JPH0670924B2 - Perpendicular magnetic recording medium - Google Patents

Perpendicular magnetic recording medium

Info

Publication number
JPH0670924B2
JPH0670924B2 JP59236661A JP23666184A JPH0670924B2 JP H0670924 B2 JPH0670924 B2 JP H0670924B2 JP 59236661 A JP59236661 A JP 59236661A JP 23666184 A JP23666184 A JP 23666184A JP H0670924 B2 JPH0670924 B2 JP H0670924B2
Authority
JP
Japan
Prior art keywords
atomic
perpendicular magnetic
thin film
temperature
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59236661A
Other languages
Japanese (ja)
Other versions
JPS61222104A (en
Inventor
孝雄 鈴木
眞人 佐川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP59236661A priority Critical patent/JPH0670924B2/en
Priority to DE8585114367T priority patent/DE3581378D1/en
Priority to EP85114367A priority patent/EP0184034B1/en
Publication of JPS61222104A publication Critical patent/JPS61222104A/en
Priority to JP5021629A priority patent/JPH0738357B2/en
Priority to US08/154,393 priority patent/US5660929A/en
Publication of JPH0670924B2 publication Critical patent/JPH0670924B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は垂直磁気記録方式において使用する磁気記録媒
体(特に磁気光記録媒体)に関する。
The present invention relates to a magnetic recording medium (particularly a magneto-optical recording medium) used in a perpendicular magnetic recording system.

[従来の技術及び発明が解決すべき問題点] 従来、薄膜面と垂直な方向に磁化容易軸を有する強磁性
薄膜としてMnBi、MnCuBi、CoCrなどの多結晶金属薄膜、
GIGに代表される化合物単結晶薄膜、Gd-Co、Gd-Fe、Tb-F
e、Dy-Feなどの希土類遷移金属非結晶質薄膜などが知ら
れている。
[Prior Art and Problems to be Solved by the Invention] Conventionally, a polycrystalline metal thin film such as MnBi, MnCuBi, or CoCr as a ferromagnetic thin film having an easy axis of magnetization in a direction perpendicular to the thin film surface,
Compound single crystal thin film represented by GIG, Gd-Co, Gd-Fe, Tb-F
Rare earth transition metal amorphous thin films such as e and Dy-Fe are known.

本発明はこれら以外の特に希土類遷移金属微細結晶質合
金薄膜に関するものである。
The present invention relates to a rare-earth transition metal fine crystalline alloy thin film other than the above.

一般に非晶質膜は、多結晶薄膜のようにノイズの原因と
なるような結晶粒界が存在しない、広い膜を容易に製作
できるなどの特長を有し、光磁気記録材料として好都合
であるとされてきた。
Generally, an amorphous film is advantageous as a magneto-optical recording material because it has features such as the absence of crystal grain boundaries that cause noise, unlike a polycrystalline thin film, and that a wide film can be easily manufactured. It has been.

希土類遷移金属非晶質合金が光磁気記録媒体として使用
される為には、磁化容易方向が膜面に対して垂直方向に
向いていることが要求される。垂直磁気異方性は、いか
なる場合にも誘起できるものではなく、むしろ、磁性薄
膜の反磁界の発生により膜面に平行な方向へ配向する傾
向を示す。垂直磁化膜を得るためには、この反磁界のエ
ネルギーに打ち勝つだけの異方性エネルギーを付与する
ことが必要である。
In order to use the rare earth-transition metal amorphous alloy as a magneto-optical recording medium, it is required that the easy magnetization direction be perpendicular to the film surface. Perpendicular magnetic anisotropy cannot be induced in any case, but rather tends to be oriented in a direction parallel to the film surface due to the generation of a demagnetizing field of the magnetic thin film. In order to obtain a perpendicularly magnetized film, it is necessary to give anisotropic energy sufficient to overcome the energy of this demagnetizing field.

得られる薄膜の垂直磁気異方性の程度は、一軸異方性定
数Kuの大きさによって表現でき、垂直磁化膜となるため
には、このKuと反磁界エネルギー2πMs2(Msは飽和磁
化)との間にKu>2πMs2の関係を満足しなければなら
ないとされている。
The degree of perpendicular magnetic anisotropy of the obtained thin film can be expressed by the magnitude of the uniaxial anisotropy constant Ku, and in order to form a perpendicular magnetization film, this Ku and demagnetizing field energy 2πMs 2 (Ms is saturation magnetization) It is said that the relation of Ku> 2πMs 2 must be satisfied during.

垂直磁気記録媒体では一般に高い記録密度が要求され、
微小な磁区が安定して保持されるためにはMsが大きく、
かつ十分に大きなKuが得られることが大へん重要であ
る。また、光磁気ディスクではレーザ光を書込みパワー
として用いるが、これを可能とするためには100〜200℃
程度の十分に低いキュリー温度Tcとそれよりも十分に高
い結晶化温度Tcryを有し少なくともこの温度差は50℃好
ましくは100℃以上であることが要求される。
Perpendicular magnetic recording media generally require high recording density,
Ms is large in order to keep the small magnetic domains stable,
And it is very important to obtain a sufficiently large Ku. In addition, in the magneto-optical disk, laser light is used as the writing power.
It has a Curie temperature Tc that is sufficiently low and a crystallization temperature Tcry that is sufficiently higher than that, and at least this temperature difference is required to be 50 ° C., preferably 100 ° C. or higher.

垂直磁化膜として最も良く知られている希土類−遷移金
属の組合せは重希土類元素と鉄である。代表的なものに
TbFe、GdFe、DyFe、GdTbFe、TbDyFeなどがある。例えば
TbFeはキュリー温度Tc=140〜250℃、カー回転角θK
0.3°、飽和磁化Ms=50〜100emu/cc、垂直磁気異方性定
数Ku=105〜106erg/ccなどの特性を有する。
The rare earth-transition metal combination best known as a perpendicular magnetization film is heavy rare earth element and iron. Representative
Examples include TbFe, GdFe, DyFe, GdTbFe, TbDyFe. For example
TbFe has a Curie temperature Tc of 140 to 250 ° C and a car rotation angle of about θ K
It has characteristics such as 0.3 °, saturation magnetization Ms = 50 to 100 emu / cc, and perpendicular magnetic anisotropy constant Ku = 10 5 to 10 6 erg / cc.

しかしこれらに用いられるTb,Dy,Gdなどの重希土類元素
は地殻中にわずかしか存在せず希少資源であり、また複
雑な分離工程を必要とし、大へん高価である。
However, the heavy rare earth elements such as Tb, Dy, and Gd used for these are rare resources because they are scarcely present in the crust, and require a complicated separation process, which is very expensive.

また重希土類元素と鉄の原子磁気モーメントは反平行に
結合しているので飽和磁化Msやキュリー温度Tcの組成依
存性が大きく均質な製品を数多く生産することが困難で
ある。
Further, since the atomic magnetic moments of heavy rare earth elements and iron are coupled antiparallel to each other, it is difficult to produce a large number of homogeneous products because the composition dependence of the saturation magnetization Ms and the Curie temperature Tc is large.

一方Nb,Prなどの軽希土類元素は地殻中に重希土類元素
よりもはるかに多く存在している。このような希土類−
鉄垂直磁化膜がNb,Prなどの軽希土類元素を用いて作製
することができれば、資源的な問題は一掃されるのであ
る。
On the other hand, light rare earth elements such as Nb and Pr are much more abundant in the crust than heavy rare earth elements. Such rare earth-
If the iron perpendicular magnetization film can be formed using light rare earth elements such as Nb and Pr, the resource problem will be eliminated.

これまで軽希土類・鉄の非晶質合金の検討は例えばJ.J.
CroatがFe0.60Nd0.40やFe0.60Pr0.40付近の組成で液体
急冷法を用いてリボン合金を作製し、高い保磁力が得ら
れることから永久磁石としての可能性を論じている(Ap
pl.Phys.Lett.39(4).15.August.1981)。しかしこの
ような方法で得られるリボンは合金全体にわたって均質
なものは得られず、実質的に等方性のものしか得られて
いない。またリボンの厚さは33〜208μmであって記録
媒体として用いられるものではない。
Until now, studies on amorphous alloys of light rare earths and iron have been conducted, for example, in JJ.
Croat made ribbon alloys with a composition near Fe 0.60 Nd 0.40 and Fe 0.60 Pr 0.40 by the liquid quenching method, and discussed the possibility as a permanent magnet because of the high coercive force (Ap
pl.Phys.Lett.39 (4) .15.August.1981). However, the ribbon obtained by such a method cannot obtain a homogeneous ribbon throughout the alloy, but only a substantially isotropic ribbon. The ribbon has a thickness of 33 to 208 μm and is not used as a recording medium.

また最近では、K.Tsutsumi等がFe61.5-Nd34-Ti4.5のス
パッタ薄膜が垂直磁気異方性を有することを報告してい
る(Jpn.J.Appl.Phys.23(1984),L169〜L171頁)。し
かしその特性はMs=430emu/cc、Ku=2×106erg/ccであ
った。またTiを含まないFeNdスパッタ薄膜については作
製条件は明らかでないが、薄膜の面内に異方性があるも
のしか報告されていない。
Recently, K. Tsutsumi et al. Reported that a sputtered thin film of Fe 61.5 -Nd 34 -Ti 4.5 has perpendicular magnetic anisotropy (Jpn.J.Appl.Phys.23 (1984), L169- L171). However, the characteristics were Ms = 430 emu / cc and Ku = 2 × 10 6 erg / cc. Although the manufacturing conditions of the FeNd sputtered thin film containing no Ti are not clear, only those with in-plane anisotropy have been reported.

