JPS6275953A - Photomagnetic recording medium and its production - Google Patents

Photomagnetic recording medium and its production

Info

Publication number
JPS6275953A
JPS6275953A JP60214506A JP21450685A JPS6275953A JP S6275953 A JPS6275953 A JP S6275953A JP 60214506 A JP60214506 A JP 60214506A JP 21450685 A JP21450685 A JP 21450685A JP S6275953 A JPS6275953 A JP S6275953A
Authority
JP
Japan
Prior art keywords
film
tbco
recording medium
magneto
sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60214506A
Other languages
Japanese (ja)
Inventor
Katsutaro Ichihara
勝太郎 市原
Noburo Yasuda
安田 修朗
Yoshiaki Terajima
喜昭 寺島
Senji Shimanuki
島貫 専治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60214506A priority Critical patent/JPS6275953A/en
Priority to DE8585307958T priority patent/DE3581924D1/en
Priority to EP85307958A priority patent/EP0191226B1/en
Priority to KR1019850009131A priority patent/KR890004262B1/en
Publication of JPS6275953A publication Critical patent/JPS6275953A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To improve characteristics as a vertically magnetized film and to improve corrosion resistance by setting the atomic concn. of Tb and Co in a TbCo film which is a recording layer to a prescribed value or above so that the atoms are thoroughly magnetically bound with each other. CONSTITUTION:The inside of a sputtering chamber 11 is evacuated by a discharge system 24 and gaseous Ar in a cylinder 20 is admitted into the chamber while the flow rate thereof is monitored by a flow meter 23 to maintain the gaseous pressure at a prescribed value. Electric power is supplied from DC power sources 18, 19 to a TB target and Co target in sputtering guns 12, 13 to excite magnetron discharge and to clean up the surfaces of the targets by presputtering while shutters 14, 15 are held closed; thereafter the shutters 14, 15 are opened and the TbCo film is formed on a substrate 16 which is kept rotated. The concn. of the Tb atoms in the TbCo film is thereby made >=1.2X10<22>pieces/cm<3> and the concn. of the Co atoms to >=3.0X10<22>pieces/cm<3>, by which the Tb atoms and Co atoms are magnetically thoroughly bound with each other.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は光磁気記録媒体、特に非晶質フェリ磁性TbC
o合金薄膜を記録層とする光磁気記録媒体とその製造方
法に関する。
Detailed Description of the Invention (Technical Field of the Invention) The present invention relates to a magneto-optical recording medium, particularly an amorphous ferrimagnetic TbC
The present invention relates to a magneto-optical recording medium having an o-alloy thin film as a recording layer and a method for manufacturing the same.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

Gd、Tb、DV等の重希土類元素(RE)と、Fe、
Co等の遷移金属元素(TM)とを主成分とする非晶質
フェリ磁性合金薄II!(RE−TM膜)は、書替え可
能な光磁気記録媒体における記録層材料として、その実
用化が期待されている。このRE−TM膜の特長を列挙
すると、次の通りである。
Heavy rare earth elements (RE) such as Gd, Tb, and DV, and Fe,
Amorphous ferrimagnetic alloy thin II whose main component is a transition metal element (TM) such as Co! (RE-TM film) is expected to be put to practical use as a recording layer material in rewritable magneto-optical recording media. The features of this RE-TM film are listed below.

(1)  スパッタリング法、蒸着法等の簡便な方法に
よって比較的大きな垂直磁気異方性を有する垂直磁化膜
が形成できる。
(1) A perpendicularly magnetized film having relatively large perpendicular magnetic anisotropy can be formed by a simple method such as sputtering or vapor deposition.

(21フェリ磁性であるため、組成成分比を吟味するこ
とによって磁化、つまり自己反磁界を小さくでき、角形
の極めて良好な特性が得られる。
(Since it is 21 ferrimagnetic, magnetization, that is, self-demagnetizing field, can be reduced by carefully considering the compositional component ratio, and extremely good square characteristics can be obtained.

(3)保磁力が比較的大きいので、微小反転磁区の安定
性が良い(重希土類元素とししてTb、Dyを用いた場
合、特に良好)。
(3) Since the coercive force is relatively large, the stability of minute inversion magnetic domains is good (particularly good when Tb or Dy is used as the heavy rare earth element).

(4)温度上昇に伴う保磁力低下が迅速に起こるので、
低パワーレーザビームの照射と小さな外部磁場の印加に
よって磁化反転ビットが形成できる。
(4) Coercive force decreases quickly as temperature rises, so
Magnetization reversal bits can be formed by irradiation with a low-power laser beam and application of a small external magnetic field.

(5)  実用上十分な大きさの極力−回転角を得るこ
とができる。
(5) A rotation angle as large as possible for practical use can be obtained.

文献1;日本応用磁気学会誌、vol、9. N(12
,1985に記載されているように、RE−7M膜中で
はTbCo膜が最も耐食性に優れている。すなわち、T
bCo膜はスパッタリングにより形成された誘電体をオ
ーバーコートする等の簡便な保護対策で実用的な寿命が
期待できるので、基板材料として、気体透過性が大きい
がガラスに比較して案内溝の形成が容易という利点を持
つ有機樹脂材料(ポリメチルメタクリレート、ポリカー
ボネイト、エポキシ等)を使用でき、実用上好ましい。
Reference 1; Journal of the Japanese Society of Applied Magnetics, vol. 9. N(12
, 1985, the TbCo film has the best corrosion resistance among the RE-7M films. That is, T
Since the bCo film can be expected to have a practical lifespan with simple protection measures such as overcoating the dielectric formed by sputtering, it can be used as a substrate material because it has high gas permeability but is difficult to form guide grooves compared to glass. Organic resin materials (polymethyl methacrylate, polycarbonate, epoxy, etc.) that have the advantage of ease of use can be used and are preferred in practice.

