JPS5873030A - Optical magnetic recording medium - Google Patents

Optical magnetic recording medium

Info

Publication number
JPS5873030A
JPS5873030A JP17083681A JP17083681A JPS5873030A JP S5873030 A JPS5873030 A JP S5873030A JP 17083681 A JP17083681 A JP 17083681A JP 17083681 A JP17083681 A JP 17083681A JP S5873030 A JPS5873030 A JP S5873030A
Authority
JP
Japan
Prior art keywords
region
recording
recording medium
coercive force
readout
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17083681A
Other languages
Japanese (ja)
Inventor
Shinsuke Tanaka
信介 田中
Fujio Tanaka
田中 富士雄
Yasuyuki Nagao
長尾 康之
Osatake Imamura
今村 修武
Chuichi Oota
太田 忠一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
Kokusai Denshin Denwa KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Denshin Denwa KK filed Critical Kokusai Denshin Denwa KK
Priority to JP17083681A priority Critical patent/JPS5873030A/en
Publication of JPS5873030A publication Critical patent/JPS5873030A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10582Record carriers characterised by the selection of the material or by the structure or form
    • G11B11/10586Record carriers characterised by the selection of the material or by the structure or form characterised by the selection of the material

Abstract

PURPOSE:To obtain recording at a low power and a high optical reproducing output, by providing the gradient of composition toward the film thickness direction, so as to attain an excellent composition in readout characteristics at the optical readout side of a single thin film, and the excellent composition in excellent recording characteristics at the opposite side. CONSTITUTION:An photomagnetic recording medium 2 is formed on a substrate 1 made of glass or the like. This medium consists of a recording medium region (a) with low Curie point and high coercive force, a recording medium region (b) with high Curie point, small coercive force and high Kerr rotary angle, and a transition region (c), which plays a role of transmission of the information stored in the region (a) into the region (b). Recording is done with temperature rise due to light irradiated from the (b) side, with decreased coercive force of the region (a) and the part 5 of the decreased coercive force rotated in the direction of external magnetic field, and the information is transferred to the region (b) through the region (c). This information is read out with the Kerr effect of the reflected light of light irradiated rom the (b). Thus, efficient recording and readout can be performed.

Description

【発明の詳細な説明】 本発明は、光磁気メモリー、磁気記録表示素子などに用
いられる光磁気記録媒体に関するもので、具体的には膜
面と垂直な方向に磁化容易方向を有し、円形あるいは任
意の形状の反転磁区を作ることにより情報を記録するこ
とが出来、磁気カー効果などの磁気光学効果を利用して
読み出すことのできる磁性薄膜記録媒体に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magneto-optical recording medium used in magneto-optical memories, magnetic recording display elements, etc. Specifically, the present invention relates to a magneto-optical recording medium that has a direction of easy magnetization perpendicular to the film surface, and has a circular shape. Alternatively, the present invention relates to a magnetic thin film recording medium in which information can be recorded by creating reversed magnetic domains of arbitrary shapes and read out using magneto-optic effects such as the magnetic Kerr effect.

磁化容易軸が膜面と垂直な方向にある強磁性薄膜では、
S極あるいはN極に一様に磁化された膜面内の一様磁化
極性と逆向きの磁極をもつ小さな反転磁区を作ることが
できる。この反転磁区の有無をrlJ 、 rOJに対
応させれば、このような強磁性薄膜を高密度−の磁気記
録媒体として用いることができる。このような強磁性体
薄膜のうち、室温にて大きな保磁力を有し、かつキー 
IJ一点又は磁気的補償温度が比較的室温に近い薄膜は
、キューリ一点又は磁気的補償温度を利用して光ビーム
により、任意の位置に反転磁区を作ることによって情報
を記録させることができるため、一般にビーム・アドレ
ッサブルφファイルとして用いられている。
In a ferromagnetic thin film whose axis of easy magnetization is perpendicular to the film surface,
It is possible to create a small reversal magnetic domain having a uniform magnetization polarity in the plane of the film that is uniformly magnetized to the S pole or the N pole and the magnetic pole in the opposite direction. If the presence or absence of this inverted magnetic domain corresponds to rlJ and rOJ, such a ferromagnetic thin film can be used as a high-density magnetic recording medium. Among these ferromagnetic thin films, it has a large coercive force at room temperature and is a key
In a thin film whose IJ point or magnetic compensation temperature is relatively close to room temperature, information can be recorded by creating an inverted magnetic domain at an arbitrary position with a light beam using the Curie point or magnetic compensation temperature. Generally used as a beam addressable φ file.

