JPH0445898B2 - - Google Patents

Info

Publication number
JPH0445898B2
JPH0445898B2 JP8568985A JP8568985A JPH0445898B2 JP H0445898 B2 JPH0445898 B2 JP H0445898B2 JP 8568985 A JP8568985 A JP 8568985A JP 8568985 A JP8568985 A JP 8568985A JP H0445898 B2 JPH0445898 B2 JP H0445898B2
Authority
JP
Japan
Prior art keywords
film
magneto
optical recording
recording medium
amorphous alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8568985A
Other languages
Japanese (ja)
Other versions
JPS61243977A (en
Inventor
Nobuhiro Tsukagoshi
Kyohide Ogasawara
Takamasa Yoshikawa
Masayasu Yamaguchi
Kyoaki Fujii
Hiroshi Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Original Assignee
Pioneer Electronic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Electronic Corp filed Critical Pioneer Electronic Corp
Priority to JP8568985A priority Critical patent/JPS61243977A/en
Publication of JPS61243977A publication Critical patent/JPS61243977A/en
Publication of JPH0445898B2 publication Critical patent/JPH0445898B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Thin Magnetic Films (AREA)

Description

【発明の詳細な説明】 技術分野 本発明はE−DRAW型光デイスクに関し、特
に希土類金属と遷移金属を主成分とするアモルフ
アス合金からなりかつ膜面に垂直な方向に一軸磁
気異方性を有する光記録膜を担持した光磁気記録
媒体に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to an E-DRAW type optical disk, in particular an E-DRAW type optical disk made of an amorphous alloy containing rare earth metals and transition metals as main components and having uniaxial magnetic anisotropy in the direction perpendicular to the film surface. The present invention relates to a magneto-optical recording medium carrying an optical recording film.

背景技術 従来から、一定の条件下で例えば高周波スパツ
タリング等の方法で作成される希土類金属と遷移
金属との合金例えばGdTbFe(ガドリニウム−テ
ルビウム−鉄)、TbFeCo(テルビウム−鉄−コバ
ルト)等の合金薄膜は、アモルフアス構造をと
り、膜面に垂直な一軸磁気異方性を有することが
知られている。
BACKGROUND ART Conventionally, alloy thin films of rare earth metals and transition metals such as GdTbFe (gadolinium-terbium-iron), TbFeCo (terbium-iron-cobalt), etc., have been produced by a method such as high-frequency sputtering under certain conditions. is known to have an amorphous structure and uniaxial magnetic anisotropy perpendicular to the film surface.

この性質を光磁気記録媒体の記録膜として利用
することが出来る。すなわち、情報の記録読取り
については次のように行う。先ず、一軸磁気異方
性を有するアモルフアス合金膜上にレーザ光を焦
光してその焦光部分を永久磁石又は電磁石を用い
て外部磁場を印加しながらキユーリー温度又は補
償温度付近まで局部的に加熱せしめる。この時の
焦光部分における熱消磁又は磁化反転の熱磁気的
効果によつて、一方向に一様に磁化された合金膜
面内に反転磁区を形成して情報を記録することが
出来る。次に、形成された反転磁区に偏光レーザ
光を入射し、その反射光におけるポーラ・カー効
果による偏波面の回転から反転磁区の有無を信号
として検出できる。このようにして、上記記録媒
体において反転磁区の有無を“1”、“0”に対応
させることによつて記録した情報の読取りが可能
となる。
This property can be utilized as a recording film of a magneto-optical recording medium. That is, recording and reading of information is performed as follows. First, a laser beam is focused on an amorphous alloy film having uniaxial magnetic anisotropy, and the focused portion is locally heated to around the Curie temperature or compensation temperature while applying an external magnetic field using a permanent magnet or electromagnet. urge At this time, due to the thermomagnetic effect of thermal demagnetization or magnetization reversal in the focused portion, information can be recorded by forming reversed magnetic domains in the plane of the alloy film that is uniformly magnetized in one direction. Next, a polarized laser beam is incident on the formed inverted magnetic domain, and the presence or absence of an inverted magnetic domain can be detected as a signal from the rotation of the plane of polarization due to the Polar Kerr effect in the reflected light. In this way, by associating the presence or absence of an inverted magnetic domain with "1" and "0" in the recording medium, it becomes possible to read recorded information.