文献2 : A1)pl、phys、 Lett、45
 (8) 、15゜1984、+1872 、文献3 
; Proc、8th 5VIIII1. OnI S
 I AT’ 84.p298 、文献4 : J a
paneseJournal of Applied 
 Physics vol、23゜Nα、2,1984
.p188、文献5〜7:第32回応用物理学関係連合
講演会予稿集 29a−G−1,29a−G−2゜29
a−Q −3(D353)等に開示されているように、
TbCo膜の磁気的性質は膜の組成およびその形成条件
に大きく依存している。しかしながら、TbCo膜が光
磁気記録媒体における記録層として必要な垂直磁化膜と
なるための組成、特に原子濃度比と、その原子濃度比と
耐食性の関係、さらに最適な原子濃度を持つTbCo膜
の形成方法等については吟味が不足しているのが実情で
ある。
Reference 2: A1) pl, phys, Lett, 45
(8), 15°1984, +1872, Reference 3
; Proc, 8th 5VIII1. OnIS
I AT' 84. p298, document 4: J a
paneseJournal of Applied
Physics vol, 23°Nα, 2, 1984
.. p188, References 5-7: Proceedings of the 32nd Applied Physics Association Conference 29a-G-1, 29a-G-2゜29
As disclosed in a-Q-3 (D353) etc.
The magnetic properties of a TbCo film largely depend on the composition of the film and the conditions for its formation. However, the composition of a TbCo film to become a perpendicular magnetization film necessary as a recording layer in a magneto-optical recording medium, especially the atomic concentration ratio, the relationship between the atomic concentration ratio and corrosion resistance, and the formation of a TbCo film with an optimal atomic concentration The reality is that there is a lack of careful examination of methods.

例えば文献6と7とでは相矛盾した結果となっている。For example, References 6 and 7 give contradictory results.

〔発明の目的〕[Purpose of the invention]

本発明は上記した従来の問題点に鑑みてなされたもので
、垂直磁化膜として良好な特性を有し、かつ耐食性に優
れた非晶質フェリ磁性TbCo合金薄膜を記録磁性層と
して備えた光磁気記録媒体とその製造方法を提供するこ
とを目的とする。
The present invention has been made in view of the above-mentioned conventional problems, and is a magneto-optical film comprising an amorphous ferrimagnetic TbCo alloy thin film as a recording magnetic layer, which has good properties as a perpendicular magnetization film and has excellent corrosion resistance. The purpose is to provide a recording medium and its manufacturing method.

〔発明の概要〕[Summary of the invention]

本発明に係る記録層として膜面に垂直な方向に磁化容易
軸を有する非晶質フェリ磁性TbCo合金薄膜(以下、
単にTbCo膜という)を形成した光磁気記録媒体は、
非晶質フェリ磁性TbC。
As a recording layer according to the present invention, an amorphous ferrimagnetic TbCo alloy thin film (hereinafter referred to as
A magneto-optical recording medium formed with a TbCo film (simply referred to as a TbCo film) is
Amorphous ferrimagnetic TbC.

合金薄膜中のTb原子濃度が1.2X1022[個/c
m”3以上、co原子濃度が 3.0x1022 [個/cm3]以上であることを特
徴とする。
The Tb atomic concentration in the alloy thin film is 1.2X1022 [pieces/c
m"3 or more, and the co atom concentration is 3.0x1022 [pieces/cm3] or more.

また、本発明に係る光磁気記録媒体の製造方法は、記録
層となるTbCo膜を該薄膜中のTb原子濃度が1.2
X1022  [個/cm3]以上。
Further, in the method for manufacturing a magneto-optical recording medium according to the present invention, a TbCo film serving as a recording layer is prepared such that the Tb atomic concentration in the thin film is 1.2.
X1022 [pieces/cm3] or more.

CO原子濃度が3.0X1022  [個/cm3]以
上となるように、記録層が形成される基板の接地電位に
対するVeがVB≧−150[V]の条件で、スパッタ
リング法により形成することを特徴とする。
The recording layer is formed by a sputtering method under the condition that Ve with respect to the ground potential of the substrate on which the recording layer is formed is VB≧-150 [V] so that the CO atomic concentration is 3.0×1022 [pieces/cm3] or more. shall be.

〔発明の効果〕〔Effect of the invention〕

本発明に係る光磁気記録媒体は、記録層としてのTbC
o膜がTb原子とco原子との磁気的結合(隣接原子の
スピンが反平行に並ぶこと)が十分に実現される緻密さ
を備えているので、カーヒステリシスループ、VSMル
ープの角形比が極めて良好で、磁化反転が極めてシャー
プに起こる垂直磁気異方性定数の大きい非常に良好な垂
直磁化膜となり、またその耐食性も十分であって非常に
長寿命なものとなる。
The magneto-optical recording medium according to the present invention has TbC as a recording layer.
Since the o film is dense enough to achieve magnetic coupling between Tb atoms and co atoms (spins of adjacent atoms are aligned antiparallel), the squareness ratio of Kerr hysteresis loops and VSM loops is extremely high. This results in a very good perpendicularly magnetized film with a large perpendicular magnetic anisotropy constant in which magnetization reversal occurs very sharply, and also has sufficient corrosion resistance and a very long life.

また、本発明に係る光磁気記録媒体の製造方法によれば
、上述した良好な特性を有するTbC。
Further, according to the method for manufacturing a magneto-optical recording medium according to the present invention, TbC having the above-mentioned good properties.

膜を量産性、再現性に優れたスパッタリング法により成
膜することができる。
The film can be formed by a sputtering method with excellent mass productivity and reproducibility.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の詳細な説明する。第1図は本発明の一実
施例に係る光磁気記録媒体の断面図であり、基板1上に
記録層としてのTbCo膜2が形成されている。TbC
o膜2はTb[子濃度が1.2X1022  [個/c
m3]以上、Co原子淵度が3.0XIO22[個/c
m3]以上の組成を有し、その膜厚は1000人である
。膜厚は膜の一部をエッチオフして、その段差を触針式
膜厚計で測定した。また、TbCo膜2の組成は誘導結
合アルゴンプラズマ発光分光分析法(ICP法)により
定量分析した。膜厚とICP法の結果から、膜中のTb
及びCoの原子濃度を導出した。
The present invention will be explained in detail below. FIG. 1 is a cross-sectional view of a magneto-optical recording medium according to an embodiment of the present invention, in which a TbCo film 2 as a recording layer is formed on a substrate 1. TbC
o film 2 has a Tb concentration of 1.2×1022 [pieces/c
m3] or more, Co atomic depth is 3.0XIO22 [pieces/c
m3] or more, and its thickness is 1000. The film thickness was measured by etching off a part of the film and measuring the difference in level using a stylus-type film thickness meter. Further, the composition of the TbCo film 2 was quantitatively analyzed by inductively coupled argon plasma optical emission spectroscopy (ICP method). From the film thickness and ICP method results, Tb in the film
and the atomic concentration of Co were derived.