軽希土類元素及び鉄の非晶質薄膜は高い飽和磁化を有す
るがそのために薄膜の反磁界による作用に打ち勝つため
の垂直磁気異方性エネルギーを付与することはほとんど
不可能とされてきた。
Amorphous thin films of light rare earth elements and iron have a high saturation magnetization, and therefore it has been almost impossible to impart perpendicular magnetic anisotropy energy to overcome the action due to the demagnetizing field of the thin film.

(目的) 本発明は、軽希土類及び鉄を中心とする新規な垂直磁気
記録媒体(特に光磁気記録媒体)を提供することを基本
的目的とする。本発明はさらに上述の従来法に比し優れ
た特性を有する垂直磁気記録媒体を提供することをも目
的とする。
(Object) The basic object of the present invention is to provide a novel perpendicular magnetic recording medium (particularly a magneto-optical recording medium) centered on light rare earth and iron. Another object of the present invention is to provide a perpendicular magnetic recording medium having excellent characteristics as compared with the above conventional method.

[課題を解決するための手段] (概要) すなわち、本発明は軽希土類及び鉄を中心とするまった
く新しい磁気記録媒体を提供するものである。本発明の
磁気記録媒体は鉄及び希土類元素、又はこれらとCo、を
中心とし、希土類元素としてNd,Prを主体とする軽希土
類元素を用い、薄膜内に数Å〜数100Åの微細結晶相を
含む垂直磁化薄膜である。
[Means for Solving the Problems] (Outline) That is, the present invention provides a completely new magnetic recording medium mainly containing light rare earth and iron. The magnetic recording medium of the present invention is iron and rare earth elements, or these and Co, mainly, Nd as a rare earth element, using a light rare earth element mainly Pr, a few Å ~ several 100 Å fine crystalline phase in the thin film. It is a perpendicular magnetization thin film including.

本願の第1の発明は(請求の範囲第1項)としての垂直
磁気記録媒体は、下記の特徴を有する。
A first aspect of the present invention provides a perpendicular magnetic recording medium as (claim 1) having the following features.

即ち、25〜60原子%の希土類元素R(但し、Rの内70原
子%以上がNd及びRrの1種又は2種、なおRの残部は
Y、La、Ce、Sm、Gd、Tb、Dy、Ho、Er及びYbの一種以
上)、残部Feから成り、かつ薄膜の非晶質マトリックス
に数Å〜数100Åの微細結晶相を少なくとも含むこと、 垂直磁気異方性定数Kuが反磁界エネルギー2πMs2(Ms
は飽和磁化)より大きな垂直磁気異方性を有すること、 さらに結晶化温度Tcryとキュリー温度Tcとの温度差Tcry
-Tcが100℃以上であることを特徴とする。
That is, 25 to 60 atomic% of a rare earth element R (provided that 70 atomic% or more of R is one or two of Nd and Rr, and the balance of R is Y, La, Ce, Sm, Gd, Tb, Dy. , Ho, Er, and Yb) and the balance Fe, and the thin film amorphous matrix contains at least a few Å to several hundred Å fine crystalline phase, and the perpendicular magnetic anisotropy constant Ku is demagnetizing field energy 2πMs. 2 (Ms
Has a larger perpendicular magnetic anisotropy than the saturation magnetization), and the temperature difference Tcry between the crystallization temperature Tcry and the Curie temperature Tc.
-Tc is 100 ° C or higher.

本願の第2の発明(請求の範囲第2項)として、前記Fe
30原子%未満(全組成に対する)をCoにて置換した垂直
記録媒体が提供される(即ち全組成中Co30原子%未満と
なる)。
As a second invention of the present application (claim 2), the Fe
A perpendicular recording medium is provided in which less than 30 atomic% (relative to the total composition) is replaced with Co (that is, Co is less than 30 atomic% in the total composition).

さらに本願の別の発明(請求の範囲第3項)としてCoを
含まない場合は所定量以外の他の元素M10原子%以下
(但しMはNi,V,Ta,Cr,Mo,W,Mn,Bi,Al,Si,Pb,Sn及びSb
の一種以上)を含むこともでき、さらにCoを含む場合
(請求の範囲第4項)には、MとしてZrも含むことがで
きる。
Further, as another invention of the present application (claim 3), when Co is not contained, other elements other than the predetermined amount M 10 atomic% or less (where M is Ni, V, Ta, Cr, Mo, W, Mn, Bi, Al, Si, Pb, Sn and Sb
Or more), and when Co is further included (claim 4), Zr can also be included as M.

以上は、式R(Fe,Co)Mで表わされ、R25〜60原子%、
M0〜10原子%、Co30原子%未満及び残部Feから成る組成
を成す。
The above is represented by the formula R (Fe, Co) M, where R25 to 60 atom%,
It has a composition of 0 to 10 atomic% M, less than 30 atomic% Co, and the balance Fe.

本願の各発明による垂直磁気記録媒体は、基板上に金属
ガス凝集法による薄膜の形成において、上記の組成を有
する垂直磁気異方性を有する薄膜を基板温度を180℃〜
合金の結晶化温度以下の温度に保持すると共に、膜厚を
0.3〜3μmとする垂直磁気異方性を有する薄膜を形成
することにより製造できる。
The perpendicular magnetic recording medium according to each invention of the present application, in the formation of a thin film on the substrate by the metal gas agglomeration method, the thin film having the perpendicular magnetic anisotropy having the above composition at a substrate temperature of 180 ℃ ~
While keeping the temperature below the crystallization temperature of the alloy,
It can be manufactured by forming a thin film having a perpendicular magnetic anisotropy of 0.3 to 3 μm.

(作用効果概要) 本発明者らは前述のような事情から微細結晶質薄膜の作
製条件を詳細に検討した。その結果資源が豊富で安価な
Nd,Prなどの軽希土類元素及び鉄を用いて、磁気異方性
定数Kuが磁界エネルギー2πMs2より大きく、安定して
十分な垂直磁化膜が得られる。反磁界エネルギーの値は
製造条件の設定により生ずる微細結晶の状態に応じて変
る。本発明の実施態様において、キュリー温度Tc=70〜
250℃、飽和磁化Ms約450emu/cc以上、条件設定に応じ垂
直磁気異方性定数Kuの値としては例えば1.5×106erg/cc
以上、さらに2.5〜7×106erg/cc以上、カー回転角θK
約0.3°以上の特性、即ち前述の重希土類−鉄非晶質薄
膜と同等またはそれ以上の特性を有する垂直磁化膜が得
られた。
(Summary of Actions and Effects) The present inventors have studied in detail the conditions for producing a fine crystalline thin film from the above-mentioned circumstances. As a result, resources are plentiful and inexpensive
Using light rare earth elements such as Nd and Pr and iron, the magnetic anisotropy constant Ku is larger than the magnetic field energy 2πMs 2 , and a stable and sufficiently perpendicular magnetization film can be obtained. The value of the demagnetizing field energy changes depending on the state of the fine crystals generated by setting the manufacturing conditions. In an embodiment of the present invention, the Curie temperature Tc = 70-
250 ° C, saturation magnetization Ms about 450 emu / cc or more, and the value of the perpendicular magnetic anisotropy constant Ku is, for example, 1.5 × 10 6 erg / cc depending on the condition setting.
More than 2.5 to 7 × 10 6 erg / cc, car rotation angle θ K
A perpendicular magnetization film having a characteristic of about 0.3 ° or more, that is, a characteristic equal to or higher than the above-mentioned heavy rare earth-iron amorphous thin film was obtained.

既述の通り、垂直磁化膜となるためにはKu>2πMs2
関係が成立つことが必要とされている。しかし本発明に
より明らかとなったことは磁区が小さく分かれておりそ
の場合には反磁界が見かけのそれよりも小さく、必ずし
も上記の条件を満足しなくとも垂直磁化膜となる(大
略、Ku≧0.6×2πMs2)が、本発明ではKu>反磁界エネ
ルギー2πMs2として十分安定した垂直磁化膜となる範
囲に限定したものである。
As described above, it is necessary that the relation of Ku> 2πMs 2 is established in order to form the perpendicular magnetization film. However, it has been clarified by the present invention that the magnetic domains are divided into small regions, in which case the demagnetizing field is smaller than the apparent one, and a perpendicular magnetization film is obtained even if the above conditions are not always satisfied (generally, Ku ≧ 0.6. In the present invention, the value of × 2πMs 2 ) is limited to a range where Ku> diamagnetic field energy 2πMs 2 and a sufficiently stable perpendicular magnetization film is obtained.

垂直磁化膜かどうかは第3図のように、膜に平行方向
()と直角方向(⊥)の磁化曲線を測定することによ
って知ることができる。
Whether or not the film is a perpendicular magnetization film can be known by measuring the magnetization curves in the direction parallel to the film () and the direction perpendicular to the film (⊥) as shown in FIG.

本発明において、NdやPrと鉄との組合せは各々の原子の
磁気モーメントが平行に結合した場合、重希土類元素・
鉄の場合よりも高い飽和磁化が得られ、記録の読み出し
精度が向上する。熱磁気書込みを行なう場合は、高い飽
和磁化はもれ磁束が利用できて外部から加えなければな
らない磁場が小さくても良い。さらにFeの一部をCoで置
換することはキュリー温度Tcを上昇させさらにカー回転
角θを大きくし、θ約0.5°以上のものが得られ、
耐食性を改善する。
In the present invention, the combination of Nd or Pr and iron is a heavy rare earth element when the magnetic moments of the respective atoms are combined in parallel.
The saturation magnetization higher than that of iron is obtained, and the reading accuracy of recording is improved. In the case of performing thermomagnetic writing, high saturation magnetization and leakage magnetic flux can be used, and the magnetic field that must be applied from the outside may be small. Further, substituting a part of Fe with Co raises the Curie temperature Tc and further increases the Kerr rotation angle θ K , and θ K of about 0.5 ° or more is obtained,
Improves corrosion resistance.

