A
JPS5968854A JP17018282A JP17018282A JPS5968854A JP S5968854 A JPS5968854 A JP S5968854A JP 17018282 A JP17018282 A JP 17018282A JP 17018282 A JP17018282 A JP 17018282A JP S5968854 A JPS5968854 A JP S5968854A
Authority
JP
Japan
Prior art keywords
recording medium
thin film
long
photomagnetic recording
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17018282A
Other languages
Japanese (ja)
Inventor
Katsuhiko Yahagi
矢萩 勝彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP17018282A priority Critical patent/JPS5968854A/en
Publication of JPS5968854A publication Critical patent/JPS5968854A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10582Record carriers characterised by the selection of the material or by the structure or form
    • G11B11/10586Record carriers characterised by the selection of the material or by the structure or form characterised by the selection of the material

Landscapes

  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To obtain a photomagnetic recording medium where an amorphous magnetic thin film alloy stable for a long term is adopted as a recording medium, excellent in environment-resistance, good in long-term stability and less secular change. CONSTITUTION:The thin film alloy of this invention is to improve a conventionally known photomagnetic recording medium. That is, it is possible to offer the photomagnetic recording medium less in secular change and excellent long- term storage by adding Cu (copper metal element) as an additive element. The ratio (RxT1-x) of R(Gd, Tb, Dy) to T(Co, Fe) is 0.1<=X<=0.4 known conventionally. The added Cu element of <=0.01mol gives almost no good result and when added by >=0.4mol, the deterioration in the magnetic characteristic Ms, Hc takes place, and the Kerr rotating angle is decreased, then it is impossible to use it as an optomagnetic recording medium because of deteriorated S/N and increase in the bit error rate.

Description

【発明の詳細な説明】 本発明に、希土類元素と鉄族元素を主成分とする非晶質
磁性薄膜を有し、膜面と垂直方向に磁化容易方向を有す
る光磁気記録媒体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magneto-optical recording medium having an amorphous magnetic thin film mainly composed of rare earth elements and iron group elements, and having an easy magnetization direction perpendicular to the film surface. .

逆子から、希土類元素とFe 、Coの鉄族金属を主た
る成分とする非晶質磁性薄膜は、膜面と垂直な方向に磁
化容易方向を有し、S極あるい!l−j N極に一様に
磁化された膜面内に逆向きの小さなスポット状の反転磁
区を作ることが出来る。この反転磁区の有無e rIJ
’ 、rOJに対応することによってデジタル信号とし
た磁気メモリー媒体として用いることができる。このよ
うな硼性薄膜のうち、室温に比較的近いキューリ一点又
は出猟的補償温度を持つ合金は、レーザー光等の光又は
熱的効果によって、任意の位置に任意の大きさ・形状の
反転磁区を作ることが出来る。これを利用することによ
って情報を記録することが可能であり、ディスク、テー
プ、シート状の光磁気メモリー媒体として利用すること
が可能となりつつある。そして読み出す方法として、磁
気カー効果やファラデー効果を利用する方式が用いら1
1ている。
From the inverse, an amorphous magnetic thin film whose main components are rare earth elements and iron group metals such as Fe and Co has an easy magnetization direction perpendicular to the film surface, and an S pole or! It is possible to create a small spot-shaped reversal magnetic domain in the opposite direction in the plane of a film that is uniformly magnetized to the l-j N pole. Presence or absence of this inverted magnetic domain e rIJ
', by being compatible with rOJ, it can be used as a magnetic memory medium with digital signals. Among these boron thin films, alloys that have a Curie point or a compensation temperature relatively close to room temperature can be inverted to any size and shape at any position by light such as laser light or thermal effects. It is possible to create magnetic domains. By using this, it is possible to record information, and it is becoming possible to use it as a magneto-optical memory medium in the form of disks, tapes, and sheets. As a reading method, a method using magnetic Kerr effect or Faraday effect is used1.
There are 1.

従来、公知である膜面と垂直な方向に磁化容易軸を有し
、かつ光ビームにより情報を書き込み・読み出せる磁性
薄膜合金としては、MnB1に代表される多結晶合金薄
膜、G工Gに代表される単結晶薄膜、そして04−Co
 、 Gd、−F’e 、 T’b−Fe。
Conventionally known magnetic thin film alloys that have an axis of easy magnetization in the direction perpendicular to the film surface and that can write and read information using a light beam include polycrystalline alloy thin films represented by MnB1, and polycrystalline alloy thin films represented by G-G. single crystal thin film, and 04-Co
, Gd, -F'e, T'b-Fe.