第2図はTbCoI12中のTbおよびGoの原子濃度
と、垂直磁気異方性定数KUとの関係を実測した結果を
示したものである。光磁気記録媒体における記録層とし
てTbCo膜を用いる場合、先ずKLIが正であること
、すなわち垂直磁化膜であることが必要不可欠である。
FIG. 2 shows the results of actual measurements of the relationship between the atomic concentrations of Tb and Go in TbCoI12 and the perpendicular magnetic anisotropy constant KU. When using a TbCo film as a recording layer in a magneto-optical recording medium, it is essential that the KLI be positive, that is, that the film be perpendicularly magnetized.

第2図よりTb原子濃度が1.2X1022  [個/
α3]未満およびCo原子濃度が3.0x1022 [
個/Cm3]未渦の領域では、KIJ<0となってしま
い、垂直磁化膜とならないことが分る。
From Figure 2, the Tb atomic concentration is 1.2X1022 [pieces/
α3] and Co atom concentration is 3.0x1022 [
/Cm3] In the non-vortex region, KIJ<0, and it can be seen that a perpendicularly magnetized film is not formed.

具体例として、Tbの原子濃度を 1.3X10”!  [個/cIl!3]、coの原子
濃度を3.6X1022  [個/cm3]とし、Tb
の組成比を26.5 [at、%]とした場合について
のTbCo膜の光磁気的評価結果を次表1に示す。
As a specific example, the atomic concentration of Tb is 1.3X10"! [pieces/cIl!3], the atomic concentration of co is 3.6X1022 [pieces/cm3], and Tb
The following Table 1 shows the results of magneto-optical evaluation of the TbCo film when the composition ratio of TbCo was set to 26.5 [at, %].

表1 この結果から、TbおよびCoの原子濃度が本発明に基
づく範囲にあるTbCo膜は、垂直磁化膜として非常に
良好な特性を有していることが明らかである。
Table 1 From these results, it is clear that the TbCo film in which the atomic concentrations of Tb and Co are within the range based on the present invention has very good characteristics as a perpendicularly magnetized film.

第3図は本発明に基づ<TbCo膜を形成する装置の構
成例を示す図である。スパッタ室11内に、Tbターゲ
ットを収納したマグネトロンスパッタガン12と、Co
ターゲットを収納したマグネトロンスパッタガン13、
およびこれらの前面に位置してシャッタ14.15が配
置され、その上に基板16が配置される。基板16に容
量結合によりRF電源17が接続され、マグネトロンス
パッタガン12.13にDC電源18.19がそれぞれ
接続されている。ガスボンベ20は純度99.995%
以上のArガスを収納し、圧力調整器21および質量流
量計22を介してスパッタ室11に結合されている。ス
パッタ室11には、さらにクライオポンプを備えた排気
系24が接続される。
FIG. 3 is a diagram showing an example of the configuration of an apparatus for forming a TbCo film based on the present invention. In the sputtering chamber 11, a magnetron sputtering gun 12 containing a Tb target and a Co
Magnetron sputter gun 13 with target stored,
Shutters 14 and 15 are arranged in front of these, and a substrate 16 is arranged thereon. An RF power source 17 is connected to the substrate 16 by capacitive coupling, and DC power sources 18 and 19 are connected to the magnetron sputter guns 12 and 13, respectively. Gas cylinder 20 has a purity of 99.995%
The above-mentioned Ar gas is stored and connected to the sputtering chamber 11 via a pressure regulator 21 and a mass flow meter 22. The sputtering chamber 11 is further connected to an exhaust system 24 equipped with a cryopump.

このスパッタリング装置を用いてTbCo膜を成膜する
手順を説明すると、先ずスパッタ室11内部を排気系2
4によって10−6[Torr ]まで排気し、次に質
量流量計23でモニターしながら圧力調整器22によっ
てボンベ20内のArガスを70 [5ccIIl]の
流量でスパッタ室11内に流入し、排気系24のバルブ
を調整してガス圧力を5 [mTorr ]に維持した
。次に、シャッタ14゜15を閉じた状態でマグネトロ
ンスパッタガン12.13内のTbターゲット、Coタ
ーゲットにDC電118.19より電力を供給し、ター
ゲツト面上にマグネトロン放電を励起した。入力電流は
Tbターゲットへは0.4 [A]、Goターゲットへ
は1.4 [A]と設定し、5分間のブリスパッタを行
なってターゲツト面上を浄化し、その後シャッタ14.
15を同時に開き、基板16を回転させなからTbCo
膜の成膜を3分間行なった。基板16の回転速度は60
[rom]として、Tbスパッタ粒子とCoスパッタ粒
子が基板16上で十分に混じり合うようにした。また、
RF電源17はオフにし、基板16を接地電位、すなわ
ちVB=Oとした。このようにして得られたTbCo1
IIlの膜質と特性は既に説明した通りとなる。
To explain the procedure for forming a TbCo film using this sputtering apparatus, first, the inside of the sputtering chamber 11 is
4, the Ar gas in the cylinder 20 is evacuated to 10-6 [Torr] by the pressure regulator 22 while being monitored by the mass flowmeter 23, and then flows into the sputtering chamber 11 at a flow rate of 70 [5ccII], and is exhausted. The gas pressure was maintained at 5 mTorr by adjusting the valve in system 24. Next, with the shutters 14 and 15 closed, power was supplied to the Tb target and Co target in the magnetron sputtering gun 12.13 from the DC power supply 118.19 to excite magnetron discharge on the target surface. The input current was set to 0.4 [A] for the Tb target and 1.4 [A] for the Go target, and bliss sputtering was performed for 5 minutes to clean the target surface, and then the shutter 14.
15 at the same time, and rotate the substrate 16.
The film was formed for 3 minutes. The rotation speed of the substrate 16 is 60
As [rom], Tb sputtered particles and Co sputtered particles were sufficiently mixed on the substrate 16. Also,
The RF power supply 17 was turned off, and the substrate 16 was set at ground potential, that is, VB=O. TbCo1 obtained in this way
The film quality and characteristics of IIl are as already explained.

