JPH047023B2 - - Google Patents

Info

Publication number
JPH047023B2
JPH047023B2 JP8568885A JP8568885A JPH047023B2 JP H047023 B2 JPH047023 B2 JP H047023B2 JP 8568885 A JP8568885 A JP 8568885A JP 8568885 A JP8568885 A JP 8568885A JP H047023 B2 JPH047023 B2 JP H047023B2
Authority
JP
Japan
Prior art keywords
group
optical recording
recording medium
film
magneto
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8568885A
Other languages
Japanese (ja)
Other versions
JPS61243976A (en
Inventor
Nobuhiro Tsukagoshi
Kyohide Ogasawara
Takamasa Yoshikawa
Masayasu Yamaguchi
Kyoaki Fujii
Hiroshi Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Original Assignee
Pioneer Electronic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Electronic Corp filed Critical Pioneer Electronic Corp
Priority to JP8568885A priority Critical patent/JPS61243976A/en
Publication of JPS61243976A publication Critical patent/JPS61243976A/en
Publication of JPH047023B2 publication Critical patent/JPH047023B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

技術分野 本発明はE−DRAW型光デイスクに関し、特
に希土類金属と遷移金属から構成されるアモルフ
アス合金でかつ膜面に垂直な方向に一軸磁気異方
性を有する記録膜を担持した光磁気記録媒体に関
する。 背景技術 従来から、一定の条件下で例えば高周波スパツ
タリング等の方法で作成される希土類金属と遷移
金属との合金例えばGdTbFe(ガドリニウム−テ
リビウム−鉄)、TbFeCo(テルビウム−鉄−コバ
ルト)等の合金薄膜は、アモルフアス構造をと
り、膜面に垂直な一軸磁気異方性を有することが
知られている。 この性質を光磁気記録媒体の記録膜として利用
することが出来る。すなわち、情報の記録読取り
については次のように行う。先ず、一軸磁気異方
性を有するアモルフアス合金膜上にある波長のレ
ーザ光を対物レンズ等を通して焦光してその焦光
部分を永久磁石又は電磁石を用いて外部磁場を作
用させながらキユーリー温度又は補償温度付近ま
で局部的に加熱せしめる。この時の焦光部分にお
ける熱消磁又は磁化反転の熱磁気的効果によつ
て、一方向に一様に磁化された合金膜面内に反転
磁区を形成して情報を記録することが出来る。次
に、形成された反転磁区に偏光レーザ光を入射
し、その反射光におけるポーラ・カー効果等によ
つて反転磁区の有無を信号として検出できる。こ
のようにして、上記記録媒体において反転磁区の
有無を“1”、“0”に対応させることによつて記
録した情報の読取りが可能となる。 従来からの希土類金属と遷移金属とのアモルフ
アス合金例えばGdTbFe、TbFeCo等は光磁気効
果及び磁気特性、特にキユーリー点、補償温度が
室温から200℃程度の間にありかつ保磁力が数
KOeあり光磁気記録材料として適しているため
光磁気記録媒体の光磁気記録膜材として注目され
実用化が検討されている。かかる光磁気記録媒体
については、第1図の従来の光磁気記録媒体の概
略断面図にて示す如く、アモルフアス合金膜2を
透明基板1と保護膜3との間に積層した光磁気記
録媒体が最も一般的に開発されている。 しかしながら、かかるアモルフアス合金膜は膜
面に垂直な方向に一軸磁気異方性を有する垂直磁
化膜であることが必要であるが、従来のアモルフ
アス合金は、その容易磁化方向が膜面に垂直な方
向から傾いて分布しており、レーザ光で読取るに
充分なカー回転角を有しているとは言えない。そ
こで従来から、より大きなカー回転角が得られる
ように記録膜の容易磁化方向が出来るだけ膜面に
垂直な方向に向いた垂直磁化膜としてのアモルフ
アス合金膜が求められている。しかし、従来の光
磁気記録媒体においても充分大きなカー回転角を
得るには至つていない。 発明の概要 本発明の目的は大きなカー回転角を有した光磁
気記録媒体を提供することを目的としている。 本発明の光磁気記録媒体は、透明基板と該基板
に担持され膜面に垂直な方向に一軸磁気異方性を
有する希土類金属−遷移金属のアモルフアス合金
膜とを有する光磁気記録媒体であつて、該透明基
板とアモルフアス合金膜との間に中間膜が設けら
れており、かつその中間膜は、周期律表における
第b属元素の単体、第b属元素と第b属元
素との化合物、及び第b属元素と第b属元素
との化合物からなる群から選ばれる物質からなる
膜であることを特徴とする。 実施例 以下、本発明の実施例を添附図面に基づいて説
明する。 第2図は本発明の光磁気記録媒体の拡大部分断
面概略図である。案内溝付き円板状PMMA基板
1の片面上に、周期律表における第b属元素で
あるGe(ゲルマニウム)単体からなる中間膜4、
光磁気記録膜である希土類金属−遷移金属のアモ
ルフアス合金膜2、SiO2からなる保護膜3を真
空蒸着あるいはスパツタリング等の方法により順
に積層し光磁気記録媒体を作成する。尚、アモル
フアス合金膜2を次式の合金組成となるように形
成する。 (RxT1-x1-yAly 上式では、希土類金属Rは、Gd(ガドリニウ
ム)、Tb(テルビウム)及びDy(ジスプロシウム)
から選ばれる1種類以上の金属であり、遷移金属
Tは、Fe(鉄)及びCo(コバルト)から選ばれる
1種類以上の金属である。この稀土類金属R及び
遷移金属Tの原子組成の比率xはRxT1-xにおい
て0.1≦x≦0.4の範囲の値となるようにする。こ
の範囲で垂直磁化が真空蒸着あるいはスパツタリ
ング等で得られることが知られている。更に本実
施例では、この希土類金属−遷移金属合金へ添加
元素としてAl(アルミニウム)を添加する。アモ
ルフアス合金における希土類金属−遷移金属合金
にアルミニウムを添加した合金(RT)1-yAlyは、
yが0.005≦y≦0.4の範囲の値となるようにし
て、光磁気記録媒体のアモルフアス合金膜を形成
する。y<0.005ではAlを添加したことによる耐
酸化性の向上に効果が見られない。また、y>
0.4では、磁気特性、光磁気特性が急激に低下し
て光磁気記録媒体として不適当になつてしまう。 第1表において、本実施例の光記録媒体と従来
のものとを45℃90%R.H.(湿度)の状態で波長
830nmの半導体レーザ光によつて再生する実験
でそれぞれのカー回転角θkについて調べた結果
を示す。ここでは、本実施例の光記録媒体と従来
