JPS6115308A - Photomagnetic recording material - Google Patents
Photomagnetic recording materialInfo
- Publication number
- JPS6115308A JPS6115308A JP13528984A JP13528984A JPS6115308A JP S6115308 A JPS6115308 A JP S6115308A JP 13528984 A JP13528984 A JP 13528984A JP 13528984 A JP13528984 A JP 13528984A JP S6115308 A JPS6115308 A JP S6115308A
- Authority
- JP
- Japan
- Prior art keywords
- rare earth
- film
- amorphous
- group
- recording material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Thin Magnetic Films (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明はレーザ光を用いて情報の記録、再生、消去を行
なうことか可能な光磁気記録材料に係り・特にカー回転
角を向上させることにより、性能指数を改善し、再生S
/N比あるいはC/N比を同上させた光磁気記録材料に
関するものである。[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a magneto-optical recording material capable of recording, reproducing, and erasing information using a laser beam. , improve performance index, and regenerate S
The present invention relates to a magneto-optical recording material with a /N ratio or a C/N ratio as described above.
最近、高密度、大容量、情報の任意読み出し、書き換え
等が可能な光磁気記録が注目を浴びている。光磁気記録
においては、膜面に垂直な方向に磁化容易軸のある磁性
薄膜(垂直磁化膜)が用いられ、光ビーム照射により任
意の位置に反転磁区を作ることによって、それらの磁化
の向きに対応して、パ1″°、“°0″゛の2値情報が
記録され゛る。一方、かかる反転記録を行なった2値信
号の読み出しは、通常、ポーラ−・カー効果あるいはフ
ァラデー効果を利用して行なうものである。Recently, magneto-optical recording, which has high density, large capacity, and allows arbitrary reading and rewriting of information, has been attracting attention. In magneto-optical recording, a magnetic thin film (perpendicularly magnetized film) with an axis of easy magnetization perpendicular to the film surface is used, and by creating reversal magnetic domains at arbitrary positions by irradiation with a light beam, the direction of magnetization can be changed. Correspondingly, binary information such as PA1"° and "°0" is recorded. On the other hand, reading out the binary signal after such inversion recording usually involves the polar Kerr effect or the Faraday effect. It is done by using it.
従来、このような光磁気記録媒体として、MnB1系結
晶質薄膜、希土類−遷移金属系非晶質薄膜、ガーネット
に代表される単結晶薄膜等の垂直磁化膜が提案されてい
る。中でも希土類−遷移金属系非晶質薄膜は、結晶粒界
がないので媒体ノイズが小さく、大面積膜作製が容易で
あることから、現在最も有望視されている。これらの希
土類−遷移金属系非晶質薄膜として、Co系のGd−C
o系(特公昭57−34588号公報)、Fe基の非晶
質薄膜として、Tb−Fe系(特開昭52−31703
号公報)、Gd−Fe系(特開昭57−34588号公
報)、Tb−Gd−Fe系(特開昭56−1269C1
T号公報)、Gd−Dy−T b −Fe系(特開昭5
7−120254号公報)、T’b−Fe−Co、Dy
−Fδ−Co系(特開昭58−73746号公報)等の
合金系が現在研究開発され、膜自体の残留磁化でのカー
回転角も0.3°と向上してきている。Conventionally, as such magneto-optical recording media, perpendicular magnetization films such as MnB1-based crystalline thin films, rare earth-transition metal-based amorphous thin films, and single crystal thin films represented by garnet have been proposed. Among them, rare earth-transition metal-based amorphous thin films are currently considered the most promising because they have no grain boundaries, have low media noise, and are easy to fabricate over large areas. As these rare earth-transition metal-based amorphous thin films, Co-based Gd-C
o type (Japanese Patent Publication No. 57-34588), Tb-Fe type (Japanese Patent Publication No. 52-31703) as Fe-based amorphous thin film.
), Gd-Fe system (JP-A-57-34588), Tb-Gd-Fe system (JP-A-56-1269C1)
Publication No. T), Gd-Dy-T b -Fe system (Japanese Unexamined Patent Publication No. 5
7-120254), T'b-Fe-Co, Dy
Alloy systems such as the -Fδ-Co system (Japanese Unexamined Patent Publication No. 58-73746) are currently being researched and developed, and the Kerr rotation angle due to the residual magnetization of the film itself has been improved to 0.3°.
しかし、これらの非晶質膜は経時変化か大きく、熱安定
性が悪い、また耐食性か悪く、寿命も短かい、さらにキ
ューリ一点が一般に約150°C以下と低く、信号を読
み出すのに強いパワーのレーザ光を用いてS/N比を上
げることができない等々の欠点があった。However, these amorphous films tend to change significantly over time, have poor thermal stability, have poor corrosion resistance, and have a short lifespan.Furthermore, the Curie point is generally low, about 150°C or less, and requires strong power to read out signals. There were drawbacks such as the inability to increase the S/N ratio using laser light.
本発明の目的はカー回転角が十分1こ大きく、高い再生
S/N比が得られ、高熱安定性の非晶質光磁気記録材料
を提供することにある。An object of the present invention is to provide an amorphous magneto-optical recording material that has a Kerr rotation angle that is one tenth larger, provides a high reproduction S/N ratio, and has high thermal stability.
光磁気記録材料の候補材として注目されている希土類−
鉄族系非晶質膜は、従来布土類元素の濃度が原子パーセ
ントで2元系では15〜30原子パーセント、3元系で
は15〜35原子パーセントでアリ、この組成範囲で磁
化が膜面に垂直で、比較的大きなカー回転角が得られて
いた。しかし、磁気光学効果を利用して再生信号を得る
に際しては、レーザ光のパワーを大きくすれば再生S/
N比が大きくなることは従来から知られてい−だが、上
記希土類元素の組成範囲では、キューリ一温度Tcある
いは補償温度Tcompが低いため、レーザ光のパワー
を余り大きくすると、カー回転角か低下し、S/N比を
大きくすることができない。Rare earths are attracting attention as candidates for magneto-optical recording materials.
Conventionally, iron group amorphous films have a concentration of textile elements of 15 to 30 atomic percent for binary systems and 15 to 35 atomic percent for ternary systems, and within this composition range, the magnetization decreases at the film surface. , and a relatively large Kerr rotation angle was obtained. However, when obtaining a reproduced signal using the magneto-optic effect, increasing the power of the laser beam
It has been known for a long time that the N ratio increases, but in the above rare earth element composition range, the Curie temperature Tc or compensation temperature Tcomp is low, so if the power of the laser beam is increased too much, the Kerr rotation angle will decrease. , it is not possible to increase the S/N ratio.
そこで、本発明者らは、従来より高いキューリ一温度あ
るいは補償温度が得られるような高濃度の希土類元素を
含む希土類−鉄族系非晶磁性膜組成で、垂直磁化膜が得
られる条件について種々検討した結果、本発明に到達し
たものである。Therefore, the present inventors have investigated various conditions for obtaining a perpendicularly magnetized film with a rare earth-iron group amorphous magnetic film composition containing a high concentration of rare earth elements, such that a higher Curie temperature or compensation temperature can be obtained than in the past. As a result of this study, we have arrived at the present invention.
本発明の光磁気記録材料は、組成式かRa TbMcで
表わされ、実質的にRがGd、 Tb、 Dyからなる
群から選ばれた少なくとも一種の元素、TがNd、’
Eu、 Ho、 Er、 Tm、 Yb、 Y、 Nb
、 Ni、 A/からなる群から選ばれた少なくとも一
種の元素、MがFe、Goからなる群から選ばれた少な
くとも一種の元素からなり、かつa十り+c = 10
0.35.5<a<45、0(b(15を満足する希土
類金属−鉄族系非晶質合金垂直磁化膜である。なお、さ
らに好ましくは、36(a(38とする。The magneto-optical recording material of the present invention is represented by the composition formula RaTbMc, where R is substantially at least one element selected from the group consisting of Gd, Tb, and Dy, and T is Nd, '
Eu, Ho, Er, Tm, Yb, Y, Nb
, Ni, A/, M is at least one element selected from the group consisting of Fe, Go, and a + c = 10
It is a rare earth metal-iron group amorphous alloy perpendicular magnetization film satisfying 0.35.5<a<45, 0(b(15). It is more preferably 36(a(38).
本発明の合金膜では、キューリ一温度あるいは補償温度
を150℃以上の従来より高い温度にするために、Rの
量aは35.5原子パ一セント以上にする必要かあるが
、余り多くすると半導体レーザ光での書き込みができな
(なったり、また、垂直磁化膜が得られなくなるので、
45原子パーセント以下にする必要がある。以上のよう
な本発明における希土類金属元素Rの組成濃度範囲a内
で膜面に強い垂直磁気異方性を得るには、スパッタ法あ
るいは蒸着法により達成できるが、より強い垂直磁気異
方性を得るには、20〜100 m Torrの高濃度
のアルゴンガス雰囲気中、あるいは窒素または酸素ガス
の各単独の雰囲気中、もしくはアルゴンカスに窒素また
は酸素カスを分圧として1チ以上混入させた混合ガス雰
囲気中でスパッタあるいは蒸着するのが好ましい。この
ことは希土類金属元素が、これらのガスと反応し、何ら
かの非磁性の領域を合金膜中に作ることにより、強い垂
直磁気異方性が誘導されることによるものと考えられる
。In the alloy film of the present invention, in order to raise the Curie temperature or compensation temperature to 150°C or higher, which is higher than the conventional one, the amount a of R needs to be 35.5 atomic percent or more, but if it is too large, Writing with semiconductor laser light becomes impossible (or a perpendicularly magnetized film cannot be obtained).
The content must be 45 atomic percent or less. In order to obtain strong perpendicular magnetic anisotropy on the film surface within the compositional concentration range a of the rare earth metal element R in the present invention as described above, it can be achieved by sputtering or vapor deposition. To obtain this, a high-concentration argon gas atmosphere of 20 to 100 m Torr, an atmosphere of either nitrogen or oxygen gas alone, or a mixed gas atmosphere in which one or more nitrogen or oxygen gases are mixed into an argon gas at a partial pressure. It is preferable to perform sputtering or vapor deposition in a medium. This is thought to be because the rare earth metal elements react with these gases and create some kind of nonmagnetic region in the alloy film, thereby inducing strong perpendicular magnetic anisotropy.
また、これらのガス雰囲気中でスパッタあるいは蒸着す
ることにより膜形成を行なうと、鉄族元素と反強磁性的
にスピンが結合している希土類金属元素の一部が酸化等
により非磁性化する。ため、見掛は上、補償組成は希土
類金属が多い組成側に移動し、希土類金属元素の多い組
成の膜でも垂直磁化膜が得られるようになる。たとえば
、第4図はTbXCo+oo−x非晶質膜を純Arガス
中およびAr十〇zガス中でRFスパッタ法により作製
した場合における該膜の飽和磁束密度4πMsのTb濃
度依存性を示す図である。図において、実線は純Arガ
ス中で作製した場合、点線はAr + 02ガス中で作
製した場合を示し、Xは膜中のTb濃度、ΔXは両膜に
おける補償組成のずれ、すなわち、後者の膜におけるT
bの非磁化量を示す。同図から、Ar十02混合ガス雰
囲気中で膜作成を行なうと補償組成はTbの高濃度側に
ΔXだけ移動することがわかる。これはTb原子がこの
量だけ、非磁性化されたためである。第5図はRFスパ
ッタ法により、Ar+02混合カス雰囲気中てTbXc
oloo−x非晶質膜を作製した時の酸素分圧P02に
対するTb原子の非磁性化量ΔX/Xの変化を示す図で
ある。同図から、非磁性化量は酸素分圧の増加とともに
急激に増加し、約0.13 X 1O−4Torrを過
ぎると増加は緩やかとなり、0.16 X 1O−4T
orrでは約50%となる。しかし、Rで示される希土
類元素Rの一部が余り多く、酸化等により非磁性化する
と、膜特性の劣化が生じるので、非磁化する量としては
5〜60%、より好ましくは20〜50%の範囲にする
のか好ましい。また、必要に応し°C1膜の記録、再生
感度を調整するために、膜を構成する希土類元素RのG
d、 Tb、 DVの一部を他の希土類構成元素TのN
d、 Eu、 Ho、 Er、’Sm、 Yb、 Yの
少なくとも一種で15原子パーセント以下置換すること
により、光磁気記録媒体としての性能を最適化すること
ができる。また鉄族構成元素MのFeあるいはCoの一
部をNb、 A/、 Niの少なくとも一種で15原子
パーセント以下置換することにより、光磁気記録材料の
性能指数4.θK(Rは反射率、θやはカー回転角)を
劣化させることなく、結晶化温度TXを上昇させたり、
耐食性を向上させたりすることができる。Further, when a film is formed by sputtering or vapor deposition in these gas atmospheres, a part of the rare earth metal element whose spin is antiferromagnetically coupled to the iron group element becomes nonmagnetic due to oxidation or the like. Therefore, the appearance is higher and the compensation composition shifts to the side of the composition containing more rare earth metal elements, so that a perpendicular magnetization film can be obtained even in a film with a composition containing more rare earth metal elements. For example, Figure 4 is a diagram showing the Tb concentration dependence of the saturation magnetic flux density 4πMs of a TbXCo+oo-x amorphous film prepared by RF sputtering in pure Ar gas and Ar10z gas. be. In the figure, the solid line indicates the case of fabrication in pure Ar gas, and the dotted line indicates the case of fabrication in Ar + 02 gas. T in membrane
The amount of non-magnetization of b is shown. From the figure, it can be seen that when the film is formed in an Ar/O2 mixed gas atmosphere, the compensation composition moves by ΔX toward the higher Tb concentration side. This is because Tb atoms were made non-magnetic by this amount. Figure 5 shows TbXc in an Ar+02 mixed gas atmosphere using the RF sputtering method.
FIG. 7 is a diagram showing a change in the amount of demagnetization ΔX/X of Tb atoms with respect to oxygen partial pressure P02 when an oloo-x amorphous film is produced. From the same figure, the amount of demagnetization increases rapidly as the oxygen partial pressure increases, and after passing about 0.13 X 1O-4 Torr, the increase becomes gradual, and the amount becomes 0.16 X 1O-4 Torr.
orr is about 50%. However, if a portion of the rare earth element R represented by R is too large and becomes non-magnetic by oxidation etc., the film properties will deteriorate, so the amount to be de-magnetized is 5 to 60%, more preferably 20 to 50%. It is preferable to keep it within the range of . In addition, in order to adjust the recording and playback sensitivity of the °C1 film as needed,
A part of d, Tb, DV is replaced with N of other rare earth constituent elements T.
By substituting 15 atomic percent or less with at least one of d, Eu, Ho, Er, 'Sm, Yb, and Y, the performance as a magneto-optical recording medium can be optimized. Furthermore, by substituting a portion of Fe or Co of the iron group constituent element M with at least 15 atomic percent or less of at least one of Nb, A/, and Ni, the figure of merit of the magneto-optical recording material can be increased to 4. Increasing the crystallization temperature TX without deteriorating θK (R is reflectance, θ is Kerr rotation angle),
Corrosion resistance can be improved.
さらに、本発明においては、膜を構成する希土類元素R
のGd、 Tb、 Dyの少なくとも2種以上を非晶質
化元素として非晶質膜を形成することにより、キューリ
一温度、あるいは補償温度をさらに高めたり、カー回転
角を上げることができる。また、FeをCoで、または
CoをFeで50原子パーセント以下置換することによ
り、カー回転角に寄与する鉄族元素の磁気モーメントを
太き(し、さらに本発明における他の構成元素である希
土類元素Rを他種の希土類元素で置゛換することにより
、カー回転角をさらに改善し、同時にキューリ一温度−
゛を最適化することにより、記録、再生感度を大幅に改
善することができる。Furthermore, in the present invention, the rare earth element R constituting the film is
By forming an amorphous film using at least two of Gd, Tb, and Dy as amorphizing elements, the Curie temperature or compensation temperature can be further increased, and the Kerr rotation angle can be increased. In addition, by substituting Fe with Co or Co with Fe at 50 atomic percent or less, the magnetic moment of the iron group elements that contribute to the Kerr rotation angle can be increased (and furthermore, the magnetic moment of the iron group elements, which are other constituent elements in the present invention By replacing element R with another type of rare earth element, the Kerr rotation angle can be further improved and at the same time the Curie temperature -
By optimizing this, recording and playback sensitivity can be greatly improved.
以上説明した本発明の希土類−鉄族系非晶質膜に対して
、B、Si等の非金属元素あるいは本発明の構成元素以
外の白金族元素等の遷移金属元素を10原子パーセント
以下添加することによっても、膜特性の磁気特性、キュ
ーリ一温度、結晶化温度、耐食性等をさらに用途に応じ
て最適化することができる。To the rare earth-iron group amorphous film of the present invention described above, 10 atomic percent or less of a nonmetallic element such as B or Si or a transition metal element such as a platinum group element other than the constituent elements of the present invention is added. By doing so, the film properties such as magnetic properties, Curie temperature, crystallization temperature, corrosion resistance, etc. can be further optimized depending on the application.
前記元素TのNd、 Eu、 Ho、 Er、 Sm、
Yb、 Nb、 A/。The element T is Nd, Eu, Ho, Er, Sm,
Yb, Nb, A/.
Y、NiやB、Si及び白金族元素等の遷移金属元素等
による希土類−鉄族系非晶質膜への添加効果は、本発明
の組成範囲内の合金膜に限らず、一般に全希土類元素濃
度が5〜45原子パーセントの広範囲組成範囲の希土類
−鉄族系合金膜にも同様の効果が得られる。特にNb、
Ru元素は結晶化温度を上げて熱安定性を高め、耐食
性を向上させるのに有効である。The effect of adding transition metal elements such as Y, Ni, B, Si, and platinum group elements to rare earth-iron group amorphous films is not limited to alloy films within the composition range of the present invention, but generally all rare earth elements A similar effect can be obtained with a rare earth-iron alloy film having a wide composition range of 5 to 45 atomic percent. Especially Nb,
Ru element is effective in raising the crystallization temperature, increasing thermal stability, and improving corrosion resistance.
以下、本発明を実施例を用いて詳細に説明する。 Hereinafter, the present invention will be explained in detail using Examples.
本発明の非晶質合金膜は、鉄族元素Co、Feのうち合
金膜の主成分となる一方の元素を直径110馴の円板と
し、この円板上に他方の鉄族元素、希土類金属元素Gd
、 Tb、 DVのうちの少なくとも一種の元素、Nd
、 Sm、 Nb、 Ni、 Azのうちの少なくとも
一種の元素を5X5−の角板としたものを面積比で所定
の組成となるように配置した複合ターゲットを用いてス
パッタすることにより、あるいは所定組成の合金を真空
中アーク溶解し、これらの合金を用いて電子ビーム蒸着
することにより、作製した。RFスパッタ法の場合は、
Arガスの圧力を50〜100 m Torr、あるい
は10 % 02を含むArカスの圧力を5〜IQ m
Torrとし、投入高周波電力100Wの条件下で行
なった。また、マグネトロンスパッタ法の場合は、Ar
カス、10%N2を含むArガス、または5%02を含
むArガスの圧力を10〜100 m Torrとし、
投入高周波電力5Kwの条件下で行なった。さらに、電
子ビーム蒸着法の場合は、酸素圧1〜15 X ]O”
−7Torrの雰囲i中で蒸着を行なった。以上のよう
に、Arガス単独の場合、ガス圧を高めることにより、
また02.N2のような活性ガスを含むガス中てスパッ
qあるいは蒸着することにより、本発明にいう希土類元
素Rの一部を酸化等により非磁性化し、フェリ磁性体の
副格子から希土類原子のスピン結合を除去させて、補償
組成を希土類元素Rの高濃度側に移動させて、従来より
高濃度側で垂直磁化膜が得られるようになる。In the amorphous alloy film of the present invention, one of the iron group elements Co and Fe, which is the main component of the alloy film, is formed into a disk with a diameter of about 110 mm, and the other iron group element, rare earth metal Element Gd
, Tb, at least one element of DV, Nd
, Sm, Nb, Ni, and Az by sputtering using a composite target in which 5×5 square plates are arranged so that the area ratio has a predetermined composition, or by sputtering with a predetermined composition. The alloys were arc melted in vacuum and then electron beam evaporated using these alloys. In the case of RF sputtering method,
The pressure of Ar gas is 50 to 100 m Torr, or the pressure of Ar gas containing 10% 02 is 5 to IQ m
The test was carried out under conditions of 100 W of input high-frequency power at Torr. In addition, in the case of magnetron sputtering method, Ar
The pressure of Ar gas containing scum, 10% N2, or Ar gas containing 5% 02 is 10 to 100 m Torr,
The test was conducted under the condition of input high frequency power of 5Kw. Furthermore, in the case of electron beam evaporation, the oxygen pressure is 1 to 15
Vapor deposition was performed in an atmosphere of −7 Torr. As mentioned above, in the case of Ar gas alone, by increasing the gas pressure,
Also 02. By sputtering or vapor deposition in a gas containing an active gas such as N2, a part of the rare earth element R referred to in the present invention is made nonmagnetic by oxidation, etc., and spin coupling of rare earth atoms from the sublattice of the ferrimagnetic material is caused. By removing the rare earth element R and moving the compensation composition to the higher concentration side of the rare earth element R, a perpendicularly magnetized film can be obtained at a higher concentration side than in the past.
このようにして作製した膜の垂直磁気異方性エネルギー
Kuは1〜15×1105er//Ccの範囲の値を示
した。The perpendicular magnetic anisotropy energy Ku of the film thus produced showed a value in the range of 1 to 15×110 5 er//Cc.
第1図は以」二述べた方法で作製した代表的な膜のカー
回転角θK、保磁力Hc、キューリ一温度Tc、補償温
度Tcomp、結晶化温度TXを示す表図である。FIG. 1 is a table showing the Kerr rotation angle θK, coercive force Hc, Curie temperature Tc, compensation temperature Tcomp, and crystallization temperature TX of a typical film produced by the method described below.
同表図から明らかなように、希土類元素Rの濃度が35
.5原子パ一セント以上で、キューリ一温度Tcか15
0℃以上、補償温度Tcompが室温付近、カー回転角
θKが0.24度以上、保磁力Hcがl koe以上、
結晶化温度Tkが420″C以上の光磁気記録材料に好
適な非晶質膜が得られている。As is clear from the same table, the concentration of rare earth element R is 35
.. 5 atomic percent or more, Curi temperature Tc or 15
0°C or more, compensation temperature Tcomp is near room temperature, Kerr rotation angle θK is 0.24 degrees or more, coercive force Hc is l koe or more,
An amorphous film suitable for a magneto-optical recording material having a crystallization temperature Tk of 420''C or higher has been obtained.
第2図は上記した方法で作製した代表的な非晶質膜のカ
ー回転角の組成依存性を示す図である。FIG. 2 is a diagram showing the composition dependence of the Kerr rotation angle of a typical amorphous film produced by the method described above.
同図の曲線lはTb36−X GdXFe64非晶質膜
、曲線2はTb38FC62,、、XC0X非晶質膜、
曲線3はTb18GdlBFe64 X CoX非晶質
膜、曲線4はTb38Co62−xFeX非晶質膜、曲
線5は”rb、9Dy18 Co63−X、FeX非晶
質膜のそれぞれのXの関数としてのカー回転角θにの変
化を示す図である。、同図から明らかなように、本発明
のRaTbMcて示される非晶質合金膜において、Rて
示される希土類元素の濃度を35.5原子パーセント以
」二とし、残部をMて示される鉄族元素とした合金膜で
はカー回転角θKがさらに改善できることがわかる。Curve 1 in the figure is a Tb36-X GdXFe64 amorphous film, curve 2 is a Tb38FC62,...XC0X amorphous film,
Curve 3 is the Tb18GdlBFe64XCoX amorphous film, curve 4 is the Tb38Co62-xFeX amorphous film, and curve 5 is the Kerr rotation angle θ as a function of As is clear from the figure, in the amorphous alloy film of the present invention, denoted by RaTbMc, the concentration of the rare earth element, denoted by R, is set to 35.5 atomic percent or more. It can be seen that the Kerr rotation angle θK can be further improved in an alloy film in which the remainder is an iron group element represented by M.
第3図は第1図に示した本発明のTb36 pe59
#55非晶質金膜(曲線7)、Tb36 Fe5g N
b5非晶質合金膜(曲線8)と従来のTb25 、Fe
75非晶質合金膜(曲線6)との熱処理による垂直磁
気異方性エネルギーKuの劣化の状態を比較した結果を
示す図である。゛実験はAr雰囲気中、200℃で各時
間+11焼鈍し、その時のKu(t)を測定し、初期値
Ku(01で規格化した値をKu(t)/Ku(0)と
して求めた結果で示した。同図から明らかなように、本
発明のTb−Fe−Ae金合金曲線7)、Tb−Fe−
Nb合金(曲線8)はすぐれた熱安定性を示すことかわ
かる。Figure 3 shows the Tb36 pe59 of the present invention shown in Figure 1.
#55 amorphous gold film (curve 7), Tb36 Fe5g N
b5 amorphous alloy film (curve 8) and conventional Tb25, Fe
75 is a diagram showing the results of comparing the state of deterioration of perpendicular magnetic anisotropy energy Ku due to heat treatment with that of the 75 amorphous alloy film (curve 6).゛The experiment was conducted by annealing at 200°C in an Ar atmosphere for +11 hours each time, measuring Ku(t) at that time, and calculating the initial value Ku(01) as Ku(t)/Ku(0). As is clear from the figure, the Tb-Fe-Ae gold alloy curve 7) of the present invention, the Tb-Fe-
It can be seen that the Nb alloy (curve 8) exhibits excellent thermal stability.
一般に、本発明の希土類元素Rを多(含む非晶質合金膜
(R≧35゜5原子パーセント)は従来の同種希土類元
素の少ない非晶質合金膜(R(3,5原子パーセント)
に比べて耐食性の点てもよりすくれている。In general, the amorphous alloy film containing a large amount of the rare earth element R (R≧35°5 atomic percent) of the present invention is different from the conventional amorphous alloy film containing a small amount of the same rare earth element (R (3.5 atomic percent)).
It also has better corrosion resistance than .
つぎに、本発明で得られた希土類元素濃度の高いTb3
6Fe53Co1□垂直磁化膜と従来の希土類濃度の低
いTb25 Fe75垂直磁化膜との再生光パワー依存
性を調べた。その結果、再生時の出力対雑音比C/Nは
従来利のTb25 Fe75垂直磁化膜ては、再生光1
.5 mW以上てC/Nは飽和して、47dBLか得ら
れないのに対して、本発明のTb36 Fe53 Co
11垂直磁化膜ては、再生光を2.5mWまで上げるこ
とができ、その結果、C/Nで55dBと高い値か得ら
れた。この時の測定周波数fは1MHz、測定バンド幅
Δfは3QkH2、ビット長は13μmであった。Next, Tb3 with high rare earth element concentration obtained by the present invention
The reproduction light power dependence of a 6Fe53Co1□ perpendicularly magnetized film and a conventional Tb25Fe75 perpendicularly magnetized film with a low rare earth concentration was investigated. As a result, the output-to-noise ratio C/N during reproduction is lower than that of the conventional Tb25 Fe75 perpendicularly magnetized film.
.. At 5 mW or more, the C/N is saturated and only 47 dBL can be obtained, whereas the Tb36 Fe53 Co of the present invention
With the No. 11 perpendicular magnetization film, the reproduction light could be increased to 2.5 mW, and as a result, a high C/N value of 55 dB was obtained. At this time, the measurement frequency f was 1 MHz, the measurement bandwidth Δf was 3QkHz, and the bit length was 13 μm.
このように、一般に、本発明の希土類元素Rの濃度の高
い非晶質垂直磁化膜は従来の希土類元素濃度の低い非晶
質垂直磁化膜に比べて、より高い再生光パワーで、より
高いC/Nが得られることがわかる。As described above, in general, the amorphous perpendicular magnetization film with a high concentration of rare earth element R of the present invention has a higher C It can be seen that /N is obtained.
以上において説”明しなかったが、R元素としてDyを
単独添加した場合、T元素としてEu、Ha。Although not explained above, when Dy is added alone as the R element, Eu and Ha are added as the T element.
Er、YbまたはYを添加した場合にも上記と同様な結
果が得られる。The same results as above can be obtained when Er, Yb or Y is added.
以上説明したところから明らかなように、本発明の希土
類元素濃度の高い非晶質垂直磁化膜は、従来報告されて
いる希土類元素濃度のより低い非晶質垂直磁化膜よりも
熱安定性にすぐれ、より大きな再生出力・雑音比(C/
N )が得られるすぐれた光磁気記録材料であることが
わかる。As is clear from the above explanation, the amorphous perpendicular magnetization film with a high rare earth element concentration of the present invention has better thermal stability than the conventionally reported amorphous perpendicular magnetization film with a lower rare earth element concentration. , larger playback output/noise ratio (C/
It can be seen that this is an excellent magneto-optical recording material that can obtain N2).
第1図は本発明の代表的な非晶質垂直磁化膜のカー回転
角、保磁力、キューリ一温度補償温度および結晶化温間
を示す表図、第2図はTb56−x′GdX Fe64
+ Tb38F”62 X CoX+ Tb18 G
d17−5 Fe64−X CoX+Tb3B Co6
2 X FeX、 T’)+9 Dy18 Co63−
X FeX非晶質垂直磁化膜におけるカー回転角のX濃
度依存性を示す線図、第3図はTb25Fe75.Tb
36Fe59M5.Tb36Fe59Nb5非晶質垂直
磁化膜をAr雰囲気中で200℃で焼鈍した時の焼鈍時
間に対する垂直磁気異方性エネルギーの変化を示す線図
、第4図+4TbXCo100−X非晶質垂直磁化膜を
純Arカス中およびAr+02混合ガス中てRFスパッ
タ法で作製した時の該膜の飽和磁束密度4πMsのTb
4度依存性を示す線図、第5図はRFスパッタ法により
、Ar + 02混合ガス雰囲気中でTb)Hcolo
o−X非晶質垂直磁化膜を作製した時の酸素分圧Po2
に対するTb原子の非磁性化量の変化を示す線図である
。FIG. 1 is a table showing the Kerr rotation angle, coercive force, Curie temperature compensation temperature, and crystallization temperature of a typical amorphous perpendicularly magnetized film of the present invention, and FIG.
+ Tb38F"62 X CoX+ Tb18 G
d17-5 Fe64-X CoX+Tb3B Co6
2 X FeX, T')+9 Dy18 Co63-
A diagram showing the dependence of the Kerr rotation angle on the X concentration in the X FeX amorphous perpendicularly magnetized film. Tb
36Fe59M5. A diagram showing the change in perpendicular magnetic anisotropy energy with respect to annealing time when a Tb36Fe59Nb5 amorphous perpendicularly magnetized film is annealed at 200°C in an Ar atmosphere, Figure 4. Tb with a saturation magnetic flux density of 4πMs when produced by RF sputtering in dust and Ar+02 mixed gas
A diagram showing the 4 degree dependence, Figure 5 is a graph showing Tb)Hcolo in an Ar + 02 mixed gas atmosphere by RF sputtering.
Oxygen partial pressure Po2 when producing o-X amorphous perpendicular magnetization film
FIG. 2 is a diagram showing changes in the amount of demagnetization of Tb atoms with respect to FIG.
Claims (1)
b、Dyからなる群のうちから選ばれた少なくとも一種
の元素、TがNd、Eu、Ho、Er、Sm、Yb、Y
、Nb、Ni、Alからなる群のうちから選ばれた少な
くとも一種の元素、MがFe、Coからなる群のうちか
ら選ばれた少なくとも一種の元素からなり、かつ原子パ
ーセントで、a+b+c=100、35.5<a<45
、0<b<15を満足し、優位的に非晶質であることを
特徴とする光磁気記録材料。 2、特許請求の範囲第1項記載の光磁気記録材料におい
て、前記RがGd、Tb、Dyからなる群から選ばれた
少なくとも二種の元素からなることを特徴とする光磁気
記録材料。 3、特許請求の範囲第1項記載の光磁気記録材料におい
て、前記MがFeおよびCoの二種の元素からなること
を特徴とする光磁気記録材料。 4、特許請求の範囲第1項記載の光磁気記録材料におい
て、前記RがGd、Tb、Dyからなる群から選んだ少
なくとも二種の元素、前記MがFeおよびCoの二種の
元素からなることを特徴とする光磁気記録材料。 5、特許請求の範囲第1項、第2項、第3項または第4
項記載の光磁気記録材料において、前記Rで示される元
素の5〜60%が非磁性化された状態で含まれているこ
とを特徴とする光磁気記録材料。 6、特許請求の範囲第1項、第2項、第3項または第4
項記載の光磁気記録材料において、前記Rで示される元
素の20〜50%が非磁性化された状態で含まれている
ことを特徴とする光磁気記録材料。[Claims] 1. The compositional formula is represented by Ra Tb Mc, where R is Gd, T
b, at least one element selected from the group consisting of Dy, T is Nd, Eu, Ho, Er, Sm, Yb, Y
, at least one element selected from the group consisting of Nb, Ni, and Al; M consists of at least one element selected from the group consisting of Fe and Co; and in atomic percent, a+b+c=100, 35.5<a<45
, 0<b<15, and is characterized by being predominantly amorphous. 2. The magneto-optical recording material according to claim 1, wherein the R is at least two elements selected from the group consisting of Gd, Tb, and Dy. 3. The magneto-optical recording material according to claim 1, wherein the M is composed of two elements, Fe and Co. 4. In the magneto-optical recording material according to claim 1, the R consists of at least two elements selected from the group consisting of Gd, Tb, and Dy, and the M consists of two elements, Fe and Co. A magneto-optical recording material characterized by: 5. Claims 1, 2, 3, or 4
3. The magneto-optical recording material according to item 1, wherein 5 to 60% of the element represented by R is contained in a non-magnetic state. 6.Claim 1, 2, 3 or 4
3. The magneto-optical recording material according to item 1, wherein 20 to 50% of the element represented by R is contained in a non-magnetic state.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13528984A JPS6115308A (en) | 1984-07-02 | 1984-07-02 | Photomagnetic recording material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13528984A JPS6115308A (en) | 1984-07-02 | 1984-07-02 | Photomagnetic recording material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6115308A true JPS6115308A (en) | 1986-01-23 |
Family
ID=15148215
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13528984A Pending JPS6115308A (en) | 1984-07-02 | 1984-07-02 | Photomagnetic recording material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6115308A (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6118107A (en) * | 1984-07-04 | 1986-01-27 | Ricoh Co Ltd | Non-crystalline magneto-optical layer |
JPS61165847A (en) * | 1985-01-17 | 1986-07-26 | Seiko Epson Corp | Photomagnetic recording medium |
JPS61214254A (en) * | 1985-03-20 | 1986-09-24 | Hitachi Ltd | Photomagnetic recording material |
JPS6212941A (en) * | 1985-07-09 | 1987-01-21 | Seiko Epson Corp | Photomagnetic recording medium |
JPS62132254A (en) * | 1985-12-05 | 1987-06-15 | Hitachi Maxell Ltd | Photomagnetic recording medium |
JPS62262245A (en) * | 1986-05-07 | 1987-11-14 | Seiko Epson Corp | Magneto-optical recording medium |
JPS62267950A (en) * | 1986-05-16 | 1987-11-20 | Sumitomo Electric Ind Ltd | Magneto-optical recording medium |
FR2601175A1 (en) * | 1986-04-04 | 1988-01-08 | Seiko Epson Corp | CATHODIC SPUTTER TARGET AND RECORDING MEDIUM USING SUCH A TARGET. |
JPS63140058A (en) * | 1986-12-03 | 1988-06-11 | Hitachi Ltd | Magneto-optical recording material |
JPS63173249A (en) * | 1987-01-13 | 1988-07-16 | Daicel Chem Ind Ltd | Magneto-optical recording medium |
JPS63206930A (en) * | 1987-02-23 | 1988-08-26 | Matsushita Electric Ind Co Ltd | Magneto-optical disk |
JPS63253555A (en) * | 1987-01-14 | 1988-10-20 | ミネソタ マイニング アンド マニユフアクチユアリング カンパニー | Stable magnetooptical recording medium |
US4822675A (en) * | 1987-01-14 | 1989-04-18 | Minnesota Mining And Manufacturing Company | Stable magneto optic recording medium |
US5060478A (en) * | 1984-07-27 | 1991-10-29 | Research Development Corporation Of Japan | Magnetical working amorphous substance |
JPH0423247A (en) * | 1990-05-17 | 1992-01-27 | Matsushita Electric Ind Co Ltd | Magneto-optical recording medium |
-
1984
- 1984-07-02 JP JP13528984A patent/JPS6115308A/en active Pending
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6118107A (en) * | 1984-07-04 | 1986-01-27 | Ricoh Co Ltd | Non-crystalline magneto-optical layer |
US5060478A (en) * | 1984-07-27 | 1991-10-29 | Research Development Corporation Of Japan | Magnetical working amorphous substance |
JPS61165847A (en) * | 1985-01-17 | 1986-07-26 | Seiko Epson Corp | Photomagnetic recording medium |
JPS61214254A (en) * | 1985-03-20 | 1986-09-24 | Hitachi Ltd | Photomagnetic recording material |
JPS6212941A (en) * | 1985-07-09 | 1987-01-21 | Seiko Epson Corp | Photomagnetic recording medium |
JPH0470705B2 (en) * | 1985-07-09 | 1992-11-11 | Seiko Epson Corp | |
JPS62132254A (en) * | 1985-12-05 | 1987-06-15 | Hitachi Maxell Ltd | Photomagnetic recording medium |
FR2601175A1 (en) * | 1986-04-04 | 1988-01-08 | Seiko Epson Corp | CATHODIC SPUTTER TARGET AND RECORDING MEDIUM USING SUCH A TARGET. |
JPS62262245A (en) * | 1986-05-07 | 1987-11-14 | Seiko Epson Corp | Magneto-optical recording medium |
JPS62267950A (en) * | 1986-05-16 | 1987-11-20 | Sumitomo Electric Ind Ltd | Magneto-optical recording medium |
JPS63140058A (en) * | 1986-12-03 | 1988-06-11 | Hitachi Ltd | Magneto-optical recording material |
JPS63173249A (en) * | 1987-01-13 | 1988-07-16 | Daicel Chem Ind Ltd | Magneto-optical recording medium |
JPS63253555A (en) * | 1987-01-14 | 1988-10-20 | ミネソタ マイニング アンド マニユフアクチユアリング カンパニー | Stable magnetooptical recording medium |
US4822675A (en) * | 1987-01-14 | 1989-04-18 | Minnesota Mining And Manufacturing Company | Stable magneto optic recording medium |
JPS63206930A (en) * | 1987-02-23 | 1988-08-26 | Matsushita Electric Ind Co Ltd | Magneto-optical disk |
JPH0423247A (en) * | 1990-05-17 | 1992-01-27 | Matsushita Electric Ind Co Ltd | Magneto-optical recording medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0118506B2 (en) | ||
US4838962A (en) | Magneto-optical recording medium | |
JPS6115308A (en) | Photomagnetic recording material | |
JPS6227459B2 (en) | ||
US5660929A (en) | Perpendicular magnetic recording medium and method of producing same | |
JPS6134744A (en) | Photoelectromagnetic recording medium | |
JPS60243840A (en) | Photomagnetic recording body | |
US4925742A (en) | Thin-film having large Kerr rotation angle and production process thereof | |
US5958575A (en) | Magneto-optical recording medium | |
JPH0670924B2 (en) | Perpendicular magnetic recording medium | |
JPH0351082B2 (en) | ||
JPS61246946A (en) | Photomagnetic recording medium | |
US5100741A (en) | Magneto-optic recording systems | |
JPS60253040A (en) | Photomagnetic recording medium | |
US5529854A (en) | Magneto-optic recording systems | |
JPH0470705B2 (en) | ||
JPH0384755A (en) | Magneto-optical recording medium | |
JPH0445898B2 (en) | ||
KR910006146B1 (en) | 4-layered tb-fe magnetic recording medium | |
KR930004335B1 (en) | Optical magnetic recording materials | |
JP2705066B2 (en) | Photothermal magnetic recording media | |
JPH0259603B2 (en) | ||
JPS63164049A (en) | Magneto-optical recording medium and its production | |
JPS61188759A (en) | Photomagnetic recording medium | |
JPS62267943A (en) | Magneto-optical recording material |