第3図に示したスパッタリング装置を使用して、TbC
o膜の形成条件を具体的に検討した結果を以下の実施例
によって述べる。
Using the sputtering apparatus shown in FIG. 3, TbC
The results of a concrete study of the conditions for forming the o-film will be described in the following examples.

〈実施例1〉 基板16にRF電源17より電力を供給して、基板16
面に接地電位に対する電位(基板バイアス電位)がVB
なる自己バイアス電圧を発生させ、VBを種々変化させ
てTbCo膜を形成した場合について、その膜質を調べ
た。第4図〜第6図はその結果である。第4図は基板バ
イアス電位VBとカー回転角θにとの関係、第5図はV
Bと保磁力HCとの関係、第6図はVBと膜中のTb原
子濃度およびCO原子濃度との関係、第7図はVeと垂
直磁気異方性定数KUとの関係である。第4図、第5図
および第7図には破線で同一組成比の無バイアス・スパ
ッタリング法(VB=0)で形成した膜の値を併せて示
した。
<Example 1> Power is supplied to the board 16 from the RF power supply 17, and the board 16
The potential (substrate bias potential) relative to the ground potential on the surface is VB.
The film quality was investigated when a TbCo film was formed by generating a self-bias voltage and varying VB variously. Figures 4 to 6 show the results. Figure 4 shows the relationship between substrate bias potential VB and Kerr rotation angle θ, and Figure 5 shows the relationship between VB and Kerr rotation angle θ.
FIG. 6 shows the relationship between B and the coercive force HC, FIG. 6 shows the relationship between VB and the Tb atomic concentration and CO atomic concentration in the film, and FIG. 7 shows the relationship between Ve and the perpendicular magnetic anisotropy constant KU. In FIG. 4, FIG. 5, and FIG. 7, the values of films formed by the non-bias sputtering method (VB=0) with the same composition ratio are also shown by broken lines.

第4図、第5図および第7図より明らかなように、−2
00v≧VB≧−350Vのバイアススパッタリング法
により形成されたTbCo膜は面内磁化膜となっており
、その他のVeの範囲で形成されたTbCo膜のみが記
録層として使用可能であることがわかる。Ve≦−35
0Vのバイアススパッタリング法により形成されたTb
Co膜は垂直磁化膜どなるが、第4図および第5図に示
されるように同一組成の無バイアススパッタリング法に
よる膜と比較すると、θに、1−1c共に十分でない。
As is clear from Figures 4, 5 and 7, -2
It can be seen that the TbCo film formed by the bias sputtering method where 00v≧VB≧−350V is an in-plane magnetized film, and only TbCo films formed within other Ve ranges can be used as the recording layer. Ve≦-35
Tb formed by 0V bias sputtering method
Although the Co film is a perpendicularly magnetized film, it is insufficient in both θ and 1-1c when compared with a film of the same composition produced by non-bias sputtering as shown in FIGS. 4 and 5.

さらに、Ve≦−350vのバイアススパッタリング法
により形成された膜はKl >Oで垂直磁化膜となり得
るが、第6図に示されるごと<Tb原子濃度が1.2X
1022  [個/Cm3]未満およびCO原子濃度が
3.0X1022  [個/C#+3]未満と低く、膜
質がポーラスになっている。従って、加速劣化試験に供
すると容易に酸化が生じて、、面内磁化膜となってしま
う。第8図はこの様子を示す図であり、成膜した状態(
as、depo、 )でのカーヒステリシスループと、
70℃−85%R,H。
Furthermore, a film formed by a bias sputtering method with Ve≦-350v can be a perpendicularly magnetized film with Kl >O, but as shown in FIG.
The film quality is porous, with a CO atom concentration of less than 1022 [pieces/Cm3] and a CO atom concentration of less than 3.0×1022 [pieces/C#+3]. Therefore, when subjected to an accelerated deterioration test, oxidation easily occurs, resulting in an in-plane magnetized film. FIG. 8 is a diagram showing this state, and shows the state in which the film is formed (
as, depo, ) and Kerr hysteresis loop at
70°C-85% R,H.

下に24時間放置後のそれとを比較して示している。V
s≧−175vで形成されたTbCo膜は加速劣化試験
前後でなんら変化が見られないのに対し、Ve≦−35
0vで形成されたTbCo膜は加速劣化によりカールー
プ形状は変化しており、その変化の度合いはVBが小さ
くなる程(マイナス側に大きくなる程)大きく、VB≦
−540vの領域では加速劣化後、面内磁化膜に変質し
てしまっている。従って、TbCo膜を良好な垂直磁化
膜として形成するには、本発明のごとく基板バイアス電
位VeをVa≧−150Vとしたバイアススバッタリン
グ法により形成することが必要となる。
A comparison is shown below with that after being left for 24 hours. V
The TbCo film formed at s≧-175V showed no change before and after the accelerated aging test, whereas when Ve≦-35
The TbCo film formed at 0V changes its Kerr loop shape due to accelerated deterioration, and the degree of this change increases as VB decreases (as it increases toward the negative side), and VB≦
In the −540V region, after accelerated deterioration, the film has changed into an in-plane magnetized film. Therefore, in order to form a TbCo film as a good perpendicular magnetization film, it is necessary to form it by a bias sputtering method in which the substrate bias potential Ve is set to Va≧-150V as in the present invention.