(好適な実施の態様) 本発明に用いる希土類元素Rとして、Rの内70%以上は
NdとPrを用い特にNdが望ましい。Rの残部は入手上の事
情などからCe、Y,Sm,Dy,Tb,Ho,Gd,La,Er,Ybなどその他
の希土類元素を含んだものを用いても良い。
(Preferred Embodiment) As the rare earth element R used in the present invention, 70% or more of R is
Nd and Pr are used, and Nd is particularly desirable. The balance of R may be one containing other rare earth elements such as Ce, Y, Sm, Dy, Tb, Ho, Gd, La, Er and Yb due to availability.

Rは全体組成中25原子%以上含まれると、Tcry-Tcの温
度差が約100℃以上の垂直磁化膜となり(第2図)、レ
ーザによる書込みにとって十分な安定性を示す。またR2
5原子%以上では、製造条件に注意すれば容易にKuは反
磁界エネルギー2πMs2より大きくなり十分に安定な垂
直磁化膜となる。
When R is contained in an amount of 25 atomic% or more in the total composition, it becomes a perpendicularly magnetized film having a temperature difference of Tcry-Tc of about 100 ° C. or more (FIG. 2) and shows sufficient stability for writing by a laser. Also R2
At 5 atomic% or more, if the manufacturing conditions are taken into consideration, Ku easily becomes larger than the demagnetizing field energy of 2πMs 2 and a sufficiently stable perpendicular magnetization film is formed.

なお、Rが全体の組成の31原子%(at%)以上では薄膜
面に垂直な磁気異方性定数Kuが2.5×106erg/cc以上とな
り好ましい範囲となる。
When R is 31 atomic% (at%) or more of the total composition, the magnetic anisotropy constant Ku perpendicular to the thin film surface is 2.5 × 10 6 erg / cc or more, which is a preferable range.

Rが60at%以上では活性は希土類元素を多く含むため薄
膜作成後の安定性に欠ける。従ってRの範囲は25〜60原
子%(好ましくは31〜60原子%)とする。Rが33〜55at
%はKu=3×106erg/cc以上のさらに好ましい範囲であ
り、特に好ましくは35〜45at%である(第8図参照)。
When R is 60 at% or more, the activity contains a large amount of rare earth elements and the stability after thin film formation is poor. Therefore, the range of R is 25 to 60 atomic% (preferably 31 to 60 atomic%). R is 33 to 55 at
% Is a more preferable range of Ku = 3 × 10 6 erg / cc or more, and particularly preferably 35 to 45 at% (see FIG. 8).

第2図は飽和磁化Ms及びキュリー温度Tcの組成(Nd量)
依存性を示す図であるが広い組成(Nd量)範囲にわたっ
て飽和磁化Ms及びキュリー温度Tcの変化の割合が小さ
く、重希土類元素鉄の場合と較べて遥かに安定した品質
の製品を容易に作製できる様子がわかる。また結晶化温
度Tcryも単調に変化することがわかる。
Fig. 2 shows composition of saturation magnetization Ms and Curie temperature Tc (Nd amount)
It is a diagram showing the dependence, but the change rate of saturation magnetization Ms and Curie temperature Tc is small over a wide composition (Nd amount) range, and a product with much more stable quality can be easily produced compared to the case of heavy rare earth element iron. You can see how you can do it. Also, it can be seen that the crystallization temperature Tcry also changes monotonically.

Rの残りは鉄を主体とするがFeを全組成中の30%未満Co
で置換することは磁気光記録媒体又は垂直磁化膜として
の特性を損なうことなく飽和磁化Ms、キュリー温度Tcの
上昇、カー回転角の増加や薄膜の耐食性を向上する効果
がある。CoをFeの50%以上置換することは結晶化温度Tc
ryとキュリー温度Tcの差が小さくなり、またカー回転角
も小さくなる。さらにターゲットがもろくなり製作が困
難となるため、Coの上限は全組成中30原子%未満とす
る。全Feに対するCo置換量は好ましくは、約8〜30原子
%未満(θ0.45°以上)、最も好ましくは約12〜27原
子%(θ0.5°以上)である。
The balance of R is mainly iron, but Fe is less than 30% of the total composition Co
Substitution with is effective in improving the saturation magnetization Ms, the Curie temperature Tc, the Kerr rotation angle, and the corrosion resistance of the thin film without impairing the characteristics of the magneto-optical recording medium or the perpendicular magnetization film. Replacing Co by 50% or more of Fe means crystallization temperature Tc
The difference between ry and the Curie temperature Tc becomes smaller, and the Kerr rotation angle also becomes smaller. Furthermore, since the target becomes brittle and manufacturing becomes difficult, the upper limit of Co is less than 30 atom% in the total composition. The amount of Co substitution with respect to total Fe is preferably about 8 to less than 30 atomic% (θ K 0.45 ° or more), and most preferably about 12 to 27 atomic% (θ K 0.5 ° or more).

全体の組成の10at%未満の元素M即ち、Ni,V,Ta,Cr,Mo,
W,Mn,Bi,Al,Pb,Sn,Sbなどの添加も垂直磁化膜としての
特性を損なわない。前記所定量のCoを含有する場合に
は、さらにZrの添加によっても、その特性を損なわな
い。
Element M less than 10 at% of the total composition, that is, Ni, V, Ta, Cr, Mo,
Addition of W, Mn, Bi, Al, Pb, Sn, Sb, etc. does not impair the characteristics as a perpendicular magnetization film. When the predetermined amount of Co is contained, further addition of Zr does not impair the characteristics.

さらに、本発明の組成には全体の組成の10at%未満のTi
を含有させることもでき、本発明の方法に従えばKu3×1
06erg/ccのものを得ることができる。
Further, the composition of the present invention has a Ti content of less than 10 at% of the total composition.
Can be included, and according to the method of the present invention, Ku3 × 1
0 6 erg / cc can be obtained.

また本発明による薄膜は飽和磁化Msが高いため、実施例
に示す条件下では垂直磁気異方性定数が1.5×106erg/cc
より大きければよい場合がある(第6、7図)。一般に
非晶質膜を作成するための基板を構成する基板材料は通
常ガラス、Al、ポリイミド系樹脂材、ポリエステル系樹
脂材などを用いるが、本発明の場合は微細結晶相を含む
垂直磁化膜を得るために基板の温度を180℃以上、該合
金組成の結晶化温度以下に保たなければならないのでこ
の温度に耐えるものを用いる。基板温度200〜300℃はKu
=3×106erg/cc以上が得られる好ましい範囲である
(第4図)。
Further, since the thin film according to the present invention has a high saturation magnetization Ms, the perpendicular magnetic anisotropy constant is 1.5 × 10 6 erg / cc under the conditions shown in the examples.
In some cases it may be larger (Figs. 6 and 7). Generally, the substrate material forming the substrate for forming the amorphous film is usually glass, Al, a polyimide resin material, a polyester resin material, etc., but in the case of the present invention, a perpendicular magnetization film containing a fine crystalline phase is used. In order to obtain it, the temperature of the substrate must be kept at 180 ° C. or higher and below the crystallization temperature of the alloy composition, so a material that can withstand this temperature is used. Ku at substrate temperature of 200-300 ℃
= 3 × 10 6 erg / cc or more is a preferable range (FIG. 4).

薄膜の厚さは厚くなるに従ってKuが大きくなり、垂直磁
化膜を得るためには0.3μm以上必要であるが、3μm
をこえると均一な層が得難く、生産上好ましくない(第
6図)。
Ku increases as the thickness of the thin film increases, and it is necessary to have 0.3 μm or more to obtain a perpendicular magnetization film.
If it exceeds, it is difficult to obtain a uniform layer, which is not preferable in production (Fig. 6).

本発明による薄膜は金属ガス凝集法(いわゆる気相折着
法)により形成され、真空蒸着法、物理的析着法(スパ
ッタ法、イオンプレーティング法等)、CVD法等いずれ
の方法においても作製できるが、スパッタ法の場合アル
ゴンの圧力は2×10-1Torr付近の望ましい(第7図)。
The thin film according to the present invention is formed by a metal gas agglomeration method (so-called vapor phase deposition method), and is produced by any method such as vacuum vapor deposition method, physical deposition method (sputtering method, ion plating method, etc.) and CVD method. Although it is possible, in the case of the sputtering method, the pressure of argon is preferably around 2 × 10 -1 Torr (Fig. 7).

スパッタの際に基板には基板と垂直方向に数〜数十Oeの
磁界が加わっていることが望ましい。この磁界は基板下
にとりつけた加熱用のシース線をソレノイド状に巻きつ
け、加熱電流として直流を用いることによって容易に得
ることができる。
It is desirable that a magnetic field of several to several tens Oe is applied to the substrate in the direction perpendicular to the substrate during sputtering. This magnetic field can be easily obtained by winding a sheathing wire for heating attached under the substrate in a solenoid shape and using direct current as a heating current.

本発明による薄膜の状態は約数Å〜約100Åの大きさの
微細結晶相が望ましい(第5図、第17図)。
The state of the thin film according to the present invention is preferably a fine crystalline phase having a size of about several Å to about 100 Å (Figs. 5 and 17).

また大きな飽和磁化を有することに基づき、光磁気ディ
スクとして熱磁気書込みを行う場合は囲りの部分からの
もれ磁束が利用できるため外部から加える磁場が小さく
ても良い。
Further, when thermomagnetic writing is performed as a magneto-optical disk based on the fact that it has a large saturation magnetization, a leakage magnetic flux from the surrounding portion can be used, so a magnetic field applied from the outside may be small.