従来、公知である膜面と垂直な方向に磁化容易軸を有し
、かつビーム・アドレッサブル・ファイルとして使用可
能な強磁性薄膜としては、MnB1に代表される多結晶
金属薄膜、GIGに代表される化合物単結晶薄膜、Gd
 −Co 、 Gd −Fe 、 TbFe 、 Dy
Fe等の非晶質金属薄膜があるが、それぞれ以下に述べ
るような利点及び欠点を有している。MnBjK代表さ
れるキューリ一点を利用して書き込みを行なう多結晶性
金属薄膜は、室温で数KOeの大゛きな保磁力を有して
いる点では磁気記録媒体として優れているが、キューリ
一点が高い(MnBiではTe=360℃)ために書き
込みに大きなエネルギーを必要とする欠点がある。また
、多結晶体であるため化学量論的な組成の薄膜を作製す
る必要があり、薄膜の作製が技術的に難しいということ
に加えMnB+では高温相と低温相の2−)の相をもち
相転移を起こしやすいことから熱的に不安定であるとい
う欠点も持ち合わせている。また、GIGに代表される
化合物単結晶薄膜は他のものに比べ非常にコスト高にな
るという大きな欠点を有する。
Conventionally known ferromagnetic thin films that have an axis of easy magnetization in the direction perpendicular to the film surface and can be used as beam-addressable files include polycrystalline metal thin films typified by MnB1 and ferromagnetic thin films typified by GIG. Compound single crystal thin film, Gd
-Co, Gd-Fe, TbFe, Dy
There are amorphous metal thin films such as Fe, but each has advantages and disadvantages as described below. A polycrystalline metal thin film, represented by MnBjK, which performs writing using a single Curie point, is excellent as a magnetic recording medium in that it has a large coercive force of several KOe at room temperature. Since the temperature is high (Te=360° C. for MnBi), there is a drawback that a large amount of energy is required for writing. In addition, since it is a polycrystalline substance, it is necessary to create a thin film with a stoichiometric composition, which is technically difficult to create, and in addition, MnB+ has two phases: a high temperature phase and a low temperature phase. It also has the disadvantage of being thermally unstable due to its tendency to undergo phase transitions. Furthermore, compound single crystal thin films typified by GIG have a major drawback in that they are extremely expensive compared to other types.

一方、Gd −Co 、 Gd−Fe等の磁気的補償点
を利用して書き込みを行なう一晶質金属薄膜転非晶質で
あるため任意の基体上に作製可能であシ、多少の不純物
を加えることによっである程度磁気的補償温度を任意に
制御できる等の利点を有するが、室温における保磁力が
小さく(300〜5oooe)、記録された情報が不安
定であるという欠点を有する。
On the other hand, a monocrystalline metal thin film such as Gd-Co, Gd-Fe, etc., which performs writing using magnetic compensation points, is amorphous, so it can be fabricated on any substrate, and some impurities are added. Although it has the advantage that the magnetic compensation temperature can be arbitrarily controlled to some extent, it has the disadvantage that the coercive force at room temperature is small (300 to 5 oooe) and the recorded information is unstable.

しかも、この程度の保磁力を有する薄膜を作製するため
にも組成をはtY 1 atom 1以内に制御する必
要があり、薄膜作製面でも容易ではない。これに対し、
同じ非晶質薄膜でこれ1での技術の欠点を除去するもの
として提案された15 atom To〜30 ato
mチのTb又はDyを含むTbFeやDyFeは次のよ
うな利点を有している。
Furthermore, in order to produce a thin film having such a coercive force, it is necessary to control the composition within tY 1 atom 1, which is not easy in terms of thin film production. On the other hand,
15 atoms to 30 atoms proposed to eliminate the drawbacks of the technique in 1 with the same amorphous thin film.
TbFe or DyFe containing m Tb or Dy has the following advantages.

