JPH0118506B2 - - Google Patents

Info

Publication number
JPH0118506B2
JPH0118506B2 JP57193819A JP19381982A JPH0118506B2 JP H0118506 B2 JPH0118506 B2 JP H0118506B2 JP 57193819 A JP57193819 A JP 57193819A JP 19381982 A JP19381982 A JP 19381982A JP H0118506 B2 JPH0118506 B2 JP H0118506B2
Authority
JP
Japan
Prior art keywords
magnetic
magneto
film
elements
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57193819A
Other languages
Japanese (ja)
Other versions
JPS5984358A (en
Inventor
Katsuhiko Yahagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEIKO DENSHI KOGYO KK
Original Assignee
SEIKO DENSHI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEIKO DENSHI KOGYO KK filed Critical SEIKO DENSHI KOGYO KK
Priority to JP19381982A priority Critical patent/JPS5984358A/en
Publication of JPS5984358A publication Critical patent/JPS5984358A/en
Publication of JPH0118506B2 publication Critical patent/JPH0118506B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10582Record carriers characterised by the selection of the material or by the structure or form
    • G11B11/10586Record carriers characterised by the selection of the material or by the structure or form characterised by the selection of the material

Landscapes

  • Thin Magnetic Films (AREA)

Description

【発明の詳細な説明】 本発明は、希土類元素と鉄族元素を主成分とす
る非晶質磁性薄膜を有し、膜面と垂直方向に磁化
容易方向を有する光磁気記録媒体に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magneto-optical recording medium having an amorphous magnetic thin film mainly composed of rare earth elements and iron group elements, and having an easy magnetization direction perpendicular to the film surface. .

従来から、希土類元素とFe、Co、Niの鉄族元
素を主成分とする一部又は全部が非晶質磁性薄膜
は膜面と垂直な方向に磁化容易軸を有す。S極あ
るいはN極に全面磁化された膜面に、逆向きの小
さな(1μm径程度)スポツト(ビツト)状の反
転磁化を作ることができる。この反転磁区の有無
を「1」、「0」に対応することによつてデジタル
信号とした磁気メモリー媒体として用いることが
できる。このような磁性薄膜のうち室温に近いキ
ユーリー点(Tc)あるいは補償温度をもつ化合
物・合金は、レーザー光等の光又は熱的効果によ
つて任意の位置に任意の大きさ・形状の反転磁区
を作ることが出来る。これを利用することによつ
て情報を記録することが可能であり、デイスク、
テープ、シート状の光磁気メモリー媒体として利
用することが可能となりつつある。そして読み出
す方法として、磁気カー効果やフアラデー効果を
利用する方式が用いられている。
Conventionally, partially or entirely amorphous magnetic thin films containing rare earth elements and iron group elements such as Fe, Co, and Ni as main components have an axis of easy magnetization in a direction perpendicular to the film surface. It is possible to create a small (about 1 μm diameter) spot (bit)-shaped reversed magnetization in the opposite direction on a film surface that is entirely magnetized to S or N poles. By correlating the presence or absence of this inverted magnetic domain with "1" and "0", it can be used as a magnetic memory medium that is converted into a digital signal. Among these magnetic thin films, compounds and alloys with a Curie point (Tc) or compensation temperature close to room temperature can be used to create inverted magnetic domains of any size and shape at any location by light such as laser light or thermal effects. can be made. By using this, it is possible to record information, disk,
It is becoming possible to use it as a tape or sheet-like magneto-optical memory medium. As a reading method, a method using the magnetic Kerr effect or the Faraday effect is used.