なお、基板バイアス電位VBの増加に従ってTbCo膜
がポーラスになる理由は、成膜時の膜面へのスパッタガ
スイオンの衝撃がVBの増加で増大し、Tb原子とCO
原子を再スパツタ放出効果によって膜外に飛散させ、膜
中に空孔を発生させるためであり、結果としてTbとC
Oとの磁気的結合および相互作用を減少させて光磁気特
性を著しく損なうものと考えられる。
The reason why the TbCo film becomes porous as the substrate bias potential VB increases is that the impact of sputtering gas ions on the film surface during film formation increases as VB increases, and Tb atoms and CO
This is because atoms are scattered outside the film by the re-sputtering effect and vacancies are generated in the film, and as a result, Tb and C
It is thought that this reduces the magnetic coupling and interaction with O, thereby significantly impairing the magneto-optical properties.

〈実施例2〉 Tt)Go膜形成時の基板バイアス電位をOv(接地電
位)としておき、スパッタガスとして用いたArガスの
成膜時のガス圧力PAを種々変化させた。第9図〜第1
1図はその結果であり、第9図はPAと1−1cとの関
係、第10図はPAと膜中のTb原子濃度およびCO原
子濃度と関係、第11図はPAと垂直磁気異方性定数K
IJとの関係をそれぞれ示している。第9図および第1
1図にはさらに破線で同一組成のPA = 5 [mT
Orr ]で形成したTbCo膜各々の値を併せて示し
た。
<Example 2> The substrate bias potential during the formation of the Tt) Go film was set to Ov (ground potential), and the gas pressure PA of the Ar gas used as the sputtering gas during film formation was varied. Figure 9 ~ 1st
Figure 1 shows the results, Figure 9 shows the relationship between PA and 1-1c, Figure 10 shows the relationship between PA and the Tb atomic concentration and CO atomic concentration in the film, and Figure 11 shows the relationship between PA and perpendicular magnetic anisotropy. sexual constant K
The relationship with IJ is shown respectively. Figure 9 and 1
In Figure 1, a broken line further indicates that PA with the same composition = 5 [mT
The values for each of the TbCo films formed using [Orr ] are also shown.

第11図より明らかなように、TbCo膜は成膜時のA
rガス圧力が15 [mTOrr ]以上の領域では面
内磁化膜となっており、光磁気記録媒体の記録層として
使用できない。また、第10図および第11図から、垂
直磁気異方性定数)(Uが負になっている躾はポーラス
であって、本発明に基づ<TbCo11におけるTbお
よびCO原子濃度の範囲から逸脱していることが明らか
である。従って、本発明においてTbCo膜を形成する
ときのスパッタガス圧力は、10 [mTorr ]以
下にすることが望ましい。
As is clear from FIG. 11, the TbCo film has a
In a region where the r gas pressure is 15 [mTOrr] or more, the film becomes an in-plane magnetized film and cannot be used as a recording layer of a magneto-optical recording medium. Also, from FIG. 10 and FIG. 11, it can be seen that the perpendicular magnetic anisotropy constant) (U) is porous and deviates from the range of Tb and CO atomic concentrations in <TbCo11 based on the present invention. Therefore, in the present invention, the sputtering gas pressure when forming the TbCo film is desirably 10 [mTorr] or less.

〈実施例3〉 TbCo1!形成時の基板バイアス電位VBをVe=O
V、スパッタガス圧力を5 [mTorr ]とし、ま
たススパンガスとしてAr−N2゜Ar−N2 、Ar
−02混合ガスを使用し、各添加ガス(N2 、N2.
02)の分圧比を変えて成膜を行ない、それぞれの場合
について評価した。
<Example 3> TbCo1! Substrate bias potential VB at the time of formation is Ve=O
V, the sputtering gas pressure was 5 [mTorr], and the span gas was Ar-N2°Ar-N2, Ar
-02 mixed gas was used, and each additive gas (N2, N2.
Films were formed by changing the partial pressure ratio of 02), and each case was evaluated.

第12図および第13図がその結果であり、第12図は
各添加ガスの分圧比と垂直磁気異方性定数Kuとの関係
、第13図は添加ガス分圧比とTb。
Figures 12 and 13 show the results. Figure 12 shows the relationship between the partial pressure ratio of each additive gas and the perpendicular magnetic anisotropy constant Ku, and Figure 13 shows the relationship between the partial pressure ratio of each additive gas and Tb.

COの原子濃度との関係をそれぞれ示している。The relationship with the atomic concentration of CO is shown.

Ar=H2系スパッタガスについてはH2分圧比4%以
上、Ar−N2系スパッタガスについてはN2分圧比2
.5%以上、へr−02系スパッタガスについては02
分圧比1%以上で面内磁化膜となってしまうことが分る
。一方、Tb、CO原子濃度比でみると、Ar−82系
スパツタガスについてはN2分圧比7%以上、Ar−N
2系スパッタガスについてはN2分圧比4%以下、Ar
−02系スパツタガスについては02分圧比4%以下で
、それぞれ本発明に基づ<Tb、C。
For Ar=H2 type sputtering gas, H2 partial pressure ratio is 4% or more, and for Ar-N2 type sputtering gas, N2 partial pressure ratio is 2.
.. 5% or more, 02 for H-R-02 type sputtering gas
It can be seen that a partial pressure ratio of 1% or more results in an in-plane magnetized film. On the other hand, looking at the Tb and CO atomic concentration ratios, for Ar-82 sputtering gas, the N2 partial pressure ratio is 7% or more, and the Ar-N
For 2-system sputtering gas, N2 partial pressure ratio is 4% or less, Ar
-02 series sputter gas has an 02 partial pressure ratio of 4% or less, and <Tb, C, respectively, according to the present invention.