■室温において数KOeの大きな保磁力を有するため、
高密度の情報記録及び所望の形状の磁区の書き込みが可
能であり、記録された情報が極めて安定である。
■Has a large coercive force of several KOe at room temperature,
It is possible to record high-density information and write magnetic domains in a desired shape, and the recorded information is extremely stable.

■保磁力が大きい等の記録媒体として優れた特性を持っ
ている組成範囲が広く、組成が厳しく限定された薄膜を
作る必要が々いため、作成が非常に容易であり歩留まり
が良い。
(2) It has excellent properties as a recording medium, such as a large coercive force.It has a wide composition range, and it is not necessary to make a thin film with a strictly limited composition, so it is very easy to produce and has a high yield.

■キューリ一点がTbFeでは120 ’C、DyFe
では60℃と低いため、キューリ一点を利用して熱書き
込みを行シう場合に非常に小さなエネルギーにより書き
込みを行なうことができる。
■One cucumber is 120'C in TbFe, DyFe
Since the temperature is as low as 60° C., when performing thermal writing using a single Curie point, writing can be performed with extremely small energy.

しかしながら、このTbFe 、 DyFe等の非晶質
合金薄膜は次のような欠点がある。すなわち、キューリ
一点が低いと確かに小さなエネルギーで書き込みは出蘂
るが、読み出しの際のS/Nは逆に低下する。図1には
非晶質合金薄膜の光再生時の光再生出力(S)及び信号
対雑音比(S/N)を照射レーザパワー(’Io)の関
数として示しであるが記録媒体として良い特性を有する
TbFe 、 DyFeは光再生の点では、記録媒体と
して良くないGdFeよりも悪いことがわかる。これは
この記録媒体を光磁気メモリとして使用する場合には非
常に大きな欠点となる。
However, this amorphous alloy thin film such as TbFe or DyFe has the following drawbacks. That is, if the Curie point is low, it is true that writing can be performed with small energy, but the S/N during reading is conversely reduced. Figure 1 shows the optical reproduction output (S) and signal-to-noise ratio (S/N) during optical reproduction of an amorphous alloy thin film as a function of the irradiated laser power ('Io), which has good characteristics as a recording medium. It can be seen that TbFe and DyFe, which have the following properties, are worse than GdFe, which is not good as a recording medium, in terms of optical reproduction. This is a very serious drawback when this recording medium is used as a magneto-optical memory.

この欠点を除去するために、GdTbFe (特願昭5
5−30251号参照)及びGdDyTbFe (特願
昭55−170239号参照)などが提案された。前者
は(GdxTb 1−z ) y ” *−yとして0
.00≦X≦1.00 、0.15≦y≦0.35の範
囲のもの、後者は((GdzDy 1−z ) z T
b 1−zlyFel  として0.00 (x(1,
00,0,15≦y<o、as。
In order to eliminate this drawback, GdTbFe (patent application
5-30251) and GdDyTbFe (see Japanese Patent Application No. 55-170239). The former is (GdxTb 1-z) y” *-y as 0
.. 00≦X≦1.00, 0.15≦y≦0.35, the latter is ((GdzDy 1-z) z T
b 1-zlyFel as 0.00 (x(1,
00,0,15≦y<o,as.

y O800(z (1,00の範囲のもので、いずれも記
録特性の良いTbFeやDyFeと光再生特性の良いG
dFeの両方の長所を有している。キー−り一点と保磁
力は、TbFeあるいはDyFeとGdFeの間に位置
するが、光再生出力Sは図2に示すように単純にTbF
e 。
y O800(z (1,00 range), both of which have good recording characteristics such as TbFe and DyFe and G which have good optical reproduction characteristics.
It has the advantages of both dFe. The single key point and coercive force are located between TbFe or DyFe and GdFe, but the optical regeneration output S is simply TbFe as shown in Figure 2.
e.

DyFeとGdFeの間に位置しないで非常に大きくな
る0 このようにGdTbFe 、 GdDyFeは、室温で
大きな保磁力を有し、岑ユーリ一点が室温に近く、シか
も光再生出力も大きいという光磁気記録媒体としてすぐ
れた特性を示す。
GdTbFe and GdDyFe have a large coercive force at room temperature, are not located between DyFe and GdFe, and have a large coercive force. Shows excellent properties as a medium.