のものとを同一条件にて製造した各々3個の資料
について調べている。
Technical Field The present invention relates to an E-DRAW type optical disk, and more particularly to a magneto-optical recording medium carrying a recording film made of an amorphous alloy composed of rare earth metals and transition metals and having uniaxial magnetic anisotropy in the direction perpendicular to the film surface. Regarding. BACKGROUND ART Conventionally, alloy thin films of rare earth metals and transition metals such as GdTbFe (gadolinium-terbium-iron), TbFeCo (terbium-iron-cobalt), etc., have been produced by a method such as high-frequency sputtering under certain conditions. is known to have an amorphous structure and uniaxial magnetic anisotropy perpendicular to the film surface. This property can be utilized as a recording film of a magneto-optical recording medium. That is, recording and reading of information is performed as follows. First, a laser beam of a certain wavelength is focused on an amorphous alloy film having uniaxial magnetic anisotropy through an objective lens, etc., and the focused portion is heated to the Curie temperature or compensated by applying an external magnetic field using a permanent magnet or an electromagnet. Locally heats up to around temperature. At this time, due to the thermomagnetic effect of thermal demagnetization or magnetization reversal in the focused portion, information can be recorded by forming reversed magnetic domains in the plane of the alloy film that is uniformly magnetized in one direction. Next, a polarized laser beam is incident on the formed inverted magnetic domain, and the presence or absence of the inverted magnetic domain can be detected as a signal by the Polar Kerr effect or the like in the reflected light. In this way, by associating the presence or absence of an inverted magnetic domain with "1" and "0" in the recording medium, it becomes possible to read recorded information. Conventional amorphous alloys of rare earth metals and transition metals, such as GdTbFe and TbFeCo, have magneto-optical effects and magnetic properties, especially the Curie point, compensation temperature between room temperature and about 200℃, and coercive force of several
Since it is suitable as a magneto-optical recording material with KOe, it is attracting attention as a magneto-optical recording film material for magneto-optical recording media and its practical application is being considered. Regarding such a magneto-optical recording medium, as shown in the schematic cross-sectional view of a conventional magneto-optical recording medium in FIG. The most commonly developed. However, such an amorphous amorphous alloy film needs to be a perpendicularly magnetized film having uniaxial magnetic anisotropy in a direction perpendicular to the film surface, whereas conventional amorphous alloys require that their easy magnetization direction is perpendicular to the film surface. It cannot be said that the Kerr rotation angle is sufficient for reading with a laser beam. Therefore, in order to obtain a larger Kerr rotation angle, there has been a demand for an amorphous alloy film as a perpendicularly magnetized film in which the direction of easy magnetization of the recording film is as perpendicular to the film surface