[実施例] 以下に実施例を用いて詳細に説明する。薄膜は高周波ス
パッタ法を用いてAr雰囲気中でガラス基板上に作成し
た。
[Examples] Hereinafter, examples will be described in detail. The thin film was formed on a glass substrate in an Ar atmosphere using the high frequency sputtering method.

Arガスを導入する前にスパッタ容器内を5×10-7Torr以
上の真空にした。スパッタの速度は約2μm/hrであっ
た。スパッタ作成中は基板にはバイアス電圧を加えてい
ない。
Before introducing Ar gas, the inside of the sputtering container was evacuated to 5 × 10 −7 Torr or more. The sputter rate was about 2 μm / hr. No bias voltage is applied to the substrate during sputtering production.

基板の加熱は基板の下にとりつけた円筒状の銅製ボビン
の外周に巻回したシース線の電流を調整することにより
行った。
The heating of the substrate was performed by adjusting the electric current of the sheath wire wound around the outer periphery of the cylindrical copper bobbin attached below the substrate.

電流は直流を用いたため、基板上には約十Oeの磁界が発
生している。試料の磁気特性は最大磁場強さが20kOeの
トルク磁力計及び振動試料型磁力計(VSM)を用いた。
薄膜の構造解析はCu-Kα線を用いたX線回折と、透過式
電子顕微鏡によった。
Since a direct current was used as the current, a magnetic field of about 10 Oe was generated on the substrate. For the magnetic properties of the sample, a torque magnetometer with a maximum magnetic field strength of 20 kOe and a vibrating sample magnetometer (VSM) were used.
The structural analysis of the thin film was performed by X-ray diffraction using Cu-Kα ray and a transmission electron microscope.

(実施例1) 第1図にFe100-XNdX,X=18,30,35,38,40の組成でAr圧が
1〜2×10-1Torr、基板温度220〜290℃、膜厚5000Å〜
1.2μmの条件で作成した薄膜の磁化の温度依存性を示
す。
(Example 1) Fig. 1 shows the composition of Fe 100-X Nd X , X = 18,30,35,38,40, the Ar pressure is 1 to 2 x 10 -1 Torr, the substrate temperature is 220 to 290 ° C, and the film is formed. Thickness 5000Å ~
The temperature dependence of the magnetization of the thin film formed under the condition of 1.2 μm is shown.

ここで磁化は容易磁化軸方向に飽和磁化させた後、VSM
で10kOeの磁場中で測定を行った。
Here, the magnetization is easily saturated in the direction of the magnetization axis and then VSM
The measurement was carried out in a magnetic field of 10 kOe.

キュリー温度TcはM2/T(M:磁化、T:温度)曲線の外挿線
が温度軸と交錯する点より求めた。
The Curie temperature Tc was obtained from the point where the extrapolation line of the M 2 / T (M: magnetization, T: temperature) curve intersects the temperature axis.

第1図中Tcryは結晶化温度を示す。In FIG. 1, Tcry represents the crystallization temperature.

キュリー温度は350〜400K(77〜127℃)でDyFe(Tc約70
℃)、TbFe(Tc約140℃)とほぼ同等であった。
Curie temperature is 350 ~ 400K (77 ~ 127 ℃) and DyFe (Tc about 70
℃) and TbFe (Tc about 140 ℃).

またキュリー温度(Tc)と結晶化温度(Tcry)の差がNd
≧30原子%で約200℃あることからレーザ光による熱磁
気書き込みが十分行えることが判る。
The difference between the Curie temperature (Tc) and the crystallization temperature (Tcry) is Nd.
It can be seen that thermomagnetic writing by laser light can be sufficiently performed because it is about 200 ° C. at ≧ 30 atomic%.

第2図は第1図のキュリー温度及び結晶化温度を組成
(Fe100-xNdx)と対比させたものである。キュリー温度
又はMsは広い組成範囲にわたってほとんど変化しないこ
とが判る。Nd≧25at%で温度差(Tcry-Tc)が約100℃以
上となり、Nd≧30at%で差≧200℃となる。
FIG. 2 compares the Curie temperature and crystallization temperature of FIG. 1 with the composition (Fe 100-x Nd x ). It can be seen that the Curie temperature or Ms changes little over a wide composition range. The temperature difference (Tcry-Tc) is about 100 ° C or more when Nd ≧ 25at%, and the difference is ≧ 200 ° C when Nd ≧ 30at%.

また第2図にはまた77K及び300Kでの飽和磁化のFe-Nd組
成依存性を示す。
Fig. 2 also shows the Fe-Nd composition dependence of the saturation magnetization at 77K and 300K.

(実施例2) Fe65Nd35及びFe60Nd40の組成で基板温度が240〜290℃、
Ar圧が1〜2×10-1Torrの条件で作成したスパッタ薄膜
を77K及び300Kで磁気特性を測定した。その結果を第3
図に示す。薄膜の垂直方向(⊥)及び水平方向()の
測定から77Kおよび30Kにおいてこれらの薄膜が垂直磁化
膜である様子がわかる。
(Example 2) With a composition of Fe 65 Nd 35 and Fe 60 Nd 40 and a substrate temperature of 240 to 290 ° C,
The magnetic properties of the sputtered thin film prepared under the conditions of Ar pressure of 1 to 2 × 10 -1 Torr were measured at 77K and 300K. The result is the third
Shown in the figure. From the measurements in the vertical (⊥) and horizontal () directions of the thin films, it can be seen that these films are perpendicular magnetic films at 77K and 30K.

これらの薄膜のカー回転角θを求めたところ、θ
0.3°が得られた。これは前述の重希土類元素−鉄非晶
質垂直磁化膜と同等以上であった。
When the Kerr rotation angle θ K of these thin films was determined, θ K =
0.3 ° was obtained. This was equal to or higher than that of the above-mentioned heavy rare earth element-iron amorphous perpendicular magnetization film.

(実施例3) Fe65Nd35の組成でAr圧1〜2×10-1Torr、厚さ6000〜12
650Åの薄膜を作成し、トルクメータで垂直磁気異方性
定数Kuを求めた。スパッタ中の基板温度は70〜330℃の
間で変化させた。その結果を第4図に示す。
Example 3 Composition of Fe 65 Nd 35 , Ar pressure 1-2 × 10 −1 Torr, Thickness 6000-12
A 650 Å thin film was prepared and the perpendicular magnetic anisotropy constant Ku was determined with a torque meter. The substrate temperature during sputtering was changed between 70 and 330 ° C. The results are shown in FIG.

Kuの値は基板温度が260〜290℃の最大値を示す。図中黒
丸は垂直磁化膜であることを示し、白丸はそうでないこ
とを表わす。基板温度Tsが結晶化温度Tcry(≒320℃)
よりも高い場合はもはや垂直磁化膜の性質を示さない。
(Ku≒0) 基板温度Tsが212℃、287℃、335℃の場合のスパッタ薄
膜のX線回折パターンを第5図に示す。Ts=335℃及び2
87℃の場合には、Nd2Fe17やNdに相当すると考えられる
鋭いピークが現われている。
The value of Ku indicates the maximum value when the substrate temperature is 260 to 290 ° C. In the figure, a black circle indicates that it is a perpendicular magnetization film, and a white circle indicates that it is not. Substrate temperature Ts is crystallization temperature Tcry (≈320 ° C)
If it is higher than that, it no longer exhibits the properties of a perpendicular magnetization film.
(Ku≈0) FIG. 5 shows the X-ray diffraction pattern of the sputtered thin film when the substrate temperature Ts was 212 ° C., 287 ° C., and 335 ° C. Ts = 335 ℃ and 2
At 87 ° C, a sharp peak that is considered to correspond to Nd 2 Fe 17 and Nd appears.

電子顕微鏡の観察からもTs=212℃、287℃の場合には微
細結晶の粒子が存在し、Ts=335℃の場合には結晶化が
かなり進んでいることが判った。これらのことから垂直
磁気異方性を有するためには非晶質マトリックスに結晶
粒径約数Å〜約100Åの微細結晶相を含むことが好まし
いことがわかる。
Observation by an electron microscope also revealed that fine crystal grains were present at Ts = 212 ° C and 287 ° C, and that crystallization was considerably advanced at Ts = 335 ° C. From these facts, it is understood that in order to have perpendicular magnetic anisotropy, it is preferable that the amorphous matrix contains a fine crystal phase having a crystal grain size of several Å to 100 Å.

(実施例4) Fe65Nd35の組成のスパッタ膜を基板温度210〜290℃、Ar
圧力1〜2×10-1Torrの条件で膜厚を変化させて作成
し、トルクメータで磁気異方性定数Kuを求めた結果を第
6図に示す。
Example 4 A sputtered film having a composition of Fe 65 Nd 35 was formed at a substrate temperature of 210 to 290 ° C. and Ar.
Fig. 6 shows the results of magnetic anisotropy constant Ku obtained with a torque meter by changing the film thickness under the condition of pressure of 1 to 2 x 10 -1 Torr.

第6図中黒丸は垂直磁化膜を示し、白丸は薄膜の膜面内
の異方性を有する場合である。第6図中の添数は基板の
温度を示す。膜厚D0.3μm以上でKu≧1.5×106erg/ccと
なり、さらに、膜厚D約0.7μm以上でKu≧2.5×106erg
/ccとなる。
In FIG. 6, black circles indicate perpendicularly magnetized films, and white circles indicate anisotropy in the film plane of the thin film. The index number in FIG. 6 indicates the temperature of the substrate. Ku ≧ 1.5 × 10 6 erg / cc when the film thickness D is 0.3 μm or more, and Ku ≧ 2.5 × 10 6 erg when the film thickness D is 0.7 μm or more.
It becomes / cc.