原子濃度が得られているが、いずれも反応性ガスを使用
しているために、Tbと添加ガスの反応生成物が膜に取
込まれることによって、原子濃度比は十分でも面内磁化
膜どなってしまうものと考えられる。
Although the atomic concentration is obtained, since reactive gases are used in both cases, the reaction products of Tb and the additive gas are incorporated into the film, so even if the atomic concentration ratio is sufficient, the in-plane magnetization film is It is thought that it will become.

このような結果から、希ガス以外のガス(反応性を有す
るガス)をスパッタガスとして使用する際には、反応性
ガスの種類にもよるが、反応性ガス分圧比を4%以下(
希ガス分圧比96%以上)、より好ましくは1%以下(
希ガス分圧比99%以上)とすることが望ましい。また
、希ガスとしては工業的見地からArガスが最も好適で
ある。
Based on these results, when using gases other than rare gases (reactive gases) as sputtering gases, the reactive gas partial pressure ratio should be 4% or less (depending on the type of reactive gas).
rare gas partial pressure ratio of 96% or more), more preferably 1% or less (
It is desirable that the rare gas partial pressure ratio be 99% or more. Furthermore, from an industrial standpoint, Ar gas is most suitable as the rare gas.

〈実施例4〉 スパッタガスとして99.995%純度のArガスを使
用し、ガス圧力を5 [mTorr ]とし、TbCo
成膜時の基板バイアス電位をOvとして、マグネトロン
スパッタリング法によるTbCo膜の形成と、コンベン
ショナルスパッタリング法(マグネトロンスパッタリン
グ法でないもの)によるTbCo膜の形成を行ない、そ
れぞれの場合について評価した。その結果を第14図お
よび第15図に示す。第14図はマグネトロンスパッタ
リング法で形成したTbCo膜の膜組成(膜組成は第3
図の装置においてTbターゲットへの入力パワーとCO
シタ−ットへの入力パワーとの比を変えることによって
変化させた)と、保磁力(極力−ヒステリシスループか
ら測定した垂直方向の保磁力)との関係を実線で示し、
また膜中のTb。
<Example 4> Ar gas with a purity of 99.995% was used as the sputtering gas, the gas pressure was set to 5 [mTorr], and TbCo
A TbCo film was formed by a magnetron sputtering method and a TbCo film was formed by a conventional sputtering method (not a magnetron sputtering method) with the substrate bias potential at the time of film formation set to Ov, and each case was evaluated. The results are shown in FIGS. 14 and 15. Figure 14 shows the film composition of the TbCo film formed by the magnetron sputtering method (the film composition is
In the device shown in the figure, the input power to the Tb target and the CO
The solid line shows the relationship between the coercive force (the vertical coercive force measured from the hysteresis loop) and the coercive force (changed by changing the ratio of the input power to the sitat),
Also, Tb in the film.

Coの原子濃度との関係を破線で示す。図のように幅広
い範囲で本発明に基づく緻密なTbCo11が得られて
いおり、またカーヒステリシスループの角形比も良好で
、保磁力も実用に十分供し得る大きさとなっている。第
15図はフンベンショナ′じパッタリ′グ法により形成
したTbCo膜の     1膜組成(ターゲットとし
てはCo円板上にTbのチップを配置した複合ターゲッ
トを使用し、Tbチップの面積比を変えて組成を変化さ
せた)と、垂直方向の保磁力およびTbCoの原子濃度
との関係を示す。この第15図から明らかなように、コ
ンベンショナルスパッタリング法で形成したTbCo膜
は、垂直磁化膜の得られる組成領域が極めて狭く、かつ
膜が全体的にマグネトロンスパッタリング法で形成され
たTbCo膜に比べてポーラスである。この原因はマグ
ネトロンスパッタリング法の場合、プラズマがターゲッ
ト付近に収束されるので、基板面側へのArイオンの衝
撃が抑制されるのに対して、コンベンショナルスパンク
リング法の場合、プラズマがターゲットと基板との間全
域に広がってしまい、基板面側へArイオンが衝突して
膜の緻密性を損なうためと考えられ、コンベンショナル
スパッタリング法は等価的に基板バイアス−150V以
下のマグネトロンスパッタタイプのスパッタリング法と
見なされる。
The relationship with the atomic concentration of Co is shown by a broken line. As shown in the figure, dense TbCo11 based on the present invention was obtained in a wide range, and the squareness ratio of the Kerr hysteresis loop was also good, and the coercive force was large enough to be used practically. Figure 15 shows the composition of one TbCo film formed by the functioner's same sputtering method (a composite target with Tb chips arranged on a Co disk was used as a target, and the area ratio of the Tb chips was changed to The relationship between the perpendicular coercive force and the atomic concentration of TbCo is shown. As is clear from FIG. 15, the TbCo film formed by the conventional sputtering method has a very narrow composition range in which a perpendicularly magnetized film can be obtained, and the film is entirely formed by the magnetron sputtering method. It is porous. The reason for this is that in the magnetron sputtering method, the plasma is focused near the target, which suppresses the impact of Ar ions on the substrate surface, whereas in the conventional spankling method, the plasma is focused near the target and the substrate. This is thought to be due to Ar ions colliding with the substrate surface and damaging the density of the film.The conventional sputtering method is equivalently considered to be a magnetron sputtering type sputtering method with a substrate bias of -150V or less. It will be done.

また、上記実施例では基板上に直接記録層を形成した例
を示したが、本発明はこれに限らず、基板と記録層との
間に例えば3i3N+膜からなる第1の干渉層を設けて
もよく、さらにこの記録層上に例えば5iiN+Il*
からなる第2の干渉層、および光反射層を積層して形成
してもよい。
Further, in the above embodiment, an example was shown in which the recording layer was formed directly on the substrate, but the present invention is not limited to this, and the present invention is not limited to this. For example, 5iiN+Il* may be formed on this recording layer.
It may also be formed by laminating a second interference layer consisting of a light reflecting layer and a light reflecting layer.