as possible. However, even in conventional magneto-optical recording media, it has not been possible to obtain a sufficiently large Kerr rotation angle. SUMMARY OF THE INVENTION An object of the present invention is to provide a magneto-optical recording medium having a large Kerr rotation angle. The magneto-optical recording medium of the present invention is a magneto-optical recording medium having a transparent substrate and a rare earth metal-transition metal amorphous alloy film supported on the substrate and having uniaxial magnetic anisotropy in a direction perpendicular to the film surface. , an intermediate film is provided between the transparent substrate and the amorphous alloy film, and the intermediate film is a simple substance of a group B element in the periodic table, a compound of a group B element and a group B element, and a compound of a group B element and a compound of a group B element. Embodiments Hereinafter, embodiments of the present invention will be described based on the accompanying drawings. FIG. 2 is an enlarged partial cross-sectional schematic diagram of the magneto-optical recording medium of the present invention. On one side of the disc-shaped PMMA substrate 1 with a guide groove, an intermediate film 4 made of a simple substance of Ge (germanium), which is an element of Group B in the periodic table;
A magneto-optical recording medium is prepared by sequentially laminating a rare earth metal-transition metal amorphous alloy film 2, which is a magneto-optical recording film, and a protective film 3 made of SiO 2 by a method such as vacuum evaporation or sputtering. Note that the amorphous alloy film 2 is formed to have an alloy composition of the following formula. (R x T 1-x ) 1-y Al yIn the above formula, the rare earth metals R are Gd (gadolinium), Tb (terbium), and Dy (dysprosium).
The transition metal T is one or more metals selected from Fe (iron) and Co (cobalt). The atomic composition ratio x of the rare earth metal R and the transition metal T is set to a value in the range of 0.1≦x≦0.4 in R x T 1-x . It is known that perpendicular magnetization in this range can be obtained by vacuum evaporation, sputtering, or the like. Furthermore, in this embodiment, Al (aluminum) is added as an additive element to this rare earth metal-transition metal alloy. An alloy (RT) in which aluminum is added to a rare earth metal-transition metal alloy in an amorphous alloy, 1-y Al y is
The amorphous alloy film of the magneto-optical recording medium is formed such that y has a value in the range of 0.005≦y≦0.4. When y<0.005, the addition of Al has no effect on improving oxidation resistance. Also, y>
At 0.4, the magnetic properties and magneto-optical properties drop sharply, making it unsuitable as a magneto-optical recording medium. In Table 1, the wavelengths of the optical recording medium of this example and the conventional one were measured at 45°C and 90% RH (humidity).
The results of investigating each Kerr rotation angle θk in an experiment in which reproduction was performed using 830 nm semiconductor laser light are shown. Here, three materials are examined in which the optical recording medium of this embodiment and a conventional one were manufactured under the same conditions.