Dy−Fe 、 G(+−Dy−T b−F e 、 
G(1−T b−Fe 。
Dy-Fe, G(+-Dy-T b-Fe,
G(1-Tb-Fe.

()d−Fe−Bi 等の非晶質合金薄膜があるが、こ
の非晶質合金薄膜が実用上一番良い材料として注目され
ている。
There are amorphous alloy thin films such as ()d-Fe-Bi, and this amorphous alloy thin film is attracting attention as the best material for practical use.

しかし−上述した非晶質合金磁性薄膜は、書込感度が高
く、垂直の磁気異方性が大面積で安定に作れる、優rL
fc磁気特性を有し、磁気的に安定性がある、キュリ一
点も低いため小さい光(熱)エネルギーで書き込める、
非晶質の1こめ粒界ノイズが小さくS/N比が大きく取
り出せる、等の多くの利点があるにもかかわらず、希土
類元素およびFe、Co等は、本来耐環境性に対して弱
く、酸化9分解、腐食等が生じやすぐ、合金においても
同様であり、長期安定性に対して弱く、経時変化が生じ
磁気特性の劣化が生じるため、書き込凍れり信号の状態
が変化しエラーやS/N比の減少が生じる欠点を有して
いる。
However, the above-mentioned amorphous alloy magnetic thin film has high writing sensitivity and can stably create perpendicular magnetic anisotropy over a large area.
It has fc magnetic properties, is magnetically stable, and can be written with a small amount of light (thermal) energy because it is even less than a single Curie point.
Despite the many advantages of amorphous materials, such as low grain boundary noise and a large S/N ratio, rare earth elements, Fe, Co, etc. are inherently weak in environmental resistance and are susceptible to oxidation. 9. As soon as decomposition, corrosion, etc. occur, the same applies to alloys, which are weak in long-term stability, change over time, and cause deterioration of magnetic properties, so the state of the write freeze signal changes, causing errors and It has the disadvantage that the S/N ratio decreases.

本発明は、上述した従来の欠点を除去し、耐環境性が優
れ長期安定性が良いため経時変化が少なく、長期間安定
な非晶買出性薄膜合金金記録媒体した光6B気記録媒体
を提供することにある。
The present invention eliminates the above-mentioned conventional drawbacks, and provides an optical 6B optical recording medium which is an amorphous thin film alloy gold recording medium that has excellent environmental resistance and good long-term stability, so it does not change over time and is stable for a long time. It is about providing.

すな:bち、本発明の光磁気記録媒体は、膜面に垂直な
方向が磁化容易@(磁気異方性)であるとともに、キュ
ーリ一点(Tc)およびGO系の補償W 哩(T co
mp )が室温近くの50℃から2[)0℃を有する大
部分が非晶質状態の薄膜である。
The magneto-optical recording medium of the present invention has easy magnetization (magnetic anisotropy) in the direction perpendicular to the film surface, as well as a single Curie point (Tc) and GO system compensation W 哩 (T co
It is a thin film in a mostly amorphous state with a mp ) of 50° C. near room temperature to 2[)0° C.