従来からの希土類金属と遷移金属とのアモルフ
アス合金例えばGdTbFe、TbFeCo等は光磁気効
果及び磁気特性、特にキユーリー点、補償温度が
室温から百数十度の範囲にあつてかつ数KOeの
保磁力があり光磁気記録材料として適しているた
め光磁気記録媒体の記録膜材料として注目され実
用化が検討されている。
Conventional amorphous alloys of rare earth metals and transition metals, such as GdTbFe and TbFeCo, have magneto-optical effects and magnetic properties, especially the Curie point and compensation temperature, ranging from room temperature to 100-odd degrees, and have a coercive force of several KOe. Since it is suitable as a magneto-optical recording material, it is attracting attention as a recording film material for magneto-optical recording media, and its practical application is being considered.

しかしながら、これら希土類金属と遷移金属と
のアモルフアス合金薄膜は酸化し易いために長期
信頼性に欠けている。そのために該アモルフアス
合金膜においては、磁気特性光磁気特性に経時変
化が生じ易く、特に高温でかつ高湿度の環境中で
はその劣化が大きいという欠点があり、該アモル
フアス合金膜は、光磁気記録膜として使用する場
合に安定性に問題があつた。
However, these amorphous alloy thin films of rare earth metals and transition metals are easily oxidized and therefore lack long-term reliability. Therefore, the amorphous alloy film has the drawback that its magnetic properties tend to change over time, and the deterioration is large especially in high temperature and high humidity environments. There were problems with stability when used as

また、かかるアモルフアス合金膜は膜面に垂直
な方向に一軸磁気異方性を有する垂直磁化膜であ
ることが必要であるが、従来のアモルフアス合金
は、その磁化容易軸が理想的な膜面に垂直な方向
からかなり傾いて分布しており、レーザ光で信号
を読取るのに充分なカー回転角を有しているとは
言えなかつた。そこで従来から、より大きなカー
回転角を得るような磁化容易軸が膜面に垂直な方
向に出来るだけ向いた垂直磁化膜としてのアモル
フアス合金膜が求められている。
Furthermore, such an amorphous amorphous alloy film needs to be a perpendicularly magnetized film having uniaxial magnetic anisotropy in the direction perpendicular to the film surface, but in conventional amorphous amorphous alloys, the axis of easy magnetization is aligned with the ideal film surface. The distribution was tilted considerably from the vertical direction, and it could not be said that the Kerr rotation angle was sufficient to read the signal with laser light. Therefore, there has been a demand for an amorphous alloy film as a perpendicularly magnetized film in which the axis of easy magnetization is as perpendicular to the film surface as possible to obtain a larger Kerr rotation angle.

更に、アモルフアス合金のカー回転角を高める
ために、第1図の従来の光磁気記録媒体の概略断
面図にて示す如く、ZnS(硫化亜鉛)からなるカ
ー効果エンハンス膜2を基板1とアモルフアス合
金膜3との間に設け保護膜4を積層した光磁気記
録媒体も開発されている。しかしながら、この従
来の光磁気記録媒体おいても充分大きなカー回転
角を得るには至つていない。
Furthermore, in order to increase the Kerr rotation angle of the amorphous alloy, as shown in the schematic cross-sectional view of a conventional magneto-optical recording medium in FIG. A magneto-optical recording medium in which a protective film 4 is provided between the film 3 and the protective film 4 has also been developed. However, even in this conventional magneto-optical recording medium, it has not been possible to obtain a sufficiently large Kerr rotation angle.

発明の概要 本発明の目的は、経時変化の小さい長期保存性
に優れ、更に大きなカー回転角を有した光磁気記
録媒体を提供することを目的としている。
SUMMARY OF THE INVENTION An object of the present invention is to provide a magneto-optical recording medium that exhibits excellent long-term storage with little change over time and has a larger Kerr rotation angle.