(実施例5) Fe65Nd35を基板温度210〜290℃、膜厚6140〜1265Åの条
件でAr圧を変化させて作成したスパッタ膜の磁気異方性
定数KuのAr圧依存性を第7図に示す。
(Example 5) Fe 65 Nd 35 at a substrate temperature 210 to 290 ° C., the Ar pressure dependence of the magnetic anisotropy constant Ku of the sputtered film produced by changing the Ar pressure under the conditions of the film thickness 6140~1265Å seventh Shown in the figure.

Ar圧は2×10-1TorrあたりでKuは鋭いピークを示すが、
相対的にAr圧力依存性は他の要因、すなわち基板温度や
膜厚ほど顕著ではない。なおこの条件下では2πMs2
値が1.5×106erg/ccとなっていることからKu≧1.5×106
erg/ccで垂直磁化膜になることがわかる。
Ku shows a sharp peak at Ar pressure around 2 × 10 -1 Torr,
The Ar pressure dependence is not so remarkable as other factors, that is, the substrate temperature and the film thickness. Under this condition, the value of 2πMs 2 is 1.5 × 10 6 erg / cc, so Ku ≧ 1.5 × 10 6
It can be seen that erg / cc results in a perpendicular magnetic film.

(実施例6) Fe100-XNdXにおいてX=18〜50の広い組成範囲において
基板温度250〜280℃、Ar圧1〜3×10-1Torr、膜厚6000
〜13000Åのスパッタ薄膜を作成し、垂直磁気異方性定
数Kuを求めた結果を第8図に示す。いずれも垂直磁化膜
となるが、Kuの値は組成にもなかり依存することがわか
る。Kuの最大値はNd40原子%辺りで得られ、1〜2×10
7erg/ccにも達する高い値を示す。
Example 6 In Fe 100-X Nd X , the substrate temperature is 250 to 280 ° C., the Ar pressure is 1 to 3 × 10 −1 Torr, and the film thickness is 6000 in a wide composition range of X = 18 to 50.
Fig. 8 shows the result of obtaining a perpendicular magnetic anisotropy constant Ku by making a sputtered thin film of -13000Å. Although both are perpendicularly magnetized films, it can be seen that the value of Ku depends on the composition. The maximum value of Ku is obtained around 40 atomic% Nd, and is 1-2 x 10
It shows a high value as high as 7 erg / cc.

Nd量がこれより減少する場合、Kuは急激に低下し、31原
子%未満では2.5×106erg/cc未満になるがNd≧25at%で
は製造条件に注意すればKu>反磁界エネルギー2πMs2
を満足し、十分安定な垂直磁化膜となる。
When the amount of Nd is less than this, Ku drops sharply and becomes less than 2.5 × 10 6 erg / cc when less than 31 atomic%, but when Nd ≧ 25at%, Ku> diamagnetic field energy 2πMs 2
And a sufficiently stable perpendicular magnetic film is obtained.

(実施例7) Fe60Nd35M5の組成でMとしてHf,Bi,V,Nb,Ta,Cr,Mo,W,M
n,Al,Sb,Ge,Sn,Si,Pb,NiをTs=220〜290℃、Ar圧1〜2
×10-1Torr、膜厚6300〜11000Åを作成し磁気特性を測
定する。
(Example 7) Hf, Bi, V, Nb, Ta, Cr, Mo, W, M as M in the composition of Fe 60 Nd 35 M 5
n, Al, Sb, Ge, Sn, Si, Pb, Ni Ts = 220-290 ℃, Ar pressure 1-2
Magnetic properties are measured by making × 10 -1 Torr and film thickness 6300 to 11000Å.

いずれもKu≧2.5×106erg/cc、カー回転角0.3°以上の
垂直磁化膜が得られる。
In each case, a perpendicular magnetization film with Ku ≧ 2.5 × 10 6 erg / cc and a Kerr rotation angle of 0.3 ° or more can be obtained.

(実施例8) Fe40Co25Nd35の組成で、Ts=240℃、Ar圧2×10-1Tor
r、膜厚7400Åを作成し、磁気特性を測定した。
(Example 8) Fe 40 Co 25 Nd 35 composition, Ts = 240 ° C., Ar pressure 2 × 10 −1 Tor
r, film thickness 7400Å was prepared and the magnetic properties were measured.

いずれもKu≧2.5×106erg/cc以上の垂直磁化膜を得られ
た。
In each case, a perpendicular magnetization film with a Ku ≧ 2.5 × 10 6 erg / cc or more was obtained.

(実施例9) Fe60Nd25Pr15の組成でTs=260℃Ar圧1.5〜2×10-1Tor
r、膜厚7900Åのスパッタ薄膜を作成しKu2.5×106erg/c
c以上の垂直磁化膜が得られた。
(Example 9) Fe 60 Nd 25 Pr 15 composition Ts = 260 ° C. Ar pressure 1.5 to 2 × 10 −1 Torr
r, sputtered thin film with a film thickness of 7900Å and Ku2.5 × 10 6 erg / c
A perpendicular magnetization film of c or more was obtained.

(実施例10) Fe60Nd32Dy8、Fe58Nd32Ce10、Fe57Nd30Ce10V3の組成
で、Ts=240〜290℃、Ar圧1〜2×10-1Torr、膜厚7300
〜11000Åのスパッタ薄膜を作成し、Ku2.5×106erg/cc
以上の垂直磁化膜が得られた。
(Example 10) Fe 60 Nd 32 Dy 8 , Fe 58 Nd 32 Ce 10 , Fe 57 Nd 30 Ce 10 V 3 , Ts = 240 to 290 ° C., Ar pressure 1 to 2 × 10 −1 Torr, film Thickness 7300
Create a sputtered thin film of ~ 11000Å, Ku2.5 × 10 6 erg / cc
The above perpendicular magnetization film was obtained.

(実施例11) Fe65Nd35及びFe60Nd40の組成で、基板温度Tsが各々290
℃、250℃、Ar圧2×10-1Torr、膜厚が各々12650Å、48
60Åのスパッタ薄膜を作成した。Fe60Nd40において4.2
〜300Kで求めたトルク曲線を第9(1),(2)図に示
す。
Example 11 With a composition of Fe 65 Nd 35 and Fe 60 Nd 40 , the substrate temperature Ts was 290 each.
℃, 250 ℃, Ar pressure 2 × 10 -1 Torr, film thickness 12650Å, 48 respectively
A 60 Å sputtered thin film was prepared. Fe 60 Nd 40 at 4.2
Torque curves obtained at ~ 300K are shown in Fig. 9 (1) and (2).

また、15kOe磁界中での回転ヒステリシス損Wの低温で
の温度変化を第10図に示す。
Further, FIG. 10 shows a temperature change at a low temperature of the rotation hysteresis loss W in a magnetic field of 15 kOe.

(実施例12) (Fe1-yCoy)60Nd40, y=0,0.075,0.15,0.25 の組成でAr圧が1〜2×10-1Torr基板温度230〜290℃、
膜厚7700Å〜1.1μmの条件で作成した薄膜の結晶化温
度Tcry、キュリー温度Tc、垂直磁気異方性定数Kuが最大
値をとる温度T1、及び保磁力Hcの変化を第11図に示す。
Example 12 (Fe 1-y Co y ) 60 Nd 40 , y = 0, 0.075, 0.15, 0.25, Ar pressure 1-2 × 10 −1 Torr Substrate temperature 230-290 ° C.,
Fig. 11 shows changes in the crystallization temperature Tcry, the Curie temperature Tc, the temperature T 1 at which the perpendicular magnetic anisotropy constant Ku takes the maximum value, and the coercive force Hc of the thin film formed under the condition of the film thickness of 7700Å to 1.1 μm. .

Coの増加はTcryを変化させないでTc,Hc,及びT1の増加を
もたらす。
Increasing Co results in increasing Tc, Hc, and T 1 without changing Tcry.

(実施例13) 実施例1で得られたNd35Fe65及び実施例12で得られた(F
e1-yCoy)60Nd40の薄膜を、入射角80°の直線偏光した光
(水銀ランプ光源、波長λ=230〜830nm、ハーフミラー
ーは用いず、測定は薄膜表面側より行なった。測定装置
は日本分光株式会社製「磁気−光学測定装置J-250」を
用いてカー回転角θの波長λ依存性を求めた(第12
図)。図中Co5,Co10,Co15は夫々y=5/60(=0.083),1
0/60(=0.17),15/60(=0.25)に対応する。
(Example 13) Nd 35 Fe 65 obtained in Example 1 and obtained in Example 12 (F
e 1-y Co y ) 60 Nd 40 thin film linearly polarized light with an incident angle of 80 ° (mercury lamp light source, wavelength λ = 230 to 830 nm, half mirror was not used, and measurement was performed from the thin film surface side. The apparatus used was a “Magnetic-Optical Measuring Device J-250” manufactured by JASCO Corporation, and the wavelength λ dependence of the Kerr rotation angle θ K was determined (No. 12
Figure). In the figure, Co5, Co10, and Co15 are y = 5/60 (= 0.083) and 1 respectively.
It corresponds to 0/60 (= 0.17) and 15/60 (= 0.25).

低波長側で回転角は正、λ=340nm付近でθはほぼ
0、それ以上の波長領域では|θ|は急に増加し、λ
>500nmではほぼ一定となるがすべての組成についてλ
=400〜500nmで最大値をとっている。λ=500及び633nm
における|θ|の組成依存性を第13図に示す。Co組成
yの増加と共に|θ|は増加しy=0.25付近でほぼピ
ークを示している。λ=500及び633nmでの値はy=0.25
で0.55°及び0.45°である。これらの値は従来のGd-Fe-
Co系統の値よりはるかに大きいものである。
The rotation angle is positive on the low wavelength side, θ K is almost 0 near λ = 340 nm, and | θ K | increases sharply in the wavelength range above λ = 340 nm.
Almost constant at> 500 nm, but λ for all compositions
It takes the maximum value at 400 to 500 nm. λ = 500 and 633 nm
FIG. 13 shows the composition dependence of | θ K | in. | Θ K | increases with an increase in Co composition y, and almost shows a peak near y = 0.25. The value at λ = 500 and 633 nm is y = 0.25
At 0.55 ° and 0.45 °. These values are conventional Gd-Fe-
It is much larger than that of the Co system.