従来からR(希土類元素Gd、Tb、’Dy’)とFe
、Coの非晶質合金は、光磁気効果および磁気特性、キ
ューリ一点、補償温度が適切で光磁気記録媒体として注
目され、しかも実用化が進みつつあるが、酸化しやすい
金属合金であるため長期の信頼性が悪く、そのために経
時変化が生じ、高温・高湿等の大きい環境ではその劣化
が大きく、今後民生品として普及し、保存された場合に
大きな支障となってしまう。す々わち、合金が酸化する
ため磁気特性が劣化し、保磁力(He)が小さくなり、
又、飽和磁化(Ms)も小さくなることから、高密度の
情報」記録が不可能となるし、記録さねた情報が不安定
になる。又、キューリ一点や補償温度が変化するためレ
ザーによる書込みが不可能となったりし、ビット誤り率
が大きい媒体となってし1つ。又、カー回転角、ファラ
デー回転角等に変化が生じ、レザーでの読取り時に不可
能なビットが生じ、同様に誤り率が大きくなったり、更
にS / N比が小さくなる等の多くの欠点金有−して
いる。これを防ぐために、5i02等の透明酸化膜、窒
化膜等の保護膜をコーティングするが、記録媒体が劣化
しやすい合金であるため、十分に経時変化を防ぐことは
難かしい欠点を有している。
Conventionally, R (rare earth elements Gd, Tb, 'Dy') and Fe
, Co amorphous alloys have attracted attention as magneto-optical recording media due to their magneto-optical effect and magnetic properties, Curie point, and appropriate compensation temperature, and are being put into practical use. They have poor reliability, which causes deterioration over time, and their deterioration is significant in environments with high temperatures and high humidity, which will pose a major problem if they become popular as consumer products and are stored in the future. As the alloy oxidizes, the magnetic properties deteriorate and the coercive force (He) decreases.
Furthermore, since the saturation magnetization (Ms) also becomes small, it becomes impossible to record high-density information, and the unrecorded information becomes unstable. Furthermore, because the Curie point and the compensation temperature change, writing with a laser becomes impossible, resulting in a medium with a high bit error rate. In addition, changes occur in the Kerr rotation angle, Faraday rotation angle, etc., which results in the generation of bits that are impossible to read with the laser, which also increases the error rate and furthermore causes many disadvantages such as a decrease in the S/N ratio. Yes. To prevent this, a protective film such as a transparent oxide film or nitride film such as 5i02 is coated, but since the recording medium is an alloy that easily deteriorates, it has the drawback that it is difficult to sufficiently prevent deterioration over time. .

本発明の薄膜合金は、従来の公知である光磁気記録媒体
を改良することを特徴としたものである。
The thin film alloy of the present invention is characterized by improving conventionally known magneto-optical recording media.

すなわち、添加元素としてCu(銅金属元素)を加える
ことによって上記欠点を改良し、経時変化 5− の少ない長期保存性に優れた光磁気記録媒体を提供する
ことを可能としたものである。
That is, by adding Cu (copper metal element) as an additive element, it is possible to improve the above-mentioned drawbacks and provide a magneto-optical recording medium that shows little change over time and has excellent long-term storage stability.

R(Gd、、Tb、Dy)とT(Co、Fe’)の比R
XTI−Xけ従来から0.1 < X≦04と知られで
いる通りである(特願昭55−50251. 55−1
70239   55− 37547   50 −1
 0 7 1  Q  7   51−25534  
51−25534等参照)。更に、RQその他の希土類
元素で置換しても、若干は各特性が劣る場合もあるが問
題は無い。添加するCu元元素、実験の結果0.01モ
ル以下ではほとんど良い効果はみとめられないし、又、
0.4モルu上になると、磁気的特性のMs。
Ratio R of R (Gd, , Tb, Dy) and T (Co, Fe')
XTI-X has been known as 0.1 < X≦04 (Patent Application No. 55-50251.
70239 55- 37547 50-1
0 7 1 Q 7 51-25534
51-25534 etc.). Furthermore, even if RQ or other rare earth elements are substituted, there is no problem, although each characteristic may be slightly inferior. As a result of experiments, when the Cu element added is less than 0.01 mol, almost no good effect is observed;
Above 0.4 mole u, the magnetic properties Ms.

Hcの劣化が生ずるし、カー回転角も減少するため、+
3/N比が悪くなったり、ビット誤り率の増大が生じて
十分な光磁気記録媒体として使用することが不可有ヒと
なってしまう。これは、図4に示さねた通りOuを加え
た場合は、θk(カー回転角)の劣化は少ない、又、図
1,2に示されたようにCuを加えると、TO,θには
若干劣るが、Y = 0.4モルまでにそれほど劣化は
少ないことが 6− わかる。
Since Hc deterioration occurs and the Kerr rotation angle also decreases, +
The 3/N ratio deteriorates and the bit error rate increases, making it impossible to use it as a sufficient magneto-optical recording medium. This means that when Ou is added as shown in Figure 4, there is little deterioration in θk (Kerr rotation angle), and when Cu is added as shown in Figures 1 and 2, TO and θ are Although it is slightly inferior, it can be seen that the deterioration is not so great up to Y = 0.4 mol.

図13は、Rが多種になるほどθkが優ねる傾向にある
。Ou添加は、更にMnB1系多結晶。
FIG. 13 shows that θk tends to be more dominant as R becomes more diverse. Addition of O further results in MnB1 polycrystal.