【表】 第1表から本実施例の光記録媒体のカー回転角
θkは、従来の光記録媒体なカー回転角θkのほぼ
2倍以上なることが分つた。このことは、第2図
に示すごとく第b属元素であるGe単体からな
る中間膜4を基板1とアモルフアス合金膜2との
間に形成させているので、Geによる中間膜によ
つて垂直磁化成分が増大し、カー回転角の増大効
果が付与されることを示している。 また、上記実施例では、第b属元素の単体で
あるGeを中間膜として用いているが、同様に、
第b属元素であるSn(スズ)、Pb(鉛)、Si(珪
素)及びC(炭素)の各々の単体で形成した中間
膜を設けた光記録媒体においても、上記同様のカ
ー回転角の増大効果があることが確認できた。 更に、光記録媒体の中間膜として第b属元素
と第b属元素との化合物であるGaAs(ガリウ
ム−ヒ素)、InSb(インジウム−アンチモン)及
びInP(インジウム−リン)の各々を用いた場合、
及び第b属元素と第b属元素との化合物であ
るZnS(硫化亜鉛)、ZnSe(亜鉛−セレン)及び
ZnTe(亜鉛−テルル)の各々を用いた光記録媒体
においても、45℃90%R.H.(湿度)の状態で波長
830nmの半導体レーザによつて再生した場合に
上記同様のカー回転角の増大効果があることが確
認できた。 さらにまた、上記実施例では中間膜を一層設け
た光記録媒体を製造したが、該中間膜を二層以上
設けた光記録媒体も製造できる。この際、2つ以
上の中間膜の組合わせとして上記したGe、Sn、
Pb、Si、C、GaAs、InSb、InP、ZnS、ZnSe、
ZnTeから選ばれる物質であつて隣合う二層の中
間膜が互に異なるように光記録媒体を作成する。
このようにすることにより更にカー回転角の増大
効果がある光記録媒体を得ることが出来る。 発明の効果 以上の如く本発明によれば、第b属元素の単
体、第b属元素と第b属元素との化合物、及
び第b属元素と第b属元素との化合物から選
ばれる物質及び/又は組からなる一層以上の中間
膜を記録膜と基板との間に設けることにより、カ
ー回転角の増大した光磁気記録媒体を得ることが
できる。
Table 1 shows that the Kerr rotation angle θk of the optical recording medium of this example is approximately twice or more than the Kerr rotation angle θk of the conventional optical recording medium. As shown in Fig. 2, since the intermediate film 4 made of simple Ge, which is a group B element, is formed between the substrate 1 and the amorphous alloy film 2, the perpendicular magnetization is achieved by the intermediate film made of Ge. This shows that the component increases, giving an effect of increasing the Kerr rotation angle. Furthermore, in the above embodiment, Ge, which is a simple substance of Group B element, is used as the intermediate film, but similarly,
The same Kerr rotation angle as described above is also applied to an optical recording medium provided with an interlayer film formed of each of group B elements Sn (tin), Pb (lead), Si (silicon), and C (carbon). It was confirmed that there was an increasing effect. Furthermore, when GaAs (gallium-arsenide), InSb (indium-antimony), and InP (indium-phosphorus), which are compounds of group b elements and group b elements, are used as the intermediate film of the optical recording medium,
and compounds of group b elements and group b elements such as ZnS (zinc sulfide), ZnSe (zinc-selenium), and
Even in optical recording media using ZnTe (zinc-tellurium), the wavelength is
It was confirmed that when reproducing using an 830 nm semiconductor laser, there was the same effect of increasing the Kerr rotation angle as described above. Furthermore, in the above embodiments, an optical recording medium provided with one layer of the intermediate film was manufactured, but an optical recording medium provided with two or more layers of the intermediate film can also be manufactured. At this time, as a combination of two or more interlayer films, the above-mentioned Ge, Sn,
Pb, Si, C, GaAs, InSb, InP, ZnS, ZnSe,
An optical recording medium is produced so that two adjacent interlayer films made of a material selected from ZnTe are different from each other.
By doing so, it is possible to obtain an optical recording medium that has the effect of increasing the Kerr rotation angle. Effects of the Invention As described above, according to the present invention, a substance selected from a simple substance of a group B element, a compound of a group B element and a group B element, and a compound of a group B element and a group B element; A magneto-optical recording medium with an increased Kerr rotation angle can be obtained by providing one or more intermediate films consisting of one or more layers between the recording film and the substrate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の光磁気記記録媒体の概略断面図
であり、第2図は本発明による光磁気記録媒体の
概略断面図である。 主要部分の符号の説明、1……PMMA基板、
2……アモルフアス合金膜、3……保護膜、4…
…中間膜。
FIG. 1 is a schematic sectional view of a conventional magneto-optical recording medium, and FIG. 2 is a schematic sectional view of a magneto-optical recording medium according to the present invention. Explanation of symbols of main parts, 1...PMMA board,
2...Amorphous alloy film, 3...Protective film, 4...
...intermediate film.