本発明の光磁気記録媒体は、基板と、該基板に
担持されかつ膜面に垂直な方向に一軸磁気異方性
を有するアモルフアス合金膜とを有する光磁気媒
体であつて、該アモルフアス合金膜Al(アルミニ
ウム)を添加元素として含む希土類金属−遷移金
属系合金膜であり、かつ基板とアモルフアス合金
膜との間にZnSからなる第1カー効果エンハンス
膜及びGe(ゲルマニウム)からなる第2カー効果
エンハンス膜を設けたことを特徴とする。
The magneto-optical recording medium of the present invention is a magneto-optical medium having a substrate and an amorphous amorphous alloy film supported on the substrate and having uniaxial magnetic anisotropy in a direction perpendicular to the film surface, the amorphous amorphous alloy film Al A rare earth metal-transition metal alloy film containing (aluminum) as an additive element, and a first Kerr effect enhancement film made of ZnS and a second Kerr effect enhancement film made of Ge (germanium) between the substrate and the amorphous alloy film. It is characterized by being provided with a membrane.

実施例 以下、本発明の実施例を添附図面に基づいて説
明する。
Embodiments Hereinafter, embodiments of the present invention will be described based on the accompanying drawings.

第2図は本発明の光磁気記録媒体の拡大部分断
面概略図である。案内溝付き円板状PMMA基板
1の主面上に、膜厚830ÅのZnS(硫化亜鉛)から
なる第1カー効果エンハンス膜2a、膜厚50Åの
Ge(ゲルマニウム)からなる第2カー効果エンハ
ンス膜2b、光磁気記録材料であるアモルフアス
合金膜3、SiO2かなる保護膜4を真空蒸着ある
いはスパツタリング等の製膜方法により順に積層
し光磁気記録媒体を作成する。尚、アモルフアス
合金膜3を次式の合金組成となるように形成す
る。
FIG. 2 is an enlarged partial cross-sectional schematic diagram of the magneto-optical recording medium of the present invention. A first Kerr effect enhancement film 2a made of ZnS (zinc sulfide) with a film thickness of 830 Å and a film thickness of 50 Å are deposited on the main surface of the disc-shaped PMMA substrate 1 with guide grooves.
A second Kerr effect enhancement film 2b made of Ge (germanium), an amorphous alloy film 3 which is a magneto-optical recording material, and a protective film 4 made of SiO 2 are sequentially laminated by a film forming method such as vacuum evaporation or sputtering to form a magneto-optical recording medium. Create. Note that the amorphous alloy film 3 is formed to have an alloy composition of the following formula.

(RxT1-x1-yAly 上式では、希土類金属Rは、Gd(ガドリニウ
ム)、Tb(テルビウム)及びDy(ジスプロシウム)
から選ばれる1種類以上の金属であり、遷移金属
Tは、Fe(鉄)及びCo(コバルト)から選ばれる
1種類以上の金属である。xは原子比率で0.1≦
x≦0.4の範囲の値となるようにする。この範囲
で垂直磁化膜が真空蒸着又はスパツタリングによ
つて得られることが知られている。更に本実施例
では、この希土類金属−遷移金属合金へ添加元素
としてAl(アルミニウム)を添加する。アモルフ
アス合金における希土類金属−遷移金属合金とア
ルミニウムとの原子比率における組成式(RT)1-
Alyは、以下に述べる理由でyが0.005≦y≦0.4
の範囲の値となるようにして、光磁気記録媒体の
アモルフアス合金膜を形成する。
(R x T 1-x ) 1-y Al yIn the above formula, the rare earth metals R are Gd (gadolinium), Tb (terbium), and Dy (dysprosium).
The transition metal T is one or more metals selected from Fe (iron) and Co (cobalt). x is atomic ratio 0.1≦
The value should be within the range of x≦0.4. It is known that a perpendicularly magnetized film in this range can be obtained by vacuum deposition or sputtering. Furthermore, in this embodiment, Al (aluminum) is added as an additive element to this rare earth metal-transition metal alloy. Composition formula (RT) of atomic ratio of rare earth metal-transition metal alloy and aluminum in amorphous alloy 1-
y Al y is 0.005≦y≦0.4 for the reason described below.
The amorphous alloy film of the magneto-optical recording medium is formed to have a value in the range of .