GIGに代表される単結晶系にも有効である。It is also effective for single crystal systems such as GIG.

【図面の簡単な説明】[Brief explanation of drawings]

第1図[Gd、Tb、Fe三元系にCuを加えた非晶質
合金薄膜のキューリ一点(Tc)%注口、第2図は、同
様にカー回転角(θk)%注口、第6図は、従来の二元
系と本発明のOuを加えた非晶質合金薄膜のTc、θに
関係図、第4rz1は、80℃、湿、度95%環境中に
放憧した時のθにの経時変化を、従来材D7−Gd−T
tl−FθとOuを加えた本発明材の特性図である。 、U上 出願人 株式会社 第二稍工合 代理人 弁理士 最上  助  7− 第2図 C,u(Y) (和メθ (ン)ンe
Figure 1 [Curie single point (Tc)% pouring point of an amorphous alloy thin film made of Gd, Tb, Fe ternary system plus Cu; Figure 2 similarly shows the Kerr rotation angle (θk)% pouring point; Figure 6 shows the relationship between Tc and θ of the conventional binary system and the O-added amorphous alloy thin film of the present invention.No. The change over time in θ was compared to conventional material D7-Gd-T.
It is a characteristic diagram of the present invention material in which tl-Fθ and O are added. , U Applicant Daishenkoko Co., Ltd. Joint Agent Patent Attorney Mogami Suke 7- Figure 2 C, u(Y) (Japanese θ (n)n e

Claims (3)

【特許請求の範囲】[Claims] (1)膜面に垂直な方向に磁気異方性を有する非晶質合
金において、Cu元素を含有することを特徴とした薄膜
光磁気記録媒体。
(1) A thin film magneto-optical recording medium characterized by containing Cu element in an amorphous alloy having magnetic anisotropy in a direction perpendicular to the film surface.
(2)合金の一般式 (RX T 1−I)j−Y 0
uY(RtまOd、Tb、Dyが1種以上である。捷た
、TUOo、Feが1種以上である。Xは01くX≦0
.4Yは0.01≦Y り0.4 である。)で示され
る組FfCを有する特許請求の範囲第1項記載の薄膜光
磁気記録媒体。
(2) General formula of alloy (RX T 1-I)j-Y 0
uY (Rt, Od, Tb, and Dy are one or more types. Cut, TUOo, and Fe are one or more types. X is 01 and X≦0
.. 4Y is 0.01≦Y ri0.4. 2. The thin film magneto-optical recording medium according to claim 1, having a set FfC represented by:
(3)  Ri’j: G dHT bHD 7 + 
scy YHLaHCeHPr、Nd、Fm、am、E
u、Ho、Er、Tm、Yb。 Luが1種以上である特許請求の範囲第2項記載の薄膜
磁気記録媒体。
(3) Ri'j: G dHT bHD 7 +
scy YHLaHCeHPr, Nd, Fm, am, E
u, Ho, Er, Tm, Yb. 3. The thin film magnetic recording medium according to claim 2, wherein Lu is one or more types.
JP17018282A 1982-09-28 1982-09-28 Photomagnetic recording medium Pending JPS5968854A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17018282A JPS5968854A (en) 1982-09-28 1982-09-28 Photomagnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17018282A JPS5968854A (en) 1982-09-28 1982-09-28 Photomagnetic recording medium

Publications (1)

Publication Number Publication Date
JPS5968854A true JPS5968854A (en) 1984-04-18

Family

ID=15900200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17018282A Pending JPS5968854A (en) 1982-09-28 1982-09-28 Photomagnetic recording medium

Country Status (1)