Claims (1)

【特許請求の範囲】 1 透明基板と該基板に担持され膜面に垂直な方
向に一軸磁気異方性を有する希土類金属−遷移金
属のアモルフアス合金膜とを有する光磁気記録媒
体であつて、前記透明基板と前記アモルフアス合
金膜との間に中間膜が設けられており、かつ該中
間膜は、周期律表における第b属元素の単体、
第b属元素と第b属元素との化合物、及び第
b属元素と第b属元素との化合物からなる群
から選ばれる物質からなる膜であることを特徴と
する光磁気記録媒体。 2 前記中間膜は二層以上設けられており、かつ
隣合う二層は異なる種類の物質からなる膜である
ことを特徴とする特許請求の範囲第1項記載の光
磁気記録媒体。 3 前記第b属元素の単体はGe、Sn、Pb、Si
及びCであり、前記第b属元素と第b属元素
との化合物はGaAs、InSb及びInPであり、かつ
前記第b属元素と第b属元素との化合物は
ZnS、ZnSe及びZnTeであることを特徴とする特
許請求の範囲第1項又は第2項記載の光磁気記録
媒体。
[Scope of Claims] 1. A magneto-optical recording medium comprising a transparent substrate and a rare earth metal-transition metal amorphous alloy film supported on the substrate and having uniaxial magnetic anisotropy in a direction perpendicular to the film surface, which comprises: An intermediate film is provided between the transparent substrate and the amorphous alloy film, and the intermediate film is composed of an element of group b in the periodic table,
A magneto-optical recording medium characterized in that it is a film made of a material selected from the group consisting of a compound of a group b element and a group b element, and a compound of a group b element and a group b element. 2. The magneto-optical recording medium according to claim 1, wherein the intermediate film has two or more layers, and two adjacent layers are films made of different types of substances. 3 The elemental elements of group b are Ge, Sn, Pb, and Si.
and C, the compound of the group b element and the group b element is GaAs, InSb, and InP, and the compound of the group b element and the group b element is
The magneto-optical recording medium according to claim 1 or 2, characterized in that the medium is ZnS, ZnSe, and ZnTe.
JP8568885A 1985-04-22 1985-04-22 Photomagnetic recording medium Granted JPS61243976A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8568885A JPS61243976A (en) 1985-04-22 1985-04-22 Photomagnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8568885A JPS61243976A (en) 1985-04-22 1985-04-22 Photomagnetic recording medium

Publications (2)

Publication Number Publication Date
JPS61243976A JPS61243976A (en) 1986-10-30
JPH047023B2 true JPH047023B2 (en) 1992-02-07

Family

ID=13865786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8568885A Granted JPS61243976A (en) 1985-04-22 1985-04-22 Photomagnetic recording medium

Country Status (1)

Country Link
JP (1) JPS61243976A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2703003B2 (en) * 1988-12-05 1998-01-26 株式会社日立製作所 Optical disc and method of manufacturing the same
KR0172861B1 (en) * 1990-08-03 1999-04-15 이헌조 An magneto-optical disk structure

Also Published As

Publication number Publication date
JPS61243976A (en) 1986-10-30

Similar Documents

Publication Publication Date Title
US5747136A (en) High-density magneto-optic disk and method of manufacturing the same
JPH0118506B2 (en)
JPH0249002B2 (en)
JPS6227459B2 (en)
JP2672895B2 (en) Magneto-optical recording medium
JPS62119760A (en) Photomagnetic recording material
US5639563A (en) Magneto-optical recording medium
JP2504946B2 (en) Magneto-optical recording medium
JPH0519213B2 (en)
JPS59108304A (en) Optical magnetic recording medium
JPH047023B2 (en)
JPS61246946A (en) Photomagnetic recording medium
US5100741A (en) Magneto-optic recording systems
Greidanus et al. Magneto‐Optical Recording and Data Storage Materials
JPH0782672B2 (en) Magnetic thin film recording medium
US6017620A (en) Magneto-optical recording medium
EP0391738A2 (en) Magneto-optic memory medium
Sugahara et al. High performance magneto-optical disks using double layered Tb-Fe-Co films
JPH02107749A (en) Thin amorphous alloy film
JPS61243977A (en) Photomagnetic recording medium
JPH0614416B2 (en) Magneto-optical recording / reproducing method
JPS63262446A (en) Thin amorphous-alloy film
JP2551620B2 (en) Magneto-optical disk
KR950004494Y1 (en) Optical recording medium
JP3010684B2 (en) Optical recording medium