光磁気記録膜としての添加元素Alを含む非晶
室の希土類金属−遷移金属合金膜における添加元
素Alの効果を調べてみる。実験結果によると、
0.5at.%未満のAl(即ちy<0.005)の希土類金属
−遷移金属合金への添加では酸化による該記録膜
の経時変化を小さくする効果がないことが確認さ
れた。また、40at.%を超えるのAl(即ちy>0.4)
の希土類金属−遷移金属合金への添加になると光
磁気記録膜の磁気的及び光磁気特性における保磁
力Hcやカー回転角の急激な低下が生じ、光磁気
記録媒体として使用することが不可能となること
も確認された。
Let us examine the effect of the additive element Al on a rare earth metal-transition metal alloy film in an amorphous chamber containing the additive element Al as a magneto-optical recording film. According to the experimental results,
It was confirmed that the addition of less than 0.5 at.% Al (ie, y<0.005) to the rare earth metal-transition metal alloy has no effect on reducing the aging change of the recording film due to oxidation. Also, Al exceeding 40 at.% (i.e. y > 0.4)
When added to a rare earth metal-transition metal alloy, the coercive force Hc and Kerr rotation angle in the magnetic and magneto-optical properties of the magneto-optical recording film suddenly decrease, making it impossible to use it as a magneto-optical recording medium. It was also confirmed that

第3図は、本実施例の光磁気記録媒体と従来の
ものとについて、45℃90%R.H.(湿度)の状態で
波長830nmの半導体レーザ光によつて測定した
場合におけるカー回転角θkの経時変化を調べた
結果を示すグラフである。第3図において、縦軸
にカー回転角、横軸に経過時間を示しており、曲
線は{Tbx(Fe0.8Co0.21-x1-yAly合金においてx
=0.18、y=0.08としてアモルフアス合金膜とし
て用いた本実施例の光磁気記録媒体の経時変化を
示し、曲線Bはカーエンハンス膜を用いることな
く基板の上にTbFeCo合金膜、そして保護膜をこ
の順に形成した従来の光磁気記録媒体の経時変化
を示している。グラフに示す如く本実施例の光記
録媒体は従来のものよりもθk(カー回転角)の劣
化が小さく酸化等による経時変化少ないことが分
る。
Figure 3 shows the Kerr rotation angle θk over time for the magneto-optical recording medium of this example and the conventional one, measured using a semiconductor laser beam with a wavelength of 830 nm at 45°C and 90% RH (humidity). It is a graph showing the results of examining changes. In Figure 3, the vertical axis shows the Kerr rotation angle and the horizontal axis shows the elapsed time, and the curve is {Tb x (Fe 0.8 Co 0.2 ) 1 -x }
= 0.18, y = 0.08, and shows the change over time of the magneto-optical recording medium of this example used as an amorphous alloy film. Curve B shows a TbFeCo alloy film on a substrate without using a Kerr enhancement film, and a protective film on this film. It shows changes over time of conventional magneto-optical recording media formed in this order. As shown in the graph, it can be seen that the optical recording medium of this example shows less deterioration in θk (Kerr rotation angle) than the conventional one, and less changes over time due to oxidation and the like.

更に、本実施例の光磁気記録媒体と従来のもの
とを45℃90%R.H.(湿度)の状態である時間保持
した後、波長830nmの半導体レーザ光を用いて
それぞれの光磁気記録媒体のカー回転角θkにつ
いて調べて見る。本実施例の光磁気記録媒体のカ
ー回転角θkは1.05°となり、従来の光記録媒体の
カー回転角θkは0.54°となることが分つた。この
ことは、本実施例では第2図に示す如く膜厚830
ÅのZnSからなる第1カー効果エンハンス膜2a
と膜厚50ÅのGeからなる第2カー効果エンハン
ス膜2bを基板1とアモルフアス合金膜3との間
に積層させているので、従来からのZnSの誘電体
の見掛上のカー回転角の増大効果にさらにGeに
よる増大効果が付与されることを示している。
Furthermore, after keeping the magneto-optical recording medium of this example and the conventional one at 45°C and 90% RH (humidity) for a period of time, the magneto-optical recording medium of each was heated using a semiconductor laser beam with a wavelength of 830 nm. Let's look into the rotation angle θk. It was found that the Kerr rotation angle θk of the magneto-optical recording medium of this example was 1.05°, and the Kerr rotation angle θk of the conventional optical recording medium was 0.54°. In this example, the film thickness is 830 mm as shown in FIG.
First Kerr effect enhancement film 2a made of ZnS of Å
Since the second Kerr effect enhancement film 2b made of Ge and having a film thickness of 50 Å is laminated between the substrate 1 and the amorphous alloy film 3, the apparent Kerr rotation angle of the conventional ZnS dielectric is increased. This shows that the effect is further enhanced by Ge.