光磁気記録媒体においては、当然のことながら記録特性
と再生特性の両方がすぐれていることが要求されるが、
前者はキューリ一点が低く保磁力が大きいこと、後者は
カー回転角が大きいことが条件となる。キー−り一点と
カー回転角の関係を図3で見ると、従来の二元系ではこ
れらの条件は相反するもので、両者を満足する媒体は得
られず、キューリ一点を下げしかもカー回転角を増大さ
せること、すなわち、図中の矢印の方向の改善が望まれ
ていたo GdTbFe三元系、 GdDyTbFe四
元系はこの方向を満たす媒体として考えられた。これら
の多元系は、二元系で記録特性のすぐれているTbFe
 。
Magneto-optical recording media are naturally required to have both excellent recording and reproduction characteristics.
The conditions for the former are that the Curie point is low and the coercive force is large, and for the latter that the Kerr rotation angle is large. Looking at the relationship between the single point of the Curie and the Kerr rotation angle in Figure 3, these conditions are contradictory in conventional binary systems, and it is not possible to obtain a medium that satisfies both. In other words, it was desired to improve the direction of the arrow in the figure. The GdTbFe ternary system and the GdDyTbFe quaternary system were considered as media that would satisfy this direction. These multi-component systems are TbFe, which is a binary system and has excellent recording properties.
.

DyFeと読み出し特性のすぐれているGdFeを混合
することにより、両方の特長を生かすことを目的として
考えられたものである。この目的は図のようにかなり達
せられてはいるが、しかしながら多元化により二元の記
録特性、再生特性が最大限に生かされているとは必ずし
も言えない。その原因は記録と再生という相反する条件
を必要とする媒体を均一な膜で得ようとするところにあ
る。
By mixing DyFe and GdFe, which has excellent readout characteristics, it was designed to take advantage of the advantages of both. Although this objective has been achieved to a large extent as shown in the figure, it cannot necessarily be said that the recording characteristics and reproduction characteristics of the two sources are utilized to the fullest due to the multiplexing. The reason for this is the attempt to obtain a uniform film for a medium that requires contradictory conditions for recording and reproduction.

本発明の目的は、上述の二元系のGd−Fe、Tb−F
e 、 DyFeと三元系のGdTbFe 、 GdD
yFe 、 TbDyFeと四元系のGdDyThFe
などの単一膜内で、光読み出し側の面では読み出し特性
のすぐれた組成になり他の側の面では記録特性のすぐれ
た組成になるという具合に膜厚方向に組成勾配をもたせ
ることにより、記録特性と読み出し特性が互いに影響さ
れることなくそれぞれに適した媒体の性能が最大限に発
揮されるような光磁気記録媒体を提供することにある。
The object of the present invention is to obtain the above binary Gd-Fe, Tb-F
e, DyFe and ternary GdTbFe, GdD
yFe, TbDyFe and quaternary GdDyThFe
By creating a composition gradient in the film thickness direction within a single film such as, the composition has excellent readout characteristics on the optical readout side and the composition has excellent recording characteristics on the other side. It is an object of the present invention to provide a magneto-optical recording medium in which recording characteristics and reading characteristics are not influenced by each other and the performances of the medium suitable for each are maximized.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明の光磁気記録媒体は磁化容易軸が膜面に垂直な方
向であるとともに、低キューリ一点高保磁力の記録用媒
体をガラス等の基板側にっけ、光入射面側に高キー−り
一点、低保磁力でカー回転角の太きい読み出し用媒体と
なるように膜厚方向に組成勾配をもたせた薄膜光磁気記
録媒体である。
In the magneto-optical recording medium of the present invention, the axis of easy magnetization is perpendicular to the film surface, and the recording medium with a low Curie point and high coercive force is mounted on the substrate side such as glass and has a high key on the light incident surface side. One point is that it is a thin film magneto-optical recording medium that has a composition gradient in the film thickness direction so as to be a readout medium with a low coercive force and a large Kerr rotation angle.