従来、公知である膜面と垂直な方向に磁化容易
軸を有し、かつ光ビームにより情報を書き込み、
読み出せる磁性膜合金としては、多結晶として
MnBi、MnCuBi、Pt−Co、CoCr、単結晶とし
てGdIG、TbFeO、YGaIG、BiSmErGaIG、そ
して非晶質としてGdCo、TbFe、DyFe、
GdFeBi、GdTbFe、TbDyFeがあるが、この中
でも非晶質磁性膜合金が良い材料として知られて
いる。
Conventionally, the well-known film has an axis of easy magnetization perpendicular to the film surface, and information is written using a light beam.
As a magnetic film alloy that can be read, polycrystalline
MnBi, MnCuBi, Pt-Co, CoCr, single crystal GdIG, TbFeO, YGaIG, BiSmErGaIG, and amorphous GdCo, TbFe, DyFe,
There are GdFeBi, GdTbFe, and TbDyFe, but among these, amorphous magnetic film alloy is known as the best material.

しかし上述した非晶質磁性膜合金は書込み速度
が良く、媒体ノイスが少なく、垂直磁気異方性の
大面積が安定に作製出来る。又、磁気特性も適当
に良いが、読み出し性能(S/N比)に大きな影
響を与えるカー回転角(θK〕が小さく、そのため
にS/N比が小さくなり、光磁気記録媒体として
使用することは困難であるという欠点を有してい
る。
However, the above-mentioned amorphous magnetic film alloy has a high writing speed, little media noise, and can stably produce a large area with perpendicular magnetic anisotropy. In addition, although the magnetic properties are reasonably good, the Kerr rotation angle (θ K ), which has a large effect on read performance (S/N ratio), is small, resulting in a low S/N ratio, making it difficult to use as a magneto-optical recording medium. The disadvantage is that it is difficult to do so.

本発明は、上記の従来の欠点を改良し、θKを大
きくし、S/N比が優れた光磁気記録媒体を提供
することにある。
The present invention aims to improve the above-mentioned conventional drawbacks, increase θ K , and provide a magneto-optical recording medium with an excellent S/N ratio.

本発明の光磁気記録媒体は、膜面に垂直な大部
分の方向が磁化容易軸と磁気異方性を有するもの
であり、キユーリー点(Tc)および補償温度
(Tcompt)が室温に近く50℃〜200℃を有する大
部分が非晶質状態の薄膜である。
The magneto-optical recording medium of the present invention has an axis of easy magnetization and magnetic anisotropy in most directions perpendicular to the film surface, and has a Curie point (Tc) and a compensation temperature (Tcompt) close to room temperature at 50°C. It is a mostly amorphous thin film with a temperature of ~200°C.

そして従来から希土類元素(R)のGd、Tb、
Dy、とFe、Coの上記非晶質合金膜(RXT1-X
は光磁気効果、Tc、Tcomptが比較的良いこと
から光磁気記録媒体として注目され、研究が進め
られている。しかし、より優れた記録媒体とする
には、θKの大きな優れたものにする必要がある。
θKを大きくすることにより、読出し性能(S/N
比)を良くなることが大切である。そしてθKが大
きく、しかもTc、Tcompt、磁気特性は従来の
媒体と変らないか、又はこれより優れた媒体が必
要である。今までにもθKを大きくするために、
Cr、Ni、Bi、Cu、Ag、Au、Sn、Co等の添加に
よる改良が試みられている。
Traditionally, rare earth elements (R) such as Gd, Tb,
The above amorphous alloy film of Dy, Fe, and Co (R X T 1-X )
Because of its relatively good magneto-optical effect, Tc, and Tcompt, it has attracted attention as a magneto-optical recording medium, and research is progressing. However, in order to make a more excellent recording medium, it is necessary to make it excellent with a large value of θ K.
By increasing θ K , read performance (S/N
It is important to improve the ratio). A medium is required that has a large θ K and that has Tc, Tcompt, and magnetic properties that are the same as or better than conventional media. In order to increase θ K ,
Improvements have been attempted by adding Cr, Ni, Bi, Cu, Ag, Au, Sn, Co, etc.

