JPS61222104A - Vertical magnetic recording medium and manufacture thereof - Google Patents

Vertical magnetic recording medium and manufacture thereof

Info

Publication number
JPS61222104A
JPS61222104A JP59236661A JP23666184A JPS61222104A JP S61222104 A JPS61222104 A JP S61222104A JP 59236661 A JP59236661 A JP 59236661A JP 23666184 A JP23666184 A JP 23666184A JP S61222104 A JPS61222104 A JP S61222104A
Authority
JP
Japan
Prior art keywords
atomic
rare earth
perpendicular magnetic
temperature
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59236661A
Other languages
Japanese (ja)
Other versions
JPH0670924B2 (en
Inventor
Takao Suzuki
孝雄 鈴木
Masato Sagawa
眞人 佐川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP59236661A priority Critical patent/JPH0670924B2/en
Priority to DE8585114367T priority patent/DE3581378D1/en
Priority to EP85114367A priority patent/EP0184034B1/en
Publication of JPS61222104A publication Critical patent/JPS61222104A/en
Priority to JP5021629A priority patent/JPH0738357B2/en
Priority to US08/154,393 priority patent/US5660929A/en
Publication of JPH0670924B2 publication Critical patent/JPH0670924B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To improve the characteristics of a vertically magnetized film by mainly using Fe and rare earth elements or these elements and Co and employing light rare earth elements mainly comprising Nd and Pr as rare earth elements. CONSTITUTION:Nd and Pr are used as 70% or more in rare earth elements R and one kind or more of Ce, Y, Yb, etc. as the remainder, and the range of R extends over 21-60at%. Co of less than 30% in the whole composition is substituted for residual Fe in R, the remainder is shaped by one kind or more of an element M, such as Ni, Zr, Sb, etc. of less than 10at% of the whole composition, and the thickness of a thin-film is brought to 0.3mum or more. Since the temperature of a substrate must be kept at a temperature up to the crystallizing temperature or lower of an alloy composition from 180 deg.C or higher in order to acquire a vertically magnetized film, elements capable of resisting said temperature are employed. Accordingly, the characteristics of the vertically magnetized film are improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は垂直磁気記録方式において使用する磁気記録媒
体及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnetic recording medium used in a perpendicular magnetic recording system and a method for manufacturing the same.

〔従来の技術及び発明が解決すべき問題点〕従来、薄膜
面と垂直な方向に磁化容易軸を有する強磁性薄膜として
MnB1.MnCuB1゜CoCrなどの多結晶金属薄
膜、GIGに代表される化合物単結晶薄膜、Gd−Co
、Gd−Fe、Tb−Fe、Dy−Feなどの希土類遷
移金属非晶質薄膜などが知られている。
[Prior art and problems to be solved by the invention] Conventionally, MnB1. Polycrystalline metal thin films such as MnCuB1゜CoCr, compound single crystal thin films