TbCo膜からなる記録層を透過する光を利用する上記
4層構造の媒体においては、第2の干渉層を構成するS
i3N+の膜厚を0人〜1100人の間の3点(0人、
250人、 500人、800人、 1ioo人)変化
させてサンプルを形成し、基板裏面側からの反射率とカ
ー回転角をHe−Neレーザを用いて測定したところ、
第2の干渉層の膜厚が500Å以下の範囲、特に250
人で反射率Xカー回転角が極めて大きな値となった。故
に、第2の干渉層の膜厚は500Å以下とするのが適当
である。
In the above-mentioned four-layered medium that utilizes light transmitted through a recording layer made of a TbCo film, S constituting the second interference layer is
The film thickness of i3N+ was evaluated at 3 points between 0 and 1100 people (0 people,
250 people, 500 people, 800 people, 100 people) were formed to form samples, and the reflectance from the back side of the substrate and Kerr rotation angle were measured using a He-Ne laser.
The thickness of the second interference layer is 500 Å or less, especially 250 Å or less.
For humans, the reflectance x Kerr rotation angle was extremely large. Therefore, it is appropriate that the thickness of the second interference layer be 500 Å or less.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る光磁気記録媒体の構成
を概略的に示す断面図、第2図はTbCo膜中のTbお
よびco原子濃度と垂直磁気異方性定数との関係を示す
図、第3図は本発明においてTbCo膜の形成に使用し
たスパッタリング装置の構成を示す図、第4図〜第15
図は本発明に係る光磁気記録媒体の製造方法の効果を説
明するための図であって、第4図はTbCo膜形成時の
基板バイアス電位とカー回転角との関係を示す図、第5
図は同じく基板バイアス電位と保磁力との関係を示す図
、第6図は同じく基板バイアス電位とTbおよびCOの
原子濃度との関係を示す図、第7図は同じく基板バイア
ス電位と垂直磁気異方性定数との関係を示す図、第8図
は基板バイアス電位の変化に対する成膜時および加速試
験後のTbCo膜のカーヒステリシスループを比較して
示す図、第9図はスパッタガス中のArガス圧力と保磁
力との関係を示す図、第10図は同じ<Arガス圧力と
TbおよびCoの原子濃度との関係を示す図、第11図
は同じ<Arガス圧力と垂直磁気異方性定数との関係を
示す図、第12図はスパッタガス中の添加ガスの分圧比
と垂直磁気異方性定数との関係を示す図、第13図は同
じく添加ガス分圧比とTbおよびCOの原子濃度との関
係を示す図、第14図はマグネトロンスパッタリング法
により形成したTbCo膜におけるTb組成比と保磁力
ならびにびTbおよびGOの原子濃度との関係を示す図
、第15図はコンベンショナルスパッタリング法により
形成したTbCo膜におけるTb組成比と保磁力ならび
にびTbおよびCOの原子濃度との関係を示す図である
。 1・・・基板、2・・・TbCo膜(記録層)。 出願人代理人 弁理士 鈴江武彦 第1図 第3図 第2図 第4図 LJ     −7tJIJ    −1dJU   
 −600−〔、田〕/回〕マrf破 [:aO′)4] )Hし…赴 〔ε山15」a″In)4”f;Jl$1袂承m1.!
■?・F −−
FIG. 1 is a cross-sectional view schematically showing the structure of a magneto-optical recording medium according to an embodiment of the present invention, and FIG. 2 shows the relationship between the Tb and co atomic concentrations in the TbCo film and the perpendicular magnetic anisotropy constant. Figures 3 and 3 are diagrams showing the configuration of the sputtering apparatus used to form the TbCo film in the present invention, and Figures 4 to 15.
The figures are diagrams for explaining the effects of the method for manufacturing a magneto-optical recording medium according to the present invention.
The figure also shows the relationship between substrate bias potential and coercive force, Figure 6 also shows the relationship between substrate bias potential and Tb and CO atomic concentrations, and Figure 7 also shows the relationship between substrate bias potential and perpendicular magnetic difference. Figure 8 shows a comparison of the Kerr hysteresis loop of a TbCo film during film formation and after an accelerated test with respect to changes in substrate bias potential. Figure 9 shows the relationship between Ar in sputtering gas and Figure 10 shows the relationship between the gas pressure and coercive force, Figure 10 shows the relationship between the same <Ar gas pressure and the atomic concentrations of Tb and Co, and Figure 11 shows the relationship between the same <Ar gas pressure and perpendicular magnetic anisotropy. Figure 12 is a diagram showing the relationship between the partial pressure ratio of the additive gas in the sputtering gas and the perpendicular magnetic anisotropy constant, and Figure 13 is a diagram showing the relationship between the partial pressure ratio of the additive gas in the sputtering gas and the atoms of Tb and CO. Figure 14 is a diagram showing the relationship between the Tb composition ratio and coercive force and the atomic concentration of Tb and GO in a TbCo film formed by magnetron sputtering, and Figure 15 is a diagram showing the relationship between Tb and GO atomic concentrations in a TbCo film formed by magnetron sputtering. FIG. 3 is a diagram showing the relationship between the Tb composition ratio, the coercive force, and the atomic concentrations of Tb and CO in the formed TbCo film. 1... Substrate, 2... TbCo film (recording layer). Applicant's representative Patent attorney Takehiko Suzue Figure 1 Figure 3 Figure 2 Figure 4 LJ -7tJIJ -1dJU
-600- [, 田]/times] Marf failure [:aO') 4]) H... going [εyama 15''a''In)4''f; !
■?・F --

Claims (6)