また、ZnSからなる第1カー効果エンハンス膜
の膜厚は50Å〜1500Åの範囲で変化させ、かつま
た、Ge(ゲルマニウム)からなる第2カー効果エ
ンハンス膜の膜厚は10Å〜100Åの範囲で変化さ
せるなど、これら両者のカー効果エンハンス膜の
膜厚を適当に選択することによつて、45℃90%
R.H.の状態で波長830nmの半導体レーザ光を用
いてカー回転角θkを測定したところ、上記同様
のカー回転角の増大効果が得られることが確認で
きた。
In addition, the thickness of the first Kerr effect enhancement film made of ZnS was varied in the range of 50 Å to 1500 Å, and the film thickness of the second Kerr effect enhancement film made of Ge (germanium) was varied in the range of 10 Å to 100 Å. By appropriately selecting the film thickness of both Kerr effect enhancement films, it is possible to
When the Kerr rotation angle θk was measured in the RH state using a semiconductor laser beam with a wavelength of 830 nm, it was confirmed that the same effect of increasing the Kerr rotation angle as described above was obtained.

発明の効果 以上の如く本発明によれば、希土類金属−遷移
金属合金に添加元素としてAlを添加することに
より、さらにまたZnSからなる第1カー効果エン
ハンス膜及びGeからなる第2カー効果エンハン
ス膜を記録膜と基板との間に設けることにより、
経時変化の少ない長期保存性に優れかつカー回転
角の増大した光磁気記録媒体を得ることができ
る。
Effects of the Invention As described above, according to the present invention, by adding Al as an additive element to the rare earth metal-transition metal alloy, the first Kerr effect enhancement film made of ZnS and the second Kerr effect enhancement film made of Ge are further improved. By providing between the recording film and the substrate,
It is possible to obtain a magneto-optical recording medium which shows little change over time, has excellent long-term storage stability, and has an increased Kerr rotation angle.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の光磁気記記録媒体の概略断面図
であり、第2図は本発明による光磁気記録媒体の
概略断面図であり、第3図は従来の光記録媒体と
本発明にの光記録媒体との45℃、湿度90%の状態
におけるカー回路角θkの経時変化を示すグラフ
である。 主要部分の符号の説明、1……PMMA基板、
2,2a,2b……カー効果エンハンス膜、3…
…アモルフアス合金膜、4……保護膜。
FIG. 1 is a schematic cross-sectional view of a conventional magneto-optical recording medium, FIG. 2 is a schematic cross-sectional view of a magneto-optical recording medium according to the present invention, and FIG. It is a graph showing the change over time of the Kerr circuit angle θk in a state of 45° C. and 90% humidity with respect to an optical recording medium. Explanation of symbols of main parts, 1...PMMA board,
2, 2a, 2b... Kerr effect enhancement film, 3...
...Amorphous alloy film, 4...Protective film.

Claims (1)