Country Link
JP (1) JPS5968854A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60126804A (en) * 1983-12-13 1985-07-06 Ricoh Co Ltd Amorphous magnetooptical layer
JPS60128244A (en) * 1983-12-13 1985-07-09 Ricoh Co Ltd Amorphous magneto-optical layer
JPS60231307A (en) * 1984-05-01 1985-11-16 Ricoh Co Ltd Amorphous magnetooptical layer
JPS60251540A (en) * 1984-05-26 1985-12-12 Ricoh Co Ltd Amorphous magnetooptic layer
JPS60253041A (en) * 1984-05-29 1985-12-13 Agency Of Ind Science & Technol Photothermomagnetic recording medium
JPS6118107A (en) * 1984-07-04 1986-01-27 Ricoh Co Ltd Non-crystalline magneto-optical layer
JPS61104445A (en) * 1984-10-26 1986-05-22 Nec Corp Photomagnetic recording medium
JPS61117749A (en) * 1984-11-13 1986-06-05 Seiko Instr & Electronics Ltd Photomagnetic recording medium
JPS6247846A (en) * 1985-08-26 1987-03-02 Seiko Epson Corp Photomagnetic recording medium
JPS62287453A (en) * 1986-06-05 1987-12-14 Matsushita Electric Ind Co Ltd Magneto-optical recording medium
FR2601175A1 (en) * 1986-04-04 1988-01-08 Seiko Epson Corp CATHODIC SPUTTER TARGET AND RECORDING MEDIUM USING SUCH A TARGET.
JPS63171877A (en) * 1987-01-09 1988-07-15 Mitsubishi Kasei Corp Composit target material
US4880694A (en) * 1984-07-11 1989-11-14 Hitachi, Ltd. Magneto-optical recording material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5231703A (en) * 1975-09-05 1977-03-10 Kokusai Denshin Denwa Co Ltd <Kdd> Magnetic thin film recording medium

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5231703A (en) * 1975-09-05 1977-03-10 Kokusai Denshin Denwa Co Ltd <Kdd> Magnetic thin film recording medium

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60128244A (en) * 1983-12-13 1985-07-09 Ricoh Co Ltd Amorphous magneto-optical layer
JPS60126804A (en) * 1983-12-13 1985-07-06 Ricoh Co Ltd Amorphous magnetooptical layer
JPH0558247B2 (en) * 1983-12-13 1993-08-26 Ricoh Kk
JPS60231307A (en) * 1984-05-01 1985-11-16 Ricoh Co Ltd Amorphous magnetooptical layer
JPS60251540A (en) * 1984-05-26 1985-12-12 Ricoh Co Ltd Amorphous magnetooptic layer
JPS60253041A (en) * 1984-05-29 1985-12-13 Agency Of Ind Science & Technol Photothermomagnetic recording medium
JPS6118107A (en) * 1984-07-04 1986-01-27 Ricoh Co Ltd Non-crystalline magneto-optical layer
US4880694A (en) * 1984-07-11 1989-11-14 Hitachi, Ltd. Magneto-optical recording material
JPS61104445A (en) * 1984-10-26 1986-05-22 Nec Corp Photomagnetic recording medium
JPH0343697B2 (en) * 1984-11-13 1991-07-03 Seiko Instr & Electronics
JPS61117749A (en) * 1984-11-13 1986-06-05 Seiko Instr & Electronics Ltd Photomagnetic recording medium
JPS6247846A (en) * 1985-08-26 1987-03-02 Seiko Epson Corp Photomagnetic recording medium
FR2601175A1 (en) * 1986-04-04 1988-01-08 Seiko Epson Corp CATHODIC SPUTTER TARGET AND RECORDING MEDIUM USING SUCH A TARGET.
JPS62287453A (en) * 1986-06-05 1987-12-14 Matsushita Electric Ind Co Ltd Magneto-optical recording medium
JPS63171877A (en) * 1987-01-09 1988-07-15 Mitsubishi Kasei Corp Composit target material

Similar Documents

Publication Publication Date Title
JPH0118506B2 (en)
JPH0123927B2 (en)
JPS6032331B2 (en) magneto-optical recording medium
JPH0249002B2 (en)
JPS5968854A (en) Photomagnetic recording medium
JPS6227459B2 (en)
JPS59178641A (en) Photomagnetic recording medium
JPS6079702A (en) Photomagnetic recording medium
JPH0330963B2 (en)
JPH0467263B2 (en)
JPS61255546A (en) Photomagnetic recording medium
JPH0351082B2 (en)
JPS6131533B2 (en)
JPH036582B2 (en)
US5100741A (en) Magneto-optic recording systems
JPS59185052A (en) Photomagnetic recording medium
JPH0316049A (en) Magneto-optical recording medium
JPH0343697B2 (en)
JPH0259603B2 (en)
JPS59168954A (en) Optical magnetic recording medium
JPS5873030A (en) Optical magnetic recording medium
JPS5996714A (en) Magnetic recording medium
JPS5968853A (en) Photomagnetic recording medium
JPS61107555A (en) Optomagnetic recording medium
JPS634443A (en) Magneto-optical recording medium