膜面に垂直な方向に磁化を向けるに十分な磁気異方性を
もたせるだめには、薄膜を非晶質にすることが必要であ
るが、この条件は室温以下の温度に保持された基体上に
スパッタリング法あるいは真空蒸着法によって薄膜作製
を行なうことによって達成される。捷だ、磁化を安定し
て膜面に垂直な方向に向かせるためには膜の厚さを10
0A以上とする必要がある。
In order to have sufficient magnetic anisotropy to orient the magnetization perpendicular to the film surface, it is necessary to make the thin film amorphous, but this condition requires that the thin film be made amorphous on a substrate kept at a temperature below room temperature. This is achieved by fabricating a thin film using a sputtering method or a vacuum evaporation method. In order to stably direct the magnetization in the direction perpendicular to the film surface, the thickness of the film must be 10
It needs to be 0A or more.

本発明の光磁気記録媒体の構造例を図4に示す。An example of the structure of the magneto-optical recording medium of the present invention is shown in FIG.

1はガラス等の基板、2は光磁気記録媒体で、これは記
録用領域a、読み出し用領域す及びそれらの遷移領域C
から成っている。aの記録用媒体領域にはキューリ一点
が低く保磁力の高い媒体が適している。一方、領域すの
読み出し用媒体領域にはキー−り一点が高く保磁力が小
さくてさらにカー回転角θやの大きな媒体が必要となる
。Cの遷移領域は領域aに保存された情報を交換相互作
用によって領域すに伝える役目をしている0情報の記録
は、領域す側から照射された光ビームにより媒体の温度
が上昇し、領域aの保磁力が低下し、その部分が外部磁
界の方向に回転することにより行なわれる。領域aに記
録された情報は領域Cを通じて交換相互作用により領域
すに転′Uされる。このようにして、領域すに転写され
た情報は、同じく領域す側から照射されたビームのその
領域すからの反射光のカー効果により読み出される。記
録の際には、領域すを通って領域aにビームが入射する
が、領域aの厚さの全体に占める割合は非常に少ないの
で、記録のノ(ワーの低下の影響はほとんどないものと
推測される。
1 is a substrate such as glass, 2 is a magneto-optical recording medium, which has a recording area a, a reading area and a transition area C between them.
It consists of A medium with a low Curie point and high coercive force is suitable for the recording medium region a. On the other hand, in the reading medium area of the area, a medium having a high key point and a small coercive force and a large Kerr rotation angle .theta. is required. The transition region of C plays the role of transmitting the information stored in region a to region A through exchange interaction.The recording of 0 information is achieved by increasing the temperature of the medium by a light beam irradiated from the region side, and transferring the information stored in region A to region A. This is done by reducing the coercive force of a and rotating that part in the direction of the external magnetic field. Information recorded in area a is transferred to area 2 through area C by exchange interaction. In this way, the information transferred to the area is read out by the Kerr effect of the reflected light from the area of the beam irradiated from the side of the area. During recording, a beam passes through area A and enters area a, but since area a accounts for a very small proportion of the total thickness, it is assumed that there is almost no effect on the recording power. Guessed.

1例として、領域aがTbFeであり領域すがGdFe
であるような三元合金TbGdFeを用いた場合の媒体
の膜厚方向の組成分布の例を図5 (a) (b)に示
す。
As an example, region a is TbFe and region a is GdFe.
Examples of the composition distribution in the film thickness direction of the medium when the ternary alloy TbGdFe is used are shown in FIGS. 5(a) and 5(b).

領域a、bに用いる媒体やその層の厚さは記録特性及び
読み出し特性を改善するために各々独立に変えることが
出来る。例えば、より低パワーで書き込める媒体が必要
な場合には、領域aのキューリ一点を下げるようにすれ
ばよく、そのことによって領域すの読み出し特性は何ら
影響を受けなか本発明の最大の特長である。
The media used in regions a and b and the thickness of their layers can be changed independently to improve recording and reading characteristics. For example, if a medium that can be written with lower power is required, the Curie point of area a can be lowered by one point, and the reading characteristics of area a are not affected by this, which is the greatest feature of the present invention. .