(実施例14) 実施例13で用いたのと同じサンプルで300Kでの飽和磁化
Ms及び垂直磁気異方性エネルギー定数Kuを求めた結果を
第14図に示す。Feの一部に対するCoによる置換量の増大
と共に飽和磁化Ms及び磁気異方性エネルギー定数Kuを徐
々に下げる。
Example 14 Saturation magnetization at 300K in the same sample used in Example 13
FIG. 14 shows the results of determining Ms and the perpendicular magnetic anisotropy energy constant Ku. The saturation magnetization Ms and the magnetic anisotropy energy constant Ku are gradually lowered as the amount of substitution of Co for a part of Fe is increased.

(実施例15) 実施例1と同じ条件で作成したFe100-XNdXの組成の薄膜
のカー回転角θで保磁力Hcを求め第15図に示す。
(Example 15) The coercive force Hc was determined from the Kerr rotation angle θ K of a thin film of the composition Fe 100-X Nd X prepared under the same conditions as in Example 1, and the results are shown in FIG.

Nd35及び50at%膜(膜作製直後に厚さ約100〜300Å、表
面を酸化させた膜)のカー回転角は第15図の矢印で示す
ように増加することがわかった。例えばNd50at%の場合
θは0.3°から約0.6°(λ=633nm)であり2倍近い
増加を示している。このことは表面を酸化させることに
より多重干渉法によりカー及びファラデー効果の両方の
寄与を得て実効的カー回転角が増加した為である。本方
法は従来の重希土類−鉄族垂直磁化膜ではSiO等の膜を
表面上コーティングして回転角を増加させていた方法と
異なり磁性膜の表面をそのまま酸化させ回転角を増加す
ることができる方法である。このことは本垂直磁化膜の
特徴である。
It was found that the Kerr rotation angle of Nd35 and 50at% films (thickness of about 100-300Å immediately after film formation and surface oxidized) increased as shown by the arrow in Fig. 15. For example, in the case of Nd50at%, θ K is from 0.3 ° to about 0.6 ° (λ = 633 nm), which is an almost double increase. This is because by oxidizing the surface, the contribution of both Kerr and Faraday effect is obtained by the multiple interference method, and the effective Kerr rotation angle is increased. This method can increase the rotation angle by oxidizing the surface of the magnetic film as it is, which is different from the conventional method of coating the surface of a heavy rare earth-iron group perpendicular magnetization film with SiO or the like to increase the rotation angle. Is the way. This is a characteristic of this perpendicular magnetization film.

薄膜表面の酸化皮膜はスパッタ後そのまま装置内にて10
0〜150℃で凡そ30分〜1時間保持することによって得ら
れる。
After the sputtering, the oxide film on the thin film surface can be directly
It is obtained by holding at 0 to 150 ° C for about 30 minutes to 1 hour.

SiOコーティングもx=35原子%の同様なサンプルの表
面に施した。その結果を第15図に示す。SiOコーティン
グもカー回転角を増大させる。酸化被膜上にさらにSiO
コーティングを施すことにより、さらにθ、保護効果
を増大できる。
A SiO coating was also applied to the surface of a similar sample with x = 35 atomic%. The result is shown in FIG. The SiO coating also increases the Kerr rotation angle. Further SiO on the oxide film
By applying the coating, θ K and the protective effect can be further increased.

(実施例16) 実施例15と同じ試料を用いて垂直磁気異方性定数Kuの温
度依存性を求めた。(第16図) Kuは低温で増加し、ある程度T1で最大値をとったあと、
さらに低下する。
(Example 16) Using the same sample as in Example 15, the temperature dependence of the perpendicular magnetic anisotropy constant Ku was determined. (Fig. 16) Ku increases at low temperature and reaches a maximum value at T 1 to some extent,
It further decreases.

(実施例17) レーザ光による書き込み実験 実施例1と同じ方法で得られた厚さ約4000ÅのNd38Fe62
膜についてレーザ光による書き込み実験を行なった。
(Example 17) Writing experiment by laser light Nd 38 Fe 62 having a thickness of about 4000 Å obtained by the same method as in Example 1
A writing experiment using a laser beam was performed on the film.

レーザー:半導体レーザ(パワー20mW) バイアス磁界〜1000e 線書込み方式 この結果幅約2〜10μmのビットが書き込めていること
がカー効果を利用した偏光顕微鏡により確認された。
Laser: Semiconductor laser (power 20 mW) Bias magnetic field ~ 1000e Line writing method As a result, it was confirmed by a polarization microscope using the Kerr effect that bits with a width of about 2 to 10 µm could be written.

(実施例18) 第17図に本発明により、220℃で作った150Å厚のFe60Nd
40垂直磁化膜の微細結晶構造の透過電子顕微鏡写真を矢
印部分の領域の回折パターンと共に示す。スペーシング
0.2nm、クラスタ径2〜10nm、平均3〜5nmを示す。
(Example 18) FIG. 17 shows that the present invention makes Fe 60 Nd having a thickness of 150Å made at 220 ° C.
40 A transmission electron micrograph of the fine crystal structure of the perpendicular magnetization film is shown together with the diffraction pattern in the area indicated by the arrow. Spacing
0.2 nm, cluster diameter 2-10 nm, average 3-5 nm are shown.

(実施例19) Fe45Co15Nd35M15の組成でMとしてZr,Hf,V,Nb,Ta,Cr,M
o,Al,TiをTs=210〜285℃、Ar圧1〜2×10-1Torr、膜
厚5300〜1200Åの膜を作成し、磁気特性を測定した。
(Example 19) Zr, Hf, V, Nb, Ta, Cr, M as M in the composition of Fe 45 Co 15 Nd 35 M 15
A film having o, Al, and Ti of Ts = 210 to 285 ° C., an Ar pressure of 1 to 2 × 10 −1 Torr and a film thickness of 5300 to 1200Å was prepared, and the magnetic characteristics were measured.

いずれもKuが2.5×106erg/cc以上、カー回転角θが0.
4°以上の垂直磁化膜が得られた。
In each case, Ku is 2.5 × 10 6 erg / cc or more, and car rotation angle θ K is 0.
A perpendicular magnetization film of 4 ° or more was obtained.

(実施例20) 実施例1、7、12、18と同様にして得られたFe65Nd35
Fe60Nd35M5、(M=Hf,V,Nb,Ta,Cr,Mo,Al,Bi,Mn,Sb,Ge,
Sn,Ni,Si)、Fe45Co15Nd40、Fe45Co15Nd35M5(M=Zr,H
f,V,Nb,Ta,Cr,Mo,Al,Ti,Ni,Si)の各薄膜を1規定食塩
水中に20分間浸漬後、85℃85%RH(相対湿度)で2時間
時効処理を行ない、光学顕微鏡を用いて孔食の観察を行
なった。孔食に対する耐食性はFeCoNdMが最も優れてお
り、次ぎにFeCoNd、FeNdM(M=Hf,V,Nb,Ta,Cr,Mo,Al,N
i,Si)が良く、FeNd及びFeNdM(M=Bi,Mn,Sb,Ge,Sn)
は孔食が比較上最も進行していた。
(Example 20) Fe 65 Nd 35 obtained in the same manner as in Examples 1, 7, 12, and 18,
Fe 60 Nd 35 M 5 , (M = Hf, V, Nb, Ta, Cr, Mo, Al, Bi, Mn, Sb, Ge,
Sn, Ni, Si), Fe 45 Co 15 Nd 40 , Fe 45 Co 15 Nd 35 M 5 (M = Zr, H
Each thin film of f, V, Nb, Ta, Cr, Mo, Al, Ti, Ni, Si) is soaked in 1N saline for 20 minutes and then aged at 85 ℃ 85% RH (relative humidity) for 2 hours. The pitting corrosion was observed using an optical microscope. FeCoNdM has the best corrosion resistance against pitting corrosion, followed by FeCoNd and FeNdM (M = Hf, V, Nb, Ta, Cr, Mo, Al, N
i, Si) is good, and FeNd and FeNdM (M = Bi, Mn, Sb, Ge, Sn)
Pitting was the most advanced in comparison.

(実施例21) Fe100-xPrx(x=20,30,40,50原子%)の組成の薄膜を
次の条件で作成した。Ar圧2×10-1Torr、Tsは各々290
℃と270℃、Dは各々8200Å(0.82μm)と9400Å(0.9
4μm)であった。
Example 21 A thin film having a composition of Fe 100-x Pr x (x = 20, 30, 40, 50 atom%) was prepared under the following conditions. Ar pressure 2 × 10 -1 Torr, Ts is 290 each
℃ and 270 ℃, D is 8200Å (0.82μm) and 9400Å (0.9
4 μm).

こ2種類の薄膜について、実施例12と同様の方法で入射
光線の波長λを変えた場合のカー回転角θを調べた。
その結果を第18図に示す。Fe70Pr30ではλ=500nm付近
でカー回転角θは最大値0.35°を示す。
With respect to these two kinds of thin films, the Kerr rotation angle θ K when the wavelength λ of the incident light beam was changed was examined by the same method as in Example 12.
The results are shown in FIG. In Fe 70 Pr 30 , the Kerr rotation angle θ K shows a maximum value of 0.35 ° near λ = 500 nm.