本発明では、従来の希土類元素と鉄族元素を主
成分とする非晶質合金に対して、添加元素(M)
を添加し、(RXT1-X1-YMY(但し、RはGd、Tb、
Dyの元素一種又は二種以上、TはFe、Coの元素
一種又は二種、MはZr、Hf、V、W、Mn、Re、
Nb、Ta、Rh、Os、Ptの元素一種又は二種以上、
かつ、xは0.1≦x≦0.4、yは0.01≦y≦0.4)の
一般式で示される非晶質合金とすることにより、
θKが大きくなり、しかもその他の特性であるTc、
Tcomp、磁気特性等はほとんど悪くならない光
磁気記録媒体を達成するものである。
In the present invention, the additive element (M) is added to the conventional amorphous alloy mainly composed of rare earth elements and iron group elements.
(R X T 1-X ) 1-Y M Y (where R is Gd, Tb,
One or more elements of Dy, T is one or two elements of Fe, Co, M is Zr, Hf, V, W, Mn, Re,
One or more elements of Nb, Ta, Rh, Os, Pt,
And, by making it an amorphous alloy represented by the general formula where x is 0.1≦x≦0.4 and y is 0.01≦y≦0.4),
θ K increases, and other characteristics Tc,
A magneto-optical recording medium with almost no deterioration in Tcomp, magnetic properties, etc. is achieved.

以下、本発明を詳細に説明する。 The present invention will be explained in detail below.

R(=Gd、Tb、Dy)とT(=Co、Fe)の非晶
質合金膜RXT1-Xは従来から0.1≦X0.4と広く知
られている通りである。(例えば特願昭55−
30251、55−170239、55−37347、50−107107、51
−25534、51−25534等)そしてこれらは、Tc、
Tcomptが50℃〜200℃であり、適当な磁気特性
(Ms、Hc、Ku)を有し、垂直な磁化容易軸を持
つ媒体である。そしてこれらはスパツター装置、
真空蒸着装置、イオンプレーテイング装置、その
他の多くの無電解メツキ法によつて作製される。
一般にターゲツトは溶解法、粉末凝固法、あるい
はRとTの面積比による法等で作製される。そし
て基板にシリコンウエハー、ガラス、PMMA材
等上に50Å〜数μ程度の膜が形成される。我々も
同様にして、R(=Gd、Tb、Dy)とT(=Co、
Fe)とM(=Zr、Hf、V、W、Mn、Re、Nb、
Ta、Rh、Os、Pt)の非晶質合金膜(RXT1-X1-
MYを作製した。そしてθKをカー回転角測定器に
よつて測定した結果を、第1図、第2図に示した
ものである。第1図においてはR=Gd、Tb、T
=Co、Feの場合で、Xは0.1≦X≦0.4の範囲では
いずれもほぼ左点のY=0でのθKの値である。
It has been widely known that the amorphous alloy film R X T 1-X of R (=Gd, Tb, Dy) and T (=Co, Fe) is 0.1≦X0.4. (For example, patent application 1983-
30251, 55−170239, 55−37347, 50−107107, 51
−25534, 51−25534, etc.) and these are Tc,
It is a medium with Tcompt of 50°C to 200°C, appropriate magnetic properties (Ms, Hc, Ku), and a perpendicular easy axis of magnetization. And these are sputter devices,
Manufactured by vacuum evaporation equipment, ion plating equipment, and many other electroless plating methods.
Generally, the target is prepared by a melting method, a powder solidification method, or a method based on the area ratio of R and T. Then, a film of about 50 Å to several microns is formed on a substrate such as a silicon wafer, glass, or PMMA material. We do the same with R (=Gd, Tb, Dy) and T (=Co,
Fe) and M (=Zr, Hf, V, W, Mn, Re, Nb,
Ta, Rh, Os, Pt) amorphous alloy film (R X T 1-X ) 1-
X MY was produced. The results of measuring θ K using a Kerr rotation angle measuring device are shown in FIGS. 1 and 2. In Figure 1, R=Gd, Tb, T
=Co, Fe, and in the range of 0.1≦X≦0.4, X is approximately the value of θ K at Y=0 at the left point.