本発明による光磁気記録媒体として例えばTbGdFe
三元合金膜の場合は、スパッタ法ではFeのRFパワー
を一定にしておき、GdとTbの各RFパワーを時間と
ともに変化するように制御することにより、また蒸着法
では蒸着源の温度を制御することにより容易に製造する
ことができる。
For example, TbGdFe is used as the magneto-optical recording medium according to the present invention.
In the case of a ternary alloy film, in the sputtering method, the RF power of Fe is kept constant and the RF powers of Gd and Tb are controlled to vary over time, and in the evaporation method, the temperature of the evaporation source is controlled. By doing so, it can be easily manufactured.

以上説明したように、本発明の光磁気記録媒体は記録領
域、読み出し領域及びその間の遷移領域の3つの領域を
もつ膜面に垂直な方向に磁化容易軸を有した合金薄膜で
記録読み出しをそれぞれ別の領域が受けもつため、低パ
ワーでの記録と高い光再生出力の両方を得ることができ
る0従って光ビ−ムを用いて書き込み、カー効果を利用
して読み出しを行なういわゆるビーム・7ドレツサプル
・ファイルメモリ等の光磁気メモリ媒体として使用すれ
ば、極めて高密度でS/Nの大きい優れたメモリ装置を
実現することができる。
As explained above, the magneto-optical recording medium of the present invention has three regions: a recording region, a readout region, and a transition region between them. The alloy thin film has an axis of easy magnetization in the direction perpendicular to the film surface. Since a separate region is in charge, it is possible to obtain both low-power recording and high optical reproduction output.Therefore, the so-called beam 7-dres coupler writes using a light beam and reads using the Kerr effect. - If used as a magneto-optical memory medium such as a file memory, an excellent memory device with extremely high density and high S/N can be realized.

なお、本発明に用いる書き込み方法としては、光ビーム
に限らず釘型磁気ヘッド、熱ペン、電子ビームなど反転
磁区を生じせしめるのに必要なエネルギーを供給するい
かなる方法で行なっても良いことは言うまでもない。
It goes without saying that the writing method used in the present invention is not limited to a light beam, but may be performed by any method that supplies the energy necessary to generate a reversed magnetic domain, such as a nail-shaped magnetic head, a thermal pen, or an electron beam. stomach.

【図面の簡単な説明】[Brief explanation of the drawing]

図1は従来の二元系非晶質合金薄膜の光再生特性図、図
2は三元系及び二元系の非晶質合金薄膜の光再生特性図
、図3は四元系、三元系、二元系の非晶質合金薄膜のキ
エーリ一点とカー回転角の関係を示す特性図、図4は本
発明の薄膜記録媒体の構成例を示す断面図、図5は本発
明の実施例としてTbGdFeを用いた時の膜厚方向の
組成分布図である。 1・・・基板、2・・・光磁気記録媒体、a・・・記録
用領域、b・・・読み出し用領域、C・・・遷移領域。 特許出願人  国際電話電話株式会社 代 理 人   大  塚      学外1名
Figure 1 shows the optical regeneration characteristics of conventional binary amorphous alloy thin films, Figure 2 shows the optical regeneration characteristics of ternary and binary amorphous alloy thin films, and Figure 3 shows quaternary and ternary amorphous alloy thin films. 4 is a cross-sectional view showing a configuration example of a thin film recording medium of the present invention, and FIG. 5 is an embodiment of the present invention. FIG. 3 is a composition distribution diagram in the film thickness direction when TbGdFe is used as the film. DESCRIPTION OF SYMBOLS 1... Substrate, 2... Magneto-optical recording medium, a... Recording area, b... Reading area, C... Transition area. Patent applicant: International Telephone and Telephone Co., Ltd. Representative: Otsuka 1 person from outside the university

Claims (1)

【特許請求の範囲】[Claims] 膜面に垂直な方向に磁化容易軸を有する薄膜光磁気記録
媒体において、単一膜内で光読み出し側の面では読み出
し特性のすぐれた組成になり他の側の面では記録特性の
すぐれた組成になるように膜厚方向に組成勾配をもたせ
て構成されていることを特徴とする光磁気記録媒体。
In a thin film magneto-optical recording medium that has an axis of easy magnetization perpendicular to the film surface, the composition within a single film has excellent readout characteristics on the optical readout side, while the composition has excellent recording characteristics on the other side. 1. A magneto-optical recording medium characterized by having a composition gradient in the film thickness direction such that
JP17083681A 1981-10-27 1981-10-27 Optical magnetic recording medium Pending JPS5873030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17083681A JPS5873030A (en) 1981-10-27 1981-10-27 Optical magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17083681A JPS5873030A (en) 1981-10-27 1981-10-27 Optical magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS5873030A true JPS5873030A (en) 1983-05-02