【特許請求の範囲】[Claims] (1)基板上に記録層として膜面に垂直な方向に磁化容
易軸を有する非晶質フェリ磁性TbCo合金薄膜を形成
した光磁気記録媒体において、前記非晶質フェリ磁性T
bCo合金薄膜中のTb原子濃度が1.2×10^2^
2[個/cm^3]以上、Co原子濃度が3.0×10
^2^2[個/cm^3]以上であることを特徴とする
光磁気記録媒体。
(1) In a magneto-optical recording medium in which an amorphous ferrimagnetic TbCo alloy thin film having an easy axis of magnetization in a direction perpendicular to the film surface is formed as a recording layer on a substrate, the amorphous ferrimagnetic
The Tb atomic concentration in the bCo alloy thin film is 1.2×10^2^
2 [pieces/cm^3] or more, Co atom concentration is 3.0×10
A magneto-optical recording medium characterized in that the magnetic flux density is ^2^2 [pieces/cm^3] or more.
(2)基板上に記録層として膜面に垂直な方向に磁化容
易軸を有する非晶質フェリ磁性TbCo合金薄膜を形成
した光磁気記録媒体の製造方法において、前記非晶質フ
ェリ磁性TbCo合金薄膜を該薄膜中のTb原子濃度が
1.2×10^2^2[個/cm^3]以上、Co原子
濃度が3.0×10^2^2[個/cm^3]以上とな
るように、接地電位に対する前記基板の電位V_BがV
_B≧−150[V]の条件でスパッタリング法により
形成することを特徴とする光磁気記録媒体の製造方法。
(2) In a method for manufacturing a magneto-optical recording medium in which an amorphous ferrimagnetic TbCo alloy thin film having an axis of easy magnetization in a direction perpendicular to the film surface is formed as a recording layer on a substrate, the amorphous ferrimagnetic TbCo alloy thin film The Tb atom concentration in the thin film is 1.2×10^2^2 [pieces/cm^3] or more, and the Co atom concentration is 3.0×10^2^2 [pieces/cm^3] or more. , the potential V_B of the substrate with respect to the ground potential is V
A method for manufacturing a magneto-optical recording medium, characterized in that it is formed by a sputtering method under the condition of _B≧-150 [V].
(3)前記非晶質フェリ磁性TbCo合金薄膜を形成す
る際のスパッタガスが分圧比96%以上の希ガスを含有
することを特徴とする特許請求の範囲第2項記載の光磁
気記録媒体の製造方法。
(3) The magneto-optical recording medium according to claim 2, wherein the sputtering gas used to form the amorphous ferrimagnetic TbCo alloy thin film contains a rare gas with a partial pressure ratio of 96% or more. Production method.
(4)前記希ガスがArガスであることを特徴とする特
許請求の範囲第3項記載の光磁気記録媒体の製造方法。
(4) The method for manufacturing a magneto-optical recording medium according to claim 3, wherein the rare gas is Ar gas.
(5)前記スパッタガスのガス圧が10 [mTorr]以下であることを特徴とする特許請求の
範囲第3項または第4項記載の光磁気記録媒体の製造方
法。
(5) The method for manufacturing a magneto-optical recording medium according to claim 3 or 4, wherein the gas pressure of the sputtering gas is 10 mTorr or less.
(6)前記非晶質フェリ磁性TbCo合金薄膜形成のた
めのスパッタリング法としてマグネトロンスパッタリン
グ法を使用することを特徴とする特許請求の範囲第2項
記載の光磁気記録媒体の製造方法。
(6) The method for manufacturing a magneto-optical recording medium according to claim 2, characterized in that a magnetron sputtering method is used as the sputtering method for forming the amorphous ferrimagnetic TbCo alloy thin film.
JP60214506A 1985-02-14 1985-09-30 Photomagnetic recording medium and its production Pending JPS6275953A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP60214506A JPS6275953A (en) 1985-09-30 1985-09-30 Photomagnetic recording medium and its production
DE8585307958T DE3581924D1 (en) 1985-02-14 1985-11-01 READABLE MAGNETOOPTIC DISK.
EP85307958A EP0191226B1 (en) 1985-02-14 1985-11-01 Rewritable magneto-optical disc
KR1019850009131A KR890004262B1 (en) 1985-02-14 1985-12-05 Optical magnetic disk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60214506A JPS6275953A (en) 1985-09-30 1985-09-30 Photomagnetic recording medium and its production

Publications (1)

Publication Number Publication Date
JPS6275953A true JPS6275953A (en) 1987-04-07

Family

ID=16656840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60214506A Pending JPS6275953A (en) 1985-02-14 1985-09-30 Photomagnetic recording medium and its production

Country Status (1)

Country Link
JP (1) JPS6275953A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5984358A (en) * 1982-11-04 1984-05-16 Seiko Instr & Electronics Ltd Photomagnetic recording medium

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5984358A (en) * 1982-11-04 1984-05-16 Seiko Instr & Electronics Ltd Photomagnetic recording medium

Similar Documents

Publication Publication Date Title
JP2561646B2 (en) Method for manufacturing magneto-optical recording medium
Weller et al. Spectroscopic study of potential magneto-optic storage layers
IE841209L (en) Multi-layer amorphous magneto optical recording medium
EP0502950A1 (en) Process for sputtering multilayers for magneto-optical recording.
EP0135322B1 (en) An optical magnetic recording member
Suits et al. Observation of laser‐written magnetic domains in amorphous TbFe films by Lorentz microscopy
US4833043A (en) Amorphous magneto optical recording medium
Suits et al. Lorentz microscopy of micron‐sized laser‐written magnetic domains in TbFe
Chen New longitudinal recording media Co x Ni y Cr z from high rate static magnetron sputtering system
JPH0669033A (en) Cobalt platinum magnetic film and its manufacture
JPS6275953A (en) Photomagnetic recording medium and its production
Imamura et al. Amorphous Gd-Fe alloy films prepared by RF cosputtering technique
EP0305666B1 (en) Amorphous magneto optical recording medium
JP2577344B2 (en) Magneto-optical disk and method of manufacturing the same
JPS59162622A (en) Vertical magnetic recording material and its production
JPH0684213A (en) Magneto-optical recording medium and its production
US4721658A (en) Amorphous magneto optical recording medium
KR100306975B1 (en) Magnetic material containing metastable alloy and its manufacturing method
JPS62141713A (en) Manufacture of tbco film
JPS62267950A (en) Magneto-optical recording medium
Gambino Materials for high density magneto-optic data storage
JPH02215106A (en) Magnetic film
Lee et al. Dynamic performance of sequentially prepared magneto-optical TbFeCo disks
JPS60125933A (en) Production of magnetic medium
JPS60173745A (en) Photoelectromagnetic recording medium