さらにPr濃度x(原子%)に対するカー回転角の関係を
入射光線λ=500、633nmで測定した結果を第19図に示
す。カー回転角θはPr30原子%付近で最大値をとる。
Further, FIG. 19 shows the result of measuring the relationship of the Kerr rotation angle with respect to the Pr concentration x (atomic%) with the incident light ray λ = 500, 633 nm. The Kerr rotation angle θ K has a maximum value near Pr30 atomic%.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の一実施例、Fe100-XNdXスパッタ薄膜
の磁化温度特性を示すグラフ、 第2図はFe100-XNdX薄膜のキュリー温度Tc、結晶化温度
Tcry、及び飽和磁化Ms(77K及び300K)を示すグラフ、 第3図(a)〜(b)は、Fe100-XNdX(X=35,40)ス
パッタ薄膜の77K及び300Kでの各磁化曲線を示すグラ
フ、 第4図はFe65Nd35スパッタ薄膜の基板温度と垂直磁気異
方性定数Kuの関係を示すグラフ、 第5図はFe65Nd35スパッタ薄膜の各基板温度によるX線
回折パターンを示すグラフ、 第6図はFe65Nd35スパッタ薄膜の厚さとKuとの関係を示
すグラフ、 第7図はFe65Nd35スパッタ薄膜のAr圧とKuの関係を示す
グラフ、 第8図はFe100-XNdXスパッタ薄膜のNd量とKuの関係につ
いて調べた所定の基板温度、ガス圧、膜厚条件下におけ
る一実施例の結果を示すグラフ、 第9(1),(2)図は、Fe60Nd40において4.2〜300K
で求めたトルク曲線を示すグラフ、 第10図は、Fe100-xNdx(x=35,40)スパッタ薄膜のヒ
ステリシス損Wの温度変化を示すグラフ、 第11図は、(Fe1-yCoy)60Nd40について、Co濃度yと結晶
化温度Tcry、キュリー温度Tc,Kuが最大値をとる温度
T1、及び保磁力Hcの関係を示すグラフ(実施例12)、 第12図は、(Fe1-yCoy)60Nd40について、各Co濃度yにお
ける入射光線の波長λ(nm)カー回転角θ(度)の関
係を示すグラフ(実施例12)、 第13図は、λ=500及び633nmにおけるカー回転角|θ
|のCo量(y)に対する関係を示すグラフ(実施例1
3)、 第14図は、実施例13のCo濃度yと、飽和磁化Ms及び垂直
磁気異方性定数Kuの関係を示すグラフ(実施例14)、 第15図は、Fe100-xNdxについて、xとカー回転角|θ
|(度)及び保持力Hcの関係を示すグラフ(実施例1
5)、 第16図は、実施例15と同じ試料についてのKuの温度依存
性を示すグラフ(実施例16)、 第17図は本発明の一実施例の結晶構造を示す透過電子顕
微鏡写真、 第18図はFe100-xPrxの各x(20,30,40,50原子%)につ
いて、入射光線λとカー回転角θ(度)との関係を示
すグラフ(実施例21)、及び 第19図は、第18図と同じ系について、Pr濃度xとカー回
転角θの関係を示すグラフ、を夫々示す。
FIG. 1 is a graph showing the magnetization temperature characteristics of an Fe 100-X Nd X sputtered thin film according to an embodiment of the present invention, and FIG. 2 is a Curie temperature Tc and crystallization temperature of the Fe 100-X Nd X thin film.
Graphs showing Tcry and saturation magnetization Ms (77K and 300K), and FIGS. 3 (a) and 3 (b) are magnetizations at 77K and 300K of Fe 100-X Nd X (X = 35,40) sputtered thin film. A graph showing the curve, Fig. 4 is a graph showing the relationship between the substrate temperature of the Fe 65 Nd 35 sputtered thin film and the perpendicular magnetic anisotropy constant Ku, and Fig. 5 is X-ray diffraction at each substrate temperature of the Fe 65 Nd 35 sputtered thin film. Fig. 6 is a graph showing the pattern, Fig. 6 is a graph showing the relationship between the thickness of the Fe 65 Nd 35 sputtered thin film and Ku, Fig. 7 is a graph showing the relationship between the Ar pressure of the Fe 65 Nd 35 sputtered thin film and Ku, Fig. 8 Is a graph showing the results of an example under a predetermined substrate temperature, gas pressure, and film thickness conditions, in which the relationship between the Nd amount and Ku of the Fe 100-X Nd X sputtered thin film was investigated, 9 (1), (2) The figure shows that Fe 60 Nd 40 is 4.2 to 300K
10 is a graph showing the temperature change of hysteresis loss W of the Fe 100-x Nd x (x = 35,40) sputtered thin film, and FIG. 11 is a graph showing the torque curve obtained in (Fe 1-y For Co y ) 60 Nd 40 , the temperature at which the Co concentration y, the crystallization temperature Tcry, and the Curie temperatures Tc, Ku have the maximum values.
A graph showing the relationship between T 1 and coercive force Hc (Example 12), and FIG. 12 shows the wavelength λ (nm) of the incident light beam at each Co concentration y for (Fe 1-y Co y ) 60 Nd 40. FIG. 13 is a graph showing the relationship between the rotation angles θ K (degrees) (Example 12), and FIG. 13 is a Kerr rotation angle | θ K at λ = 500 and 633 nm.
A graph showing the relationship between | and Co amount (y) (Example 1)
3), FIG. 14 is a graph showing the relationship between the Co concentration y of Example 13, the saturation magnetization Ms and the perpendicular magnetic anisotropy constant Ku (Example 14), and FIG. 15 is Fe 100-x Nd x. About x and Kerr rotation angle | θ K
A graph showing the relationship between | (degree) and holding force Hc (Example 1
5), FIG. 16 is a graph showing the temperature dependence of Ku for the same sample as Example 15 (Example 16), and FIG. 17 is a transmission electron micrograph showing the crystal structure of one example of the present invention, FIG. 18 is a graph showing the relationship between the incident ray λ and the Kerr rotation angle θ K (degrees) for each x (20, 30, 40, 50 atomic%) of Fe 100-x Pr x (Example 21), FIG. 19 and FIG. 19 are graphs showing the relationship between Pr concentration x and Kerr rotation angle θ K for the same system as FIG. 18, respectively.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 G11C 13/06 A 6866−5L H01F 10/16 41/14 (56)参考文献 特開 昭58−165306(JP,A) 特開 昭59−103314(JP,A) 特開 昭59−108304(JP,A) 特開 昭60−128606(JP,A) 特開 昭60−173810(JP,A) 特開 昭60−187008(JP,A) 特開 昭60−193125(JP,A) 特開 昭60−117436(JP,A)─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical display location G11C 13/06 A 6866-5L H01F 10/16 41/14 (56) Reference JP-A-58- 165306 (JP, A) JP 59-103314 (JP, A) JP 59-108304 (JP, A) JP 60-128606 (JP, A) JP 60-173810 (JP, A) JP-A-60-187008 (JP, A) JP-A-60-193125 (JP, A) JP-A-60-117436 (JP, A)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】25〜60原子%の希土類元素R(但し、Rの
内70原子%以上がNd及びPrの1種又は2種、なおRの残
部はY、La、Ce、Sm、Gd、Tb、Dy、Ho、Er及びYbの一種
以上)、残部Feから成り、かつ薄膜の非晶質マトリック
スに数Å〜数100Åの微細結晶相を少なくとも含むこ
と、 垂直磁気異方性定数Kuが反磁界エネルギー2πMs2(Ms
は飽和磁化)より大きな垂直磁気異方性を有すること、 さらに結晶化温度Tcryとキュリー温度Tcとの温度差Tcry
-Tcが100℃以上であることを特徴とする垂直磁気記録媒
体。
1. A rare earth element R of 25 to 60 atomic% (provided that 70 atomic% or more of R is one or two of Nd and Pr, and the balance of R is Y, La, Ce, Sm, Gd, One or more of Tb, Dy, Ho, Er and Yb) and the balance Fe, and the thin film amorphous matrix contains at least a few Å to several hundred Å fine crystalline phase. Magnetic field energy 2πMs 2 (Ms
Has a larger perpendicular magnetic anisotropy than the saturation magnetization), and the temperature difference Tcry between the crystallization temperature Tcry and the Curie temperature Tc.
-Tc is 100 ° C or more, a perpendicular magnetic recording medium.
【請求項2】25〜60原子%の希土類元素R(但し、Rの
内70原子%以上がNd及びPrの1種又は2種、なおRの残
部はY、La、Ce、Sm、Gd、Tb、Dy、Ho、Er及びYbの一種
以上)、30原子%未満のCo及び残部Feから成り、かつ薄
膜の非晶質マトリックスに数Å〜数100Åの微細結晶相
を少なくとも含むこと、 垂直磁気異方性定数Kuが反磁界エネルギー2πMs2(Ms
は飽和磁化)より大きな垂直磁気異方性を有すること、 さらに結晶化温度Tcryとキュリー温度Tcとの温度差Tcry
-Tcが100℃以上であることを特徴とする垂直磁気記録媒
体。
2. A rare earth element R of 25 to 60 atomic% (provided that 70 atomic% or more of R is one or two of Nd and Pr, and the balance of R is Y, La, Ce, Sm, Gd, One or more of Tb, Dy, Ho, Er and Yb), less than 30 atomic% of Co and the balance Fe, and the thin film amorphous matrix contains at least a few Å to several hundred Å fine crystalline phase, perpendicular magnetic field The anisotropy constant Ku is the demagnetizing energy 2πMs 2 (Ms
Has a larger perpendicular magnetic anisotropy than the saturation magnetization), and the temperature difference Tcry between the crystallization temperature Tcry and the Curie temperature Tc.
-Tc is 100 ° C or more, a perpendicular magnetic recording medium.
【請求項3】25〜60原子%の希土類元素R(但し、Rの
内70原子%以上がNd及びPrの1種又は2種、なおRの残
部はY、La、Ce、Sm、Gd、Tb、Dy、Ho、Er及びYbの一種
以上)、10原子%以内のNi、V、Ta、Cr、Mo、W、Mn、
Bi、Al、Si、Pb、Sn及びSbの少なくとも一種以上、残部
Feから成り、かつ薄膜の非晶質マトリックスに数Å〜数
100Åの微細結晶相を少なくとも含むこと、 垂直磁気異方性定数Kuが反磁界エネルギー2πMs2(Ms
は飽和磁化)より大きな垂直磁気異方性を有すること、 さらに結晶化温度Tcryとキュリー温度Tcとの温度差Tcry
-Tcが100℃以上であることを特徴とする垂直磁気記録媒
体。
3. A rare earth element R of 25 to 60 atomic% (provided that 70 atomic% or more of R is one or two of Nd and Pr, and the balance of R is Y, La, Ce, Sm, Gd, One or more of Tb, Dy, Ho, Er and Yb), Ni, V, Ta, Cr, Mo, W, Mn within 10 atomic%
At least one of Bi, Al, Si, Pb, Sn and Sb, balance
It consists of Fe and is a few Å to a few in the amorphous matrix of the thin film.
At least a 100Å fine crystalline phase is included, and the perpendicular magnetic anisotropy constant Ku has a diamagnetic field energy of 2πMs 2 (Ms
Has a larger perpendicular magnetic anisotropy than the saturation magnetization), and the temperature difference Tcry between the crystallization temperature Tcry and the Curie temperature Tc.
-Tc is 100 ° C or more, a perpendicular magnetic recording medium.
【請求項4】25〜60原子%の希土類元素R(但し、Rの
内70原子%以上がNd及びPrの1種又は2種、なおRの残
部はY、La、Ce、Sm、Gd、Tb、Dy、Ho、Er及びYbの一種
以上)、10原子%以内のNi、Zr、V、Ta、Cr、Mo、W、
Mn、Bi、Al、Si、Pb、Sn及びSbの少なくとも一種以上、
30原子%未満のCo及び残部Feから成り、かつ薄膜の非晶
質マトリックスに数Å〜数100Åの微細結晶相を少なく
とも含むこと、 垂直磁気異方性定数Kuが反磁界エネルギー2πMs2(Ms
は飽和磁化)より大きな垂直磁気異方性を有すること、 さらに結晶化温度Tcryとキュリー温度Tcとの温度差Tcry
-Tcが100℃以上であることを特徴とする垂直磁気記録媒
体。
4. A rare earth element R of 25 to 60 atomic% (provided that 70 atomic% or more of R is one or two of Nd and Pr, and the balance of R is Y, La, Ce, Sm, Gd, One or more of Tb, Dy, Ho, Er and Yb), Ni, Zr, V, Ta, Cr, Mo, W within 10 atomic%
Mn, Bi, Al, Si, Pb, at least one or more of Sn and Sb,
The amorphous matrix of the thin film contains less than 30 atomic% of Co and the balance Fe, and contains at least a fine crystalline phase of several Å to several hundred Å, and the perpendicular magnetic anisotropy constant Ku has a demagnetizing field energy of 2πMs 2 (Ms
Has a larger perpendicular magnetic anisotropy than the saturation magnetization), and the temperature difference Tcry between the crystallization temperature Tcry and the Curie temperature Tc.
-Tc is 100 ° C or more, a perpendicular magnetic recording medium.
JP59236661A 1984-11-12 1984-11-12 Perpendicular magnetic recording medium Expired - Lifetime JPH0670924B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP59236661A JPH0670924B2 (en) 1984-11-12 1984-11-12 Perpendicular magnetic recording medium
DE8585114367T DE3581378D1 (en) 1984-11-12 1985-11-12 VERTICAL MAGNETIZED RECORDING MEDIUM AND METHOD FOR THE PRODUCTION THEREOF.
EP85114367A EP0184034B1 (en) 1984-11-12 1985-11-12 Perpendicular magnetic recording medium and method of producing same
JP5021629A JPH0738357B2 (en) 1984-11-12 1993-01-18 Method of manufacturing perpendicular magnetic recording medium
US08/154,393 US5660929A (en) 1984-11-12 1993-11-18 Perpendicular magnetic recording medium and method of producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP59236661A JPH0670924B2 (en) 1984-11-12 1984-11-12 Perpendicular magnetic recording medium
JP5021629A JPH0738357B2 (en) 1984-11-12 1993-01-18 Method of manufacturing perpendicular magnetic recording medium