そしてM=Zr、Hf、V、W、Mn、ReでYが
0.01Y0.4の間で増加している。それ以上で
は、あまり効果が良くないようである。
And M=Zr, Hf, V, W, Mn, Re and Y is
It increases between 0.01Y0.4. Above that, the effect does not seem to be very good.

この結果は、本発明の他のR、T、Mの元素に
ついてもいずれも同様である。しかも従来の媒体
に比べ他の特性はほとんど変化がないが、むしろ
磁気特性のHc等は良くなつていた。
This result is also the same for the other elements R, T, and M of the present invention. Moreover, compared to conventional media, there was almost no change in other properties, but the magnetic properties such as Hc were actually improved.

第2図においてもM=Nb、Ta、Rh、Os、Pt
の例を示したが、第1図の場合と同様であつた。
そして特にZr、Hf、Nb、Ta等の効果は大きい
ようである。これらの図はいずれも代表的な結果
であるが、本発明のR、T、Mの多くの組合せに
おいても同様の結果が得られている。更に本発明
のMは、多結晶膜、単結晶膜にも有効である。
Also in Figure 2, M=Nb, Ta, Rh, Os, Pt
An example was shown, but it was the same as the case in FIG.
In particular, Zr, Hf, Nb, Ta, etc. seem to have a great effect. Although these figures are representative results, similar results have been obtained with many combinations of R, T, and M of the present invention. Furthermore, M of the present invention is also effective for polycrystalline films and single-crystalline films.

以上説明した本発明の光磁気記録媒体は、カー
効果又はフアラデー効果を利用して読出しを行な
う。ただし書込みは、レザー光等の光ビームを用
いてその光熱磁気効果を利用するものである。こ
のように、ビーム・アドレツサブルメモリとして
利用できる書き換え可能なメモリーとなる。そし
てθK大のためS/Nが優れ、フアイル、コンピユ
ータ、オーデイオ、ビデオ用の書き換え可能メモ
リーとして広く応用することが可能である。そし
て書き込み、読出し、消去等がAr、He−Neそ
して半導体レーザー(例えばGa・Al・As等)に
よつて可能とすることができる。
The magneto-optical recording medium of the present invention described above performs reading using the Kerr effect or the Faraday effect. However, writing uses a light beam such as laser light and its photothermal magnetic effect. In this way, it becomes a rewritable memory that can be used as a beam addressable memory. Since θ K is large, the S/N ratio is excellent, and it can be widely applied as a rewritable memory for files, computers, audio, and video. Writing, reading, erasing, etc. can be performed using Ar, He--Ne, and semiconductor lasers (eg, Ga, Al, As, etc.).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は(RXT1-X1-YMYにおいて、R=Gd、
Tb、T=Co、Fe、0.1≦X≦0.4の組成にM=Zr、
Hf、V、W.Mn、Reを加えた時のカー回転角θK
と原子比Yの関係を示すグラフである。第2図は
(RXT1-X1-YMYにおいて、R=Gd、Dy、Tb、T
=CoFe、0.1≦X0.4の組成にM=Nb、Ta、Rh、
Os、Ptを加えた時のカー回転角θKと原子比Yの
関係を示すグラフである。
Figure 1 shows (R X T 1-X ) 1-Y M Y , R=Gd,
Tb, T=Co, Fe, M=Zr for the composition of 0.1≦X≦0.4,
Kerr rotation angle θ K when adding Hf, V, W.Mn, and Re
It is a graph showing the relationship between and atomic ratio Y. Figure 2 shows (R X T 1-X ) 1-Y M Y , R=Gd, Dy, Tb, T
= CoFe, M = Nb, Ta, Rh for the composition of 0.1≦X0.4,
It is a graph showing the relationship between Kerr rotation angle θ K and atomic ratio Y when Os and Pt are added.

