JPS6134744A - Photoelectromagnetic recording medium - Google Patents

Photoelectromagnetic recording medium

Info

Publication number
JPS6134744A
JPS6134744A JP15287484A JP15287484A JPS6134744A JP S6134744 A JPS6134744 A JP S6134744A JP 15287484 A JP15287484 A JP 15287484A JP 15287484 A JP15287484 A JP 15287484A JP S6134744 A JPS6134744 A JP S6134744A
Authority
JP
Japan
Prior art keywords
film
amorphous
rare earth
elements
magneto
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15287484A
Other languages
Japanese (ja)
Inventor
Shinji Takayama
高山 新司
Toshio Niihara
敏夫 新原
Katsuhiro Kaneko
金子 克弘
Ken Sugita
杉田 愃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15287484A priority Critical patent/JPS6134744A/en
Publication of JPS6134744A publication Critical patent/JPS6134744A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10582Record carriers characterised by the selection of the material or by the structure or form
    • G11B11/10586Record carriers characterised by the selection of the material or by the structure or form characterised by the selection of the material
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing

Abstract

PURPOSE:To provide high coercive force and a large Kerr rotation angle and to optimize the Curie temp., corrosion resistance, etc. in accordance with uses by forming a vertically magnetized film contg. a larger amt. of iron-group elements in a rare earth-iron group medium of specified composition on an amorphous vertical magnetic film. CONSTITUTION:An amorphous vertical magnetic film, shown by the formula (R is >=1 kind selected from Gd, Tb, Dy, and Ho, T is >=1 kind selected from Nd, Eu, Er, Sm, Yb, Nb, Y, Al, and Ni, M is >=1 kind among Fe and Co, and x+y+ z=100, 5<=x<=14. 0 and 0<=y<=15), is formed on a Tb20Fe80 amorphous film formed on a nonmagnetic supporting body by electron-beam vapor deposition, etc. A film of (Tb0.95Gd0.05)13.(Fe0.95Co0.05) is especially formed by using >=2 kinds of R and 2 kinds of M, Fe and Co. Consequently, althought the concn. of rare earth elements is reduced as compared with the conventional recording medium, a photoelectromagnetic recording medium having a larger photoelectromagnetic effect than before and large signal reproduction output and S/N is obtained.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はレーザ光を用いて情報の記録・再生・消去を行
う光磁気記録に係り、特に再生時の信号と雑音の比S/
Nを向上するのに好適な、カー回転角、ファラデー回転
角の大きい磁気光学記録媒体に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to magneto-optical recording for recording, reproducing, and erasing information using laser light, and particularly relates to a signal-to-noise ratio S/ during reproduction.
The present invention relates to a magneto-optical recording medium having a large Kerr rotation angle and a large Faraday rotation angle, which is suitable for improving N.

〔発明の背景〕[Background of the invention]

最近高密度、大容量、情報の任意読み出し、書き換え等
が可能な光磁気記録が注目を浴びている。
Recently, magneto-optical recording, which has high density, large capacity, and allows arbitrary reading and rewriting of information, has been attracting attention.

光磁気記録においては、膜面に垂直な方向に磁化容易軸
のある磁性薄膜(垂直磁化膜)が用いられ、光ビームに
よって任意の位置に反転磁区を作ることによって、それ
らの磁化の向きに対応して、“1”、0”の2値情報が
記録される。一方かかる反転記録を行った2種信号の読
み出しは、通常ポーラ−・カー効果あるいはファラデー
効果を利用して行なう。
In magneto-optical recording, a magnetic thin film (perpendicular magnetization film) with an axis of easy magnetization perpendicular to the film surface is used, and by creating reversed magnetic domains at arbitrary positions with a light beam, the direction of magnetization can be adjusted. As a result, binary information of "1" and "0" is recorded.On the other hand, reading of the two types of signals after such inversion recording is normally performed using the Polar Kerr effect or the Faraday effect.

従来、これらの磁気光学媒体として、MnB1系結晶質
膜、希土類−遷移金属系非晶質薄膜、ガーネット単結晶
薄膜等の垂直磁化膜が提案されている、中でも希土類−
遷移金属系非晶質薄膜は、結晶粒界がないので媒体ノイ
ズが小さく、均質な大面積作製が容易であることから現
在最も有望視されている。これらの希土類−遷移金属系
非晶質薄膜として、例えば特開昭52−31703.公
告昭57−34588 。
Conventionally, perpendicular magnetization films such as MnB1-based crystalline films, rare earth-transition metal-based amorphous thin films, and garnet single-crystal thin films have been proposed as these magneto-optical media.
Transition metal-based amorphous thin films are currently viewed as the most promising because they have no grain boundaries, have low media noise, and are easy to fabricate over large, homogeneous areas. Examples of these rare earth-transition metal-based amorphous thin films include those described in Japanese Patent Application Laid-Open No. 52-31703. Publication No. 57-34588.

特開昭56−126907 、特開昭57−94948
 、特開昭58−73746等に示されるように、CO
系ではGd −Co、Gd−Tb−Co、Fe系ではT
 b −F e 。
JP-A-56-126907, JP-A-57-94948
, as shown in Japanese Patent Application Laid-Open No. 58-73746, etc., CO
In the system, Gd-Co, Gd-Tb-Co, and in the Fe system, T
b - F e .

Gd−Fe、Tb−Gd−Fe、Gd−Fe−Co、a
d−Dy−Tb−Fe、Dy−Fe−Co 、 T b
 −F e −G o 、 T b −D y −F 
e −CO等の合金系が現在研究されており、膜自体の
残留磁化でのカー回転角も約0.3  ”と向上してき
ている。これら従来の希土類−遷移金属系非晶質膜の希
土類元素濃度は、垂直磁気異方性エネルギー、Kuの比
較的大きい値が得られる15〜35原子パーセントの垂
直磁化膜に限られていた。
Gd-Fe, Tb-Gd-Fe, Gd-Fe-Co, a
d-Dy-Tb-Fe, Dy-Fe-Co, Tb
-F e -G o , T b -D y -F
Alloy systems such as e-CO are currently being researched, and the Kerr rotation angle due to residual magnetization of the film itself has been improved to about 0.3''. The element concentration was limited to perpendicularly magnetized films of 15 to 35 atomic percent, which yielded relatively large values of the perpendicular magnetic anisotropy energy, Ku.

しかし実用化での再生信号レベルを得るには、これら従
来合金系で得られるカー回転角あるいはファラデー回転
角では不十分であり、さらに高いS/N比向上向上めの
膜自体の磁気光学効果の向上が要求されている。
However, in order to obtain a reproduced signal level for practical use, the Kerr rotation angle or Faraday rotation angle obtained with these conventional alloy systems is insufficient, and the magneto-optical effect of the film itself is required to improve the S/N ratio. Improvement is required.

〔発明の目的〕[Purpose of the invention]

本発明の目的は磁気光学効果が十分に大きく、高い再生
S/N比(あるいはC/N比)が得られ。
An object of the present invention is to obtain a sufficiently large magneto-optic effect and a high reproduction S/N ratio (or C/N ratio).

実用に最適な非晶質磁気光学記録媒体i提供することに
ある。
The object of the present invention is to provide an amorphous magneto-optical recording medium that is most suitable for practical use.

〔発明の概要〕[Summary of the invention]

上記目的を達成するための本発明の構成は1組成式がR
xTyMzで示され、上記RがGd、Tb。
The structure of the present invention for achieving the above object is that one compositional formula is R.
It is represented by xTyMz, and the above R is Gd and Tb.

Dy、Hoからなる元素から選ばれた少なくとも一種以
上の元素、上記TがNdt Eu、EtzSm、Yb、
Nb、Y、Al、Niからなる元素群から選ばれた少な
くとも一種以上の元素、上記MがFe、Coからなる元
素群から選ばれた少なくとも一種以−ヒの元素からなり
、かつ原子パーセントで、x + y + z = 1
00 、5≦x<1.4.0<y<15を満足し、優位
的に非晶質とすることにある。
At least one element selected from the elements consisting of Dy and Ho, the above T is NdtEu, EtzSm, Yb,
At least one element selected from the group of elements consisting of Nb, Y, Al, and Ni, where M consists of at least one element selected from the group of elements consisting of Fe and Co, and in atomic percent, x + y + z = 1
00, 5≦x<1.4.0<y<15, and is preferentially amorphous.

光磁気材料の候補材として注目されている希土類−鉄族
系非晶質膜は、従来希土類元素の濃度が原子パーセント
で15〜35原子パーセントであり(例えば特開昭56
−126907参照)、この組成範囲で磁化が膜面に垂
直で、比較的大きなカー回転角が得られていた。しかし
これらの組成範囲内で、補償組成よりも鉄族元素濃度が
増すに従い、飽和磁化Msが増大し、そのため2πMs
2で示される反磁場により静磁エネルギーが増すため、
磁化の向きは垂直方向から次第に面内方向に向くように
なる。その結果、残留磁化での磁気化学効果は減少する
ため、高い磁気光学効果が要求される光磁気記録膜には
不適当であると考えられていた。
Rare earth-iron group amorphous films, which are attracting attention as candidate materials for magneto-optical materials, have conventionally had a rare earth element concentration of 15 to 35 atomic percent (for example, in JP-A-56
-126907), magnetization was perpendicular to the film surface in this composition range, and a relatively large Kerr rotation angle was obtained. However, within these composition ranges, as the iron group element concentration increases beyond the compensation composition, the saturation magnetization Ms increases, and therefore 2πMs
Since the magnetostatic energy increases due to the demagnetizing field shown by 2,
The direction of magnetization gradually changes from the perpendicular direction to the in-plane direction. As a result, the magnetochemical effect due to residual magnetization is reduced, so it was thought to be unsuitable for magneto-optical recording films that require high magneto-optic effects.

しかし、本発明者等は、上記希土類−鉄族系の鉄族系元
素に富んだ非晶質薄膜で、膜面に垂直方向に印加した外
部磁場20kGのもとで、それら薄膜のファラデー回転
角0.を測定した場合、θ、が鉄族元素濃度増加と共に
増加し、特に鉄族元素が富んだ高濃度側で高い磁2光学
効果が得られることを見い出した。しかし、鉄族元素濃
度が増すに従い、保磁力は低下し、高いOlが得られる
鉄族元素に富んだ組成では、一般に保磁力は1000e
以下と小さくなるため、記録が安定に行なえない欠点を
有している。
However, the present inventors have investigated the Faraday rotation angle of amorphous thin films rich in rare earth-iron group elements under an external magnetic field of 20 kG applied perpendicular to the film surface. 0. When measuring θ, it was found that θ increases as the iron group element concentration increases, and that a high magneto-two-optic effect can be obtained especially at the high concentration side where iron group elements are rich. However, as the concentration of iron group elements increases, the coercive force decreases, and in compositions rich in iron group elements that yield high Ol, the coercive force is generally 1000e.
This has the disadvantage that recording cannot be performed stably because the size of the recording medium is smaller than that.

一方、磁気光学効果を増大させる方法として、最近片山
等はTb、□Fe、 、垂直磁化膜の上にカー回転角が
T b −F Cよりも大きい垂直磁化膜のGd1.J
Co、I、あるいはGd7Tb、、Co41Fe、、R
非晶質膜を被膜することにより、みかけ上T b −F
 eのカー回転角を増大させることを試みている(例え
ば第7図日本応用磁気学会学術講演概要集(1f183
.11)P、233 参照)。
On the other hand, as a method for increasing the magneto-optic effect, Katayama et al. recently reported that a perpendicularly magnetized film with a Kerr rotation angle larger than Tb - F C is formed on a Tb, □Fe, Gd1. J
Co, I, or Gd7Tb, , Co41Fe, , R
By coating with an amorphous film, the apparent T b −F
Attempts are being made to increase the Kerr rotation angle of
.. 11) P, 233).

これらの知見のもとに、本発明者は先ずTbjl1度が
18〜25原子パーセントのTb−FeあるいはT b
 −Co垂直磁化膜の上に、磁気光学効果の大きいFe
あるいはCo金属膜を約40〜60人の厚さに被膜して
、垂直磁化膜との交換相互作用により、FeあるいはC
o膜の磁化の向きを膜面に垂直方向に向け、磁気光学効
果の大きな光磁気記録媒体を得ることを試みた。しかし
、FeあるいはCoの飽和磁化がそれぞれ21kGある
いは18kGと余りにも大きいため、それらの膜の磁化
の向きは交換相互作用により膜面に垂直方向に向かず、
かえって、下地のTb−FeあるいはT b −Co膜
の磁化の向きを垂直から面内方向に向ける効果をもち、
その結果媒体としての磁気光学効果は低下してしまうこ
とがわかった。
Based on these findings, the present inventor first developed Tb--Fe or T b
-Fe with a large magneto-optic effect is placed on the Co perpendicularly magnetized film.
Alternatively, a Co metal film is coated to a thickness of approximately 40 to 60 nm, and the exchange interaction with the perpendicular magnetization film allows Fe or Co
An attempt was made to obtain a magneto-optical recording medium with a large magneto-optic effect by orienting the magnetization direction of the o-film perpendicular to the film surface. However, because the saturation magnetization of Fe or Co is too large, 21 kG or 18 kG, respectively, the direction of magnetization of these films is not perpendicular to the film surface due to exchange interaction.
On the contrary, it has the effect of directing the magnetization direction of the underlying Tb-Fe or Tb-Co film from the perpendicular direction to the in-plane direction,
As a result, it was found that the magneto-optic effect as a medium deteriorates.

そこで、本発明者等は非晶質垂直磁化膜の上に、上記し
た比較的飽和磁化が小さく、磁気光学効果の大きい本発
明の鉄族元素濃度に富んだ希土類−鉄族系非晶質薄膜を
被膜したところ、媒体自体の保磁力は1 k Oe以上
の高保磁力が得られ、しかも残留磁化でのカー回転角は
従来の非晶質垂直磁化膜COv、=0.2〜0.35度
)では得られなかった高いカー回転角の値(0,35度
以上)が得られ、光磁気材料として好適であることを見
い出した。
Therefore, the present inventors developed the above-mentioned rare earth-iron group amorphous thin film rich in iron group element concentration, which has a relatively low saturation magnetization and a large magneto-optical effect, on an amorphous perpendicularly magnetized film. When coated with the medium, a high coercive force of 1 k Oe or more was obtained, and the Kerr rotation angle at residual magnetization was 0.2 to 0.35 degrees compared to the conventional amorphous perpendicularly magnetized film COv. It was found that a high Kerr rotation angle value (0.35 degrees or more) which could not be obtained with ) was obtained, making it suitable as a magneto-optical material.

本発明の磁気光学記録媒体は実質的にはRがGd、Tb
、Dyt Hoからなる元素から選ばれた少なくとも一
種以上の元素、TがNd、Eu。
In the magneto-optical recording medium of the present invention, substantially R is Gd, Tb
, Dyt, Ho, and T is Nd or Eu.

Er、Sm、Yb、Nb、Y、Al、Niからなる元素
群から選ばれた少なくとも一種以上の元素、MがFe、
Coからなる元素群から逼ばれた少なくとも一種以上の
元素からなり、一般式がRx T y M zで表わさ
れ、希土類元素Rの全濃度が14原子パーセント以下の
希土類−鉄族系非晶質膜である。
at least one element selected from the group of elements consisting of Er, Sm, Yb, Nb, Y, Al, and Ni; M is Fe;
A rare earth-iron group amorphous material consisting of at least one element selected from the element group consisting of Co, having the general formula Rx T y M z, and having a total concentration of rare earth elements R of 14 atomic percent or less. It is a membrane.

ここで本発明の合金膜では従来の希土類−鉄族系非晶質
膜よりもより大きな磁気光学効果を得るためには希土類
元素濃度を14原子パーセント以下にすることが好まし
く、しかし5M子パーセント以下になると非晶質化が困
難になるため、希土類元素濃度は5原子パ一セント以上
にする必要がある。また必要に応じて、記録・再生感度
を調整するために構成元素のFeあるいはCoの一部を
Nd+  Eu、  Er、  Sm、  Yb*  
Nb、Y、AM。
Here, in the alloy film of the present invention, in order to obtain a larger magneto-optical effect than the conventional rare earth-iron group amorphous film, it is preferable that the rare earth element concentration is 14 atomic percent or less, but 5M atomic percent or less. Since it becomes difficult to make the material amorphous, the rare earth element concentration needs to be 5 atomic percent or more. If necessary, some of the constituent elements Fe or Co may be replaced with Nd+Eu, Er, Sm, Yb* in order to adjust the recording/playback sensitivity.
Nb, Y, AM.

Ni等の元素で15原子パーセント以下置換することに
より、光磁気記録媒体としての性能を最適化することが
出来る。
By substituting 15 atomic percent or less with elements such as Ni, the performance as a magneto-optical recording medium can be optimized.

さらに本発明の構成元素でad、Tb、Dy+Hoの少
なくとも2種元素以上をガラス化元素(希土類−鉄族系
非晶質膜では希土類元素がその役割を担う)として非晶
質膜を形成することにより、希土類元素が一種の非晶質
膜の場合よりも、キュリ一温度やあるいはファラデー回
転角やカー回転角等の磁気光学効果を高めることが出来
る。
Furthermore, an amorphous film can be formed by using at least two of the constituent elements of the present invention, ad, Tb, and Dy+Ho, as vitrifying elements (rare earth elements play this role in rare earth-iron group amorphous films). Therefore, magneto-optical effects such as the Curie temperature, Faraday rotation angle, Kerr rotation angle, etc. can be enhanced more than in the case where the rare earth element is an amorphous film.

またFct!:coで、あるいはCOをFeで置換する
ことにより、磁気光学効果に寄与する鉄族元素の磁化の
大きさを大きくし、さらに他の構成元素である希土類元
素を他種の希土類元素で置換することにより、磁気光学
効果をさらに改善し、同時にキュリ一温度も最適化出来
、記録感度、再生出力を大幅に改善することが出来る。
Fct again! : By replacing CO with Fe or by replacing CO with Fe, the magnitude of magnetization of iron group elements that contribute to the magneto-optical effect is increased, and further, rare earth elements that are other constituent elements are replaced with other types of rare earth elements. By doing so, the magneto-optical effect can be further improved, the Curie temperature can be optimized at the same time, and the recording sensitivity and reproduction output can be greatly improved.

以上の本発明の該希土類−鉄族系非晶質膜で、B、Si
等の非金属元素あるいは本発明構成元素以外の遷移金属
元素を10原子パーセント以下添加することによっても
膜特性の磁気特性、キュリ一温度、結晶化温度、耐食性
等をさらに用途に応じて最適化することも出来る。
In the above rare earth-iron group amorphous film of the present invention, B, Si
By adding 10 atomic percent or less of nonmetallic elements such as or transition metal elements other than the constituent elements of the present invention, the magnetic properties, Curie temperature, crystallization temperature, corrosion resistance, etc. of the film properties can be further optimized depending on the application. You can also do that.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を実施例を用いて説明する。 The present invention will be explained below using examples.

本発明の非晶質合金膜は110mmφのCOあるいはF
e円板−ヒに5X5+nm2の希土類元素あるいは還移
金属元素を、面積比で所定の組成になるように配置した
複合ターゲットを用いてスパッタすることにより、また
所定組成の合金を真空アーク溶解で作製し、これらの母
合金を用いて電子ビーム蒸着することにより作製した。
The amorphous alloy film of the present invention has a diameter of 110 mm and is made of CO or F.
By sputtering 5×5+nm2 of rare earth elements or reduced metal elements onto the e-disc-H using a composite target arranged to have a predetermined composition in terms of area ratio, or by vacuum arc melting to create an alloy with a predetermined composition. They were fabricated by electron beam evaporation using these master alloys.

本発明の一実施例を第1図により説明する。第1図に示
したTb、Co、−、+  (Tb−q+;Gd−ns
)−COX−1(Tb、g<Gd、as) −(Co、
psFe、ns) l−a非晶質膜(as20)はマグ
ネトロンスパッタ法で、Ar圧5X 10−3Torr
、投入高周波電力1kWの条件下で、あるいは電子ビー
ム蒸着法では真空度I X 10−’Torrの条件下
で作製した。作製した非晶質膜の膜厚は約500人と一
定にした。このような作製条件下で作製した膜は、aが
5原子パーセント(I3t、%)以上で非晶質であった
。第1図はTb、Co、−。  (白糸!l)   +
    (Tb、qqGd、、5)  ecOl−a 
  (曲線2) +  (’I’b−3sGd−as)
 −(Co、g5Fe、os) +−(曲線3)非晶質
膜等のファラデー回転角θ、(測定波長λ=633 n
 m )を希土類元素濃度aの関数と1ノで示したもの
である。図から希土類元素の構成元素を1゛bからT 
)) −G dど二元にすることにより、また鉄族系元
素ではその構成元素をCOからCo−Feと二元にする
ことによりθ、が上昇していることがわかる。また希土
類元素濃度が減少するに従い、すなわち鉄族元素濃度が
増−すと共にθ、は増大し、a < 15 a t%で
大きな値の0、が得られていることがわかる。これらの
傾向はFe元素が富んだ希土類−鉄族系非晶質膜でも同
様の傾向を示した。
An embodiment of the present invention will be explained with reference to FIG. Tb, Co, -, + (Tb-q+; Gd-ns
)-COX-1(Tb, g<Gd, as)-(Co,
psFe, ns) The 1-a amorphous film (as20) was prepared by magnetron sputtering at an Ar pressure of 5X 10-3 Torr.
, under conditions of input high-frequency power of 1 kW, or under conditions of vacuum degree I x 10-' Torr in the case of electron beam evaporation. The thickness of the produced amorphous film was kept constant at about 500. The film produced under such production conditions had a of 5 atomic percent (I3t, %) or more and was amorphous. Figure 1 shows Tb, Co, -. (Shiraito!l) +
(Tb, qqGd, 5) ecOl-a
(Curve 2) + ('I'b-3sGd-as)
−(Co, g5Fe, os) +−(Curve 3) Faraday rotation angle θ of amorphous film, etc., (measurement wavelength λ = 633 n
m ) is expressed as a function of rare earth element concentration a and 1 no. From the diagram, the constituent elements of rare earth elements are determined from 1゛b to T.
)) It can be seen that θ is increased by changing the -G d to binary, or by changing the constituent elements from CO to Co--Fe in the case of iron group elements. It can also be seen that as the rare earth element concentration decreases, that is, as the iron group element concentration increases, θ increases, and a large value of 0 is obtained when a<15 at%. Similar trends were observed in rare earth-iron group amorphous films rich in Fe elements.

次に、従来材の代表的な垂直磁化膜のTb2 n Fe
1l。
Next, we will discuss Tb2 n Fe, a typical perpendicular magnetization film of conventional materials.
1l.

非晶膜(厚さ約1000人)の上に、真空を破らずに本
発明の磁気光学効果の大きい非晶質膜を約50人被膜し
、さらにそのLにSin、膜を約1000人被膜した多
層膜媒体を作製して、それらのSj 02側からのカー
回転角0ゆ (測定波長λ= 633 n m )を測
定した。その結果、従来材のTb、。F4.。非晶質単
独の場合の0.  (=0.2.2〜0.25 °)と
比べて約15.5 培基」二に増大しているとかわかっ
た。
On the amorphous film (thickness: about 1,000 layers), coat the amorphous film of the present invention with a large magneto-optic effect without breaking the vacuum by about 50 layers, and then coat the L with Sin, and coat the film by about 1,000 layers. Multilayer media were prepared, and their Kerr rotation angles from the Sj 02 side (measurement wavelength λ = 633 nm) were measured. As a result, Tb of the conventional material. F4. . 0 for the case of amorphous alone. (=0.2.2~0.25°), it was found that the increase was approximately 15.5°.

例えばTb、。Fe、loの上にTb14Fe、+6非
晶質暎を被膜した時は0、=0.28〜0.30 °。
For example, Tb. When Tb14Fe, +6 amorphous aluminum is coated on Fe, lo, it is 0, = 0.28 to 0.30°.

(Tb、i<Gd、ns) 1.0co’ll非晶質膜
を被膜した時は0、=0.33〜0.386゜ (Tb、5sGd、ns) +3(Fe、ggco、n
s) +17非晶質膜を被膜した時は0.=0.30〜
0642 °と増大した1、またこれら多層膜の保磁力
HCは1〜2kOcと大きく、光磁気材料として好適で
あることが分った6 〔発明の効果〕 以上の説明から明らかなように、本発明の希土類元素濃
度の低い非晶質膜は、従来報告されている光磁気非晶質
膜よりも大きな磁気光学効果を示し、より大きな信号再
生出力・雑音比(S/N)が得られる優れた光磁気記録
材料であることが分った。また希土類−鉄族系非晶質膜
では希土類元素が高価であることから、本発明の希土類
元素濃度の低い非晶質膜は従来材の非晶質膜と比べて、
第1図は本発明に用いたTbaCox−at(Tb、1
.、Gd、。、)、Co□−1゜(Tb、qsGd、n
、、)−(CO,5sFe、os) 1−h非晶質膜に
おけるファラデー回転角θ、のa濃度依存性を示す線図
である。
(Tb, i<Gd, ns) 0 when coated with 1.0co'll amorphous film, = 0.33~0.386° (Tb, 5sGd, ns) +3 (Fe, ggco, n
s) +17 When coated with an amorphous film, it is 0. =0.30~
0642°1, and the coercive force HC of these multilayer films was as large as 1 to 2 kOc, indicating that they are suitable as magneto-optical materials.6 [Effects of the Invention] As is clear from the above description, the present invention The amorphous film with a low concentration of rare earth elements of the invention exhibits a larger magneto-optic effect than conventionally reported magneto-optical amorphous films, and has the advantage of providing a larger signal reproduction output to noise ratio (S/N). It turned out to be a magneto-optical recording material. In addition, since rare earth elements are expensive in rare earth-iron group amorphous films, the amorphous film with a low concentration of rare earth elements of the present invention has a lower concentration than conventional amorphous films.
Figure 1 shows TbaCox-at (Tb, 1
.. ,Gd,. ), Co□-1゜(Tb, qsGd, n
,,)-(CO,5sFe,os)1-h It is a diagram showing the a concentration dependence of the Faraday rotation angle θ in an amorphous film.

1−4b、Co1−、.2− (Tb、5sGd−n+
;) −COt−,3・・・第1図 Xto’ D     5    10   15.2θ轟土順元
案濃席 久(のtφジ
1-4b, Co1-, . 2- (Tb, 5sGd-n+
;) -COt-, 3...Figure 1

Claims (1)

【特許請求の範囲】 1、組成式がRxTyMzで示され、上記RがGd、T
b、Dy、Hoからなる元素から選ばれた少なくとも一
種以上の元素、上記TがNd、Eu、Er、Sm、Yb
、Nb、Y、Al、Niからなる元素群から選ばれた少
なくとも一種以上の元素、上記MがFe、Coからなる
元素群から選ばれた少なくとも一種以上の元素からなり
、かつ原子パーセントで、x+y+z=100、5≦x
<14、0<y<15を満足し、優位的に非晶質である
ことを特徴とする磁気光学記録媒体。 2、特許請求の範囲第1項記載において、上記RがGd
、Tb、Dy、Hoからなる群より選択した少なくとも
2種以上の元素からなることを特徴とした磁気光学記録
媒体。 3、特許請求の範囲第1項記載において、上記MがFe
とCoの二種の元素からなることを特徴とした磁気光学
記録媒体。 4、特許請求の範囲第1項記載において、上記RがGd
、Tb、Dy、Hoから選択した少なくとも2種以上の
元素からなり、かつ、上記MがFeとCoの二種の元素
からなることを特徴とした磁気光学記録媒体。
[Claims] 1. The compositional formula is represented by RxTyMz, and the above R is Gd, T
b, at least one element selected from the elements consisting of Dy, Ho, and the above T is Nd, Eu, Er, Sm, Yb
, at least one element selected from the group of elements consisting of Nb, Y, Al, and Ni, where M consists of at least one element selected from the group of elements consisting of Fe, Co, and in atomic percent, x+y+z =100, 5≦x
A magneto-optical recording medium that satisfies <14, 0<y<15 and is predominantly amorphous. 2. In claim 1, the above R is Gd.
, Tb, Dy, and Ho. 3. In claim 1, the above M is Fe.
A magneto-optical recording medium comprising two elements: and Co. 4. In claim 1, the above R is Gd.
, Tb, Dy, and Ho, and wherein M is composed of two elements, Fe and Co.
JP15287484A 1984-07-25 1984-07-25 Photoelectromagnetic recording medium Pending JPS6134744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15287484A JPS6134744A (en) 1984-07-25 1984-07-25 Photoelectromagnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15287484A JPS6134744A (en) 1984-07-25 1984-07-25 Photoelectromagnetic recording medium

Publications (1)

Publication Number Publication Date
JPS6134744A true JPS6134744A (en) 1986-02-19

Family

ID=15550003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15287484A Pending JPS6134744A (en) 1984-07-25 1984-07-25 Photoelectromagnetic recording medium

Country Status (1)

Country Link
JP (1) JPS6134744A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61165847A (en) * 1985-01-17 1986-07-26 Seiko Epson Corp Photomagnetic recording medium
JPS61214254A (en) * 1985-03-20 1986-09-24 Hitachi Ltd Photomagnetic recording material
JPS6247846A (en) * 1985-08-26 1987-03-02 Seiko Epson Corp Photomagnetic recording medium
JPS62132254A (en) * 1985-12-05 1987-06-15 Hitachi Maxell Ltd Photomagnetic recording medium
JPS62267950A (en) * 1986-05-16 1987-11-20 Sumitomo Electric Ind Ltd Magneto-optical recording medium
JPS6348636A (en) * 1986-08-14 1988-03-01 Seiko Epson Corp Magneto-optical recording medium
JPS63164050A (en) * 1986-08-22 1988-07-07 Mitsui Petrochem Ind Ltd Magneto-optical recording medium and its production
JPS63164049A (en) * 1986-08-22 1988-07-07 Mitsui Petrochem Ind Ltd Magneto-optical recording medium and its production
JPS63173249A (en) * 1987-01-13 1988-07-16 Daicel Chem Ind Ltd Magneto-optical recording medium
JPS63206930A (en) * 1987-02-23 1988-08-26 Matsushita Electric Ind Co Ltd Magneto-optical disk
EP0310392A2 (en) * 1987-09-30 1989-04-05 Sharp Kabushiki Kaisha Magneto-optic memory medium
US4822675A (en) * 1987-01-14 1989-04-18 Minnesota Mining And Manufacturing Company Stable magneto optic recording medium
US5053287A (en) * 1986-08-22 1991-10-01 Mitsui Petrochemical Industries, Ltd. Magnetooptical recording media and processes for production thereof
JPH0423247A (en) * 1990-05-17 1992-01-27 Matsushita Electric Ind Co Ltd Magneto-optical recording medium

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61165847A (en) * 1985-01-17 1986-07-26 Seiko Epson Corp Photomagnetic recording medium
JPS61214254A (en) * 1985-03-20 1986-09-24 Hitachi Ltd Photomagnetic recording material
JPS6247846A (en) * 1985-08-26 1987-03-02 Seiko Epson Corp Photomagnetic recording medium
JPS62132254A (en) * 1985-12-05 1987-06-15 Hitachi Maxell Ltd Photomagnetic recording medium
US4780377A (en) * 1986-05-16 1988-10-25 Sumitomo Electric Industries, Ltd. Magneto-optical recording medium
JPS62267950A (en) * 1986-05-16 1987-11-20 Sumitomo Electric Ind Ltd Magneto-optical recording medium
JPS6348636A (en) * 1986-08-14 1988-03-01 Seiko Epson Corp Magneto-optical recording medium
JPS63164050A (en) * 1986-08-22 1988-07-07 Mitsui Petrochem Ind Ltd Magneto-optical recording medium and its production
JPS63164049A (en) * 1986-08-22 1988-07-07 Mitsui Petrochem Ind Ltd Magneto-optical recording medium and its production
US5053287A (en) * 1986-08-22 1991-10-01 Mitsui Petrochemical Industries, Ltd. Magnetooptical recording media and processes for production thereof
JPS63173249A (en) * 1987-01-13 1988-07-16 Daicel Chem Ind Ltd Magneto-optical recording medium
US4822675A (en) * 1987-01-14 1989-04-18 Minnesota Mining And Manufacturing Company Stable magneto optic recording medium
JPS63206930A (en) * 1987-02-23 1988-08-26 Matsushita Electric Ind Co Ltd Magneto-optical disk
EP0310392A2 (en) * 1987-09-30 1989-04-05 Sharp Kabushiki Kaisha Magneto-optic memory medium
JPH0423247A (en) * 1990-05-17 1992-01-27 Matsushita Electric Ind Co Ltd Magneto-optical recording medium

Similar Documents

Publication Publication Date Title
US4753853A (en) Double-layered magnetooptical recording medium
US4880694A (en) Magneto-optical recording material
US4838962A (en) Magneto-optical recording medium
JPH0118506B2 (en)
JPS6134744A (en) Photoelectromagnetic recording medium
JPS59103314A (en) Photomagnetic recording medium
JPS6115308A (en) Photomagnetic recording material
US5660929A (en) Perpendicular magnetic recording medium and method of producing same
US4995024A (en) Magneto-optical recording element
JPS60243840A (en) Photomagnetic recording body
JPH0670924B2 (en) Perpendicular magnetic recording medium
US5958575A (en) Magneto-optical recording medium
JPH0351082B2 (en)
JPS61246946A (en) Photomagnetic recording medium
US5100741A (en) Magneto-optic recording systems
US5710746A (en) Magneto-optical recording medium and reading method with magnetic layers of different coercivity
JP2680586B2 (en) Magneto-optical storage medium
JPS60253040A (en) Photomagnetic recording medium
JP3235015B2 (en) Light rare earth metal-transition metal-metalloid amorphous alloy, magnetic recording layer of the amorphous alloy, and magneto-optical disk having the recording layer
US5529854A (en) Magneto-optic recording systems
JPS60246041A (en) Photo thermomagnetic recording medium
JPH0470705B2 (en)
JPS62267950A (en) Magneto-optical recording medium
JP2948589B2 (en) Magneto-optical recording medium
JPS6243847A (en) Photomagnetic recording medium