【特許請求の範囲】 1 透明基板と該透明基板に担持されかつ膜面に
垂直な方向に一軸磁気異方性を有するアモルフア
ス合金膜とを有する光磁気記録媒体であつて、前
記アモルフアス合金膜はAlを添加元素として含
む希土類金属−遷移金属合金膜であり、かつ前記
基板と前記アモルフアス合金膜との間にZnSから
なる第1カー効果エンハンス膜及びGeからなる
第2カー効果エンハンス膜を設けたことを特徴と
する光磁気記録媒体。 2 前記アモルフアス合金膜は原子比としてx、
yを用いて、 (RxT1-x1-yAly で示される組成を有する多元合金の膜であり、R
はGd、Tb、Dyから選ばれる1種類以上の希土
金属であり、TはFe、Coから選ばれる1種類以
上の遷移金属であり、かつx及びyは0.1≦x≦
0.4及び0.005≦y≦0.4の各々の範囲にある値であ
ることを特徴とする特許請求の範囲第1項記載の
光磁気記録媒体。 3 前記ZnSからなる第1カー効果エンハンス膜
の膜厚は50Å〜1500Åでありかつ前記Geからな
る第2カー効果エンハンス膜の膜厚は10Å〜100
Åであることを特徴とする特許請求の範囲第2項
記載の光磁気記録媒体。
[Scope of Claims] 1. A magneto-optical recording medium comprising a transparent substrate and an amorphous alloy film supported on the transparent substrate and having uniaxial magnetic anisotropy in a direction perpendicular to the film surface, wherein the amorphous alloy film is A rare earth metal-transition metal alloy film containing Al as an additive element, and a first Kerr effect enhancement film made of ZnS and a second Kerr effect enhancement film made of Ge are provided between the substrate and the amorphous alloy film. A magneto-optical recording medium characterized by: 2 The amorphous alloy film has an atomic ratio of x,
(R x T 1-x ) 1-y Al y is a film of a multi-component alloy, where y is used, and R
is one or more rare earth metals selected from Gd, Tb, and Dy; T is one or more transition metals selected from Fe and Co; and x and y are 0.1≦x≦
2. The magneto-optical recording medium according to claim 1, wherein the values are in the ranges of 0.4 and 0.005≦y≦0.4. 3 The thickness of the first Kerr effect enhancement film made of ZnS is 50 Å to 1500 Å, and the thickness of the second Kerr effect enhancement film made of Ge is 10 Å to 100 Å.
3. The magneto-optical recording medium according to claim 2, wherein the magneto-optical recording medium is Å.
JP8568985A 1985-04-22 1985-04-22 Photomagnetic recording medium Granted JPS61243977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8568985A JPS61243977A (en) 1985-04-22 1985-04-22 Photomagnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8568985A JPS61243977A (en) 1985-04-22 1985-04-22 Photomagnetic recording medium

Publications (2)

Publication Number Publication Date
JPS61243977A JPS61243977A (en) 1986-10-30
JPH0445898B2 true JPH0445898B2 (en) 1992-07-28

Family

ID=13865808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8568985A Granted JPS61243977A (en) 1985-04-22 1985-04-22 Photomagnetic recording medium

Country Status (1)

Country Link
JP (1) JPS61243977A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2703003B2 (en) * 1988-12-05 1998-01-26 株式会社日立製作所 Optical disc and method of manufacturing the same
KR0172861B1 (en) * 1990-08-03 1999-04-15 이헌조 An magneto-optical disk structure

Also Published As

Publication number Publication date
JPS61243977A (en) 1986-10-30

Similar Documents

Publication Publication Date Title
US5747136A (en) High-density magneto-optic disk and method of manufacturing the same
JPH0118506B2 (en)
JPH0249002B2 (en)
JPH039545B2 (en)
JPS6227459B2 (en)
JPH0690976B2 (en) Magneto-optical recording medium
JPS62119760A (en) Photomagnetic recording material
JPS6115308A (en) Photomagnetic recording material
US5639563A (en) Magneto-optical recording medium
JPS61246946A (en) Photomagnetic recording medium
JPH0351082B2 (en)
US5100741A (en) Magneto-optic recording systems
JPS61258353A (en) Photomagnetic recording medium
JPH0445898B2 (en)
JPH0550400B2 (en)
JP2550633B2 (en) Photothermal magnetic recording medium
US5529854A (en) Magneto-optic recording systems
EP0391738A2 (en) Magneto-optic memory medium
JPH0343697B2 (en)
KR950004494Y1 (en) Optical recording medium
JPH047023B2 (en)
JP2629062B2 (en) Medium for magneto-optical memory
JPH0614416B2 (en) Magneto-optical recording / reproducing method
JPH0259603B2 (en)
JP2705066B2 (en) Photothermal magnetic recording media