Family

ID=15912225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17083681A Pending JPS5873030A (en) 1981-10-27 1981-10-27 Optical magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS5873030A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6415366A (en) * 1987-07-09 1989-01-19 Matsushita Electric Ind Co Ltd Preparation of composition modified nitrided alloy film
EP0642126A2 (en) * 1993-09-02 1995-03-08 Fujitsu Limited Magneto-optic recording medium
EP0657880A2 (en) * 1993-12-06 1995-06-14 Sharp Kabushiki Kaisha Magneto-optical recording medium and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5424008A (en) * 1977-07-26 1979-02-23 Fujitsu Ltd Magnetic recording and photo reproducing system
JPS54121719A (en) * 1978-03-15 1979-09-21 Nippon Hoso Kyokai <Nhk> Magnetic recording medium
JPS56126907A (en) * 1980-03-12 1981-10-05 Kokusai Denshin Denwa Co Ltd <Kdd> Magnetic optical recording medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5424008A (en) * 1977-07-26 1979-02-23 Fujitsu Ltd Magnetic recording and photo reproducing system
JPS54121719A (en) * 1978-03-15 1979-09-21 Nippon Hoso Kyokai <Nhk> Magnetic recording medium
JPS56126907A (en) * 1980-03-12 1981-10-05 Kokusai Denshin Denwa Co Ltd <Kdd> Magnetic optical recording medium

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6415366A (en) * 1987-07-09 1989-01-19 Matsushita Electric Ind Co Ltd Preparation of composition modified nitrided alloy film
EP0642126A2 (en) * 1993-09-02 1995-03-08 Fujitsu Limited Magneto-optic recording medium
EP0642126A3 (en) * 1993-09-02 1995-03-15 Fujitsu Limited Magneto-optic recording medium
US5663936A (en) * 1993-09-02 1997-09-02 Fujitsu Limited Magneto-optic recording medium suited for mark edge recording system and having magnetic layer made of composition modulated material
EP0657880A2 (en) * 1993-12-06 1995-06-14 Sharp Kabushiki Kaisha Magneto-optical recording medium and manufacturing method thereof
EP0657880A3 (en) * 1993-12-06 1995-09-20 Sharp Kk Magneto-optical recording medium and manufacturing method thereof.
US5563852A (en) * 1993-12-06 1996-10-08 Sharp Kabushiki Kaisha Magneto-optical recording medium having a readout layer with varying composition and curie temperature
US5764601A (en) * 1993-12-06 1998-06-09 Sharp Kabushiki Kaisha Method of manufacturing a magneto-optical recording medium having a readout layer with varying composition and curie temperature

Similar Documents

Publication Publication Date Title
JPH0123927B2 (en)
JPS6032331B2 (en) magneto-optical recording medium
JPH0118506B2 (en)
JPH0249002B2 (en)
JPS6227459B2 (en)
US4814238A (en) Magneto-optical recording medium
US4612068A (en) Magneto-optical recording medium
JPS5968854A (en) Photomagnetic recording medium
JPS60117436A (en) Magnetooptic storage element
JPH0330963B2 (en)
JPH0863810A (en) Magnetooptical recording medium and information reproducing method therefor
JPH07272332A (en) Switched connection direct overwrite optical magnetic recording medium
JPH0351082B2 (en)
JPS6131533B2 (en)
JPS5873030A (en) Optical magnetic recording medium
JPS5952443A (en) Photomagnetic recording medium
JPH0316049A (en) Magneto-optical recording medium
JPH0782672B2 (en) Magnetic thin film recording medium
JPH04119542A (en) Cartridge of magneto-optical recording medium
JPS59168954A (en) Optical magnetic recording medium
JPS5952442A (en) Photomagnetic recording medium
JPS58222455A (en) Photoelectromagnetic recording medium
JPS6068607A (en) Magnetic thin film recording medium
JPS6228947A (en) Photomagnetic recording medium
JPS6289254A (en) Photomagnetic recording medium