Claims (1)

【特許請求の範囲】[Claims] 1 一般式(RXT1-X1-YMYで示され、膜面に垂
直な方向に磁化容易軸を有する非晶質合金におい
て、RをGd、Tb、Dyの元素一種又は二種以上、
TをFe、Coの元素一種又は二種、MをZr、Hf、
V、W、Mn、Re、Nb、Ta、Rh、Os、Ptの元
素一種又は二種以上で構成し、かつ、xを0.1≦
x≦0.4、yを0.01≦y≦0.4とする事を特徴とす
る薄膜光磁気記録媒体。
1 General formula ( R more than species,
T is Fe, one or two elements of Co, M is Zr, Hf,
Consists of one or more elements of V, W, Mn, Re, Nb, Ta, Rh, Os, Pt, and x is 0.1≦
A thin film magneto-optical recording medium characterized in that x≦0.4 and y satisfy 0.01≦y≦0.4.
JP19381982A 1982-11-04 1982-11-04 Photomagnetic recording medium Granted JPS5984358A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19381982A JPS5984358A (en) 1982-11-04 1982-11-04 Photomagnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19381982A JPS5984358A (en) 1982-11-04 1982-11-04 Photomagnetic recording medium

Publications (2)

Publication Number Publication Date
JPS5984358A JPS5984358A (en) 1984-05-16
JPH0118506B2 true JPH0118506B2 (en) 1989-04-06

Family

ID=16314275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19381982A Granted JPS5984358A (en) 1982-11-04 1982-11-04 Photomagnetic recording medium

Country Status (1)

Country Link
JP (1) JPS5984358A (en)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60117436A (en) * 1983-11-29 1985-06-24 Sharp Corp Magnetooptic storage element
JPS60193125A (en) * 1984-03-13 1985-10-01 Mitsubishi Electric Corp Vertical magnetic recording medium
JPH0638370B2 (en) * 1984-05-22 1994-05-18 株式会社リコー Amorphous magneto-optical layer
JPS60253041A (en) * 1984-05-29 1985-12-13 Agency Of Ind Science & Technol Photothermomagnetic recording medium
JPS6122608A (en) * 1984-07-11 1986-01-31 Hitachi Ltd Photomagnetic recording material
JPS6151806A (en) * 1984-08-21 1986-03-14 Seiko Instr & Electronics Ltd Photomagnetic recording medium
JPS6153703A (en) * 1984-08-23 1986-03-17 Seiko Instr & Electronics Ltd Photomagnetic recording medium
US5100741A (en) * 1984-09-12 1992-03-31 Seiko Epson Corporation Magneto-optic recording systems
JPS61104446A (en) * 1984-10-26 1986-05-22 Nec Corp Photomagnetic recording medium
JPS61104445A (en) * 1984-10-26 1986-05-22 Nec Corp Photomagnetic recording medium
JPS61107555A (en) * 1984-10-31 1986-05-26 Nec Corp Optomagnetic recording medium
DE3581378D1 (en) * 1984-11-12 1991-02-21 Sumitomo Spec Metals VERTICAL MAGNETIZED RECORDING MEDIUM AND METHOD FOR THE PRODUCTION THEREOF.
JPS6275953A (en) * 1985-09-30 1987-04-07 Toshiba Corp Photomagnetic recording medium and its production
JP2601796B2 (en) * 1985-12-05 1997-04-16 日立マクセル株式会社 Magneto-optical recording medium
JPS61214254A (en) * 1985-03-20 1986-09-24 Hitachi Ltd Photomagnetic recording material
JPS61253655A (en) * 1985-05-02 1986-11-11 Pioneer Electronic Corp Photomagnetic recording medium
JPS61265756A (en) * 1985-05-20 1986-11-25 Pioneer Electronic Corp Photomagnetic recording medium
JPH0782671B2 (en) * 1985-08-26 1995-09-06 セイコーエプソン株式会社 Magneto-optical recording medium
DE3778389D1 (en) * 1986-02-05 1992-05-27 Oki Electric Ind Co Ltd MAGNETIC-OPTICAL MEMORY MEDIUM.
JP2504946B2 (en) * 1986-02-24 1996-06-05 沖電気工業株式会社 Magneto-optical recording medium
JPS62185266A (en) * 1986-02-12 1987-08-13 Canon Inc Optical recording medium
JPS62264463A (en) * 1986-05-12 1987-11-17 Fuji Photo Film Co Ltd Magneto-optical recording medium
JPS62267950A (en) * 1986-05-16 1987-11-20 Sumitomo Electric Ind Ltd Magneto-optical recording medium
JP2539397B2 (en) * 1986-11-12 1996-10-02 株式会社日立製作所 Magneto-optical recording medium
KR890012281A (en) * 1987-01-14 1989-08-25 도날드 밀러 셀 Stable magneto-optical recording media
US4822675A (en) * 1987-01-14 1989-04-18 Minnesota Mining And Manufacturing Company Stable magneto optic recording medium
JPS63262446A (en) * 1987-04-17 1988-10-28 Mitsui Petrochem Ind Ltd Thin amorphous-alloy film
US5254182A (en) * 1988-10-17 1993-10-19 Mitsui Petrochemical Industries, Ltd. Thin film of amorphous alloy
JP2918600B2 (en) * 1990-02-16 1999-07-12 三菱樹脂株式会社 Magneto-optical recording medium
JPH05198029A (en) * 1991-09-03 1993-08-06 Philips Gloeilampenfab:Nv Photomagnetic recording medium
JP3539531B2 (en) * 1996-04-22 2004-07-07 シャープ株式会社 Magneto-optical recording medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4960643A (en) * 1972-08-29 1974-06-12
JPS5441179A (en) * 1977-09-08 1979-04-02 Citizen Watch Co Ltd Multivibrator for temperature detection
JPS5674843A (en) * 1979-11-21 1981-06-20 Fuji Photo Film Co Ltd Photomagnetic recording medium
JPS56105344A (en) * 1980-01-25 1981-08-21 Fuji Photo Film Co Ltd Photomagnetic recording medium
JPS56126907A (en) * 1980-03-12 1981-10-05 Kokusai Denshin Denwa Co Ltd <Kdd> Magnetic optical recording medium

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4960643A (en) * 1972-08-29 1974-06-12
JPS5441179A (en) * 1977-09-08 1979-04-02 Citizen Watch Co Ltd Multivibrator for temperature detection
JPS5674843A (en) * 1979-11-21 1981-06-20 Fuji Photo Film Co Ltd Photomagnetic recording medium
JPS56105344A (en) * 1980-01-25 1981-08-21 Fuji Photo Film Co Ltd Photomagnetic recording medium
JPS56126907A (en) * 1980-03-12 1981-10-05 Kokusai Denshin Denwa Co Ltd <Kdd> Magnetic optical recording medium

Also Published As

Publication number Publication date
JPS5984358A (en) 1984-05-16

Similar Documents

Publication Publication Date Title
JPH0118506B2 (en)
JPH0123927B2 (en)
JPH0249002B2 (en)
GB2071696A (en) Magneto-optical Recording Medium
US4367257A (en) Thin magnetic recording medium
US4838962A (en) Magneto-optical recording medium
JPS6227459B2 (en)
US4814238A (en) Magneto-optical recording medium
US4695514A (en) Magneto-optical memory element
JPS59178641A (en) Photomagnetic recording medium
JPS5968854A (en) Photomagnetic recording medium
JPH0330963B2 (en)
JPH0351082B2 (en)
JPS6131533B2 (en)
US5100741A (en) Magneto-optic recording systems
JP2550633B2 (en) Photothermal magnetic recording medium
JPH0343697B2 (en)
JPH0259603B2 (en)
JPH0570922B2 (en)
JPH0316049A (en) Magneto-optical recording medium
JPS62112252A (en) Photomagnetic recording medium
JPH0445898B2 (en)
JPS5873030A (en) Optical magnetic recording medium
JPS5996714A (en) Magnetic recording medium
JPS61107555A (en) Optomagnetic recording medium