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP5021629A Division JPH0738357B2 (en) 1984-11-12 1993-01-18 Method of manufacturing perpendicular magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS61222104A JPS61222104A (en) 1986-10-02
JPH0670924B2 true JPH0670924B2 (en) 1994-09-07

Family

ID=26358722

Family Applications (2)

Application Number Title Priority Date Filing Date
JP59236661A Expired - Lifetime JPH0670924B2 (en) 1984-11-12 1984-11-12 Perpendicular magnetic recording medium
JP5021629A Expired - Lifetime JPH0738357B2 (en) 1984-11-12 1993-01-18 Method of manufacturing perpendicular magnetic recording medium

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP5021629A Expired - Lifetime JPH0738357B2 (en) 1984-11-12 1993-01-18 Method of manufacturing perpendicular magnetic recording medium

Country Status (1)

Country Link
JP (2) JPH0670924B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2601796B2 (en) * 1985-12-05 1997-04-16 日立マクセル株式会社 Magneto-optical recording medium
JP2587408B2 (en) * 1985-12-27 1997-03-05 日立マクセル株式会社 Magneto-optical recording medium
JPS6212941A (en) * 1985-07-09 1987-01-21 Seiko Epson Corp Photomagnetic recording medium
JPH0782671B2 (en) * 1985-08-26 1995-09-06 セイコーエプソン株式会社 Magneto-optical recording medium
JPS63214940A (en) * 1987-03-04 1988-09-07 Daicel Chem Ind Ltd Magneto-optical recording medium
JPS63237240A (en) * 1987-03-26 1988-10-03 Daicel Chem Ind Ltd Improvement of magneto-optical recording medium
JP2707796B2 (en) * 1990-05-17 1998-02-04 松下電器産業株式会社 Magneto-optical recording medium
JP2629505B2 (en) * 1991-11-14 1997-07-09 日本ビクター株式会社 Perpendicular magnetic recording medium and method of manufacturing the same
JPH11110838A (en) * 1997-09-30 1999-04-23 Toyota Motor Corp Magneto-optical recording medium and its manufacture
US7186306B2 (en) * 2003-02-14 2007-03-06 The Nanosteel Company Method of modifying iron based glasses to increase crystallization temperature without changing melting temperature

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58165306A (en) * 1982-03-26 1983-09-30 Hitachi Ltd Vertical magnetic recording medium
JPS59103314A (en) * 1982-12-03 1984-06-14 Seiko Instr & Electronics Ltd Photomagnetic recording medium
JPS59108304A (en) * 1982-12-14 1984-06-22 Seiko Instr & Electronics Ltd Optical magnetic recording medium
JPS60117436A (en) * 1983-11-29 1985-06-24 Sharp Corp Magnetooptic storage element
JPS60128606A (en) * 1983-12-15 1985-07-09 Seiko Instr & Electronics Ltd Photo-magnetic recording medium
JPS60173810A (en) * 1984-02-20 1985-09-07 Seiko Instr & Electronics Ltd Photomagnetic recording medium
JPS60187008A (en) * 1984-03-07 1985-09-24 Sumitomo Metal Mining Co Ltd Vertically magnetized magnetic thin-film
JPS60193125A (en) * 1984-03-13 1985-10-01 Mitsubishi Electric Corp Vertical magnetic recording medium

Also Published As

Publication number Publication date
JPH0645176A (en) 1994-02-18
JPS61222104A (en) 1986-10-02
JPH0738357B2 (en) 1995-04-26

Similar Documents

Publication Publication Date Title
US5660929A (en) Perpendicular magnetic recording medium and method of producing same
US5772856A (en) Magneto-optical recording medium and method of manufacturing the same
CA1315612C (en) Perpendicular magnetic storage medium
JPH0670924B2 (en) Perpendicular magnetic recording medium
JPS6115308A (en) Photomagnetic recording material
JPS6134744A (en) Photoelectromagnetic recording medium
JPS6129127B2 (en)
EP0622791A1 (en) Composite magneto-optic memory and media
US4925742A (en) Thin-film having large Kerr rotation angle and production process thereof
US5053287A (en) Magnetooptical recording media and processes for production thereof
JPS58175809A (en) Photomagnetic recording medium
JP3150401B2 (en) Perpendicular magnetization film and magnetic recording medium
JP2680586B2 (en) Magneto-optical storage medium
JP2579184B2 (en) Magnetic recording media
US6324127B1 (en) Magneto-optical recording layer having double-layer structure and magneto-optical disk adopting the same
Hansen et al. Garnets and ferrites for magneto-optical recording
JPH0470705B2 (en)
JPH0513323B2 (en)
US6096446A (en) Magnetooptical recording medium and method of producing the same
KR100306975B1 (en) Magnetic material containing metastable alloy and its manufacturing method
JPS62267950A (en) Magneto-optical recording medium
JP2853664B2 (en) Magnetoresistance effect film and magnetoresistance effect element using the same
JP2824998B2 (en) Magnetic film
JPS6184005A (en) Magnetic recording material
Ishida et al. High magnetic field sensitivity of TbFeCo layer and Pt/Co multilayers with an ultra-thin RE-rich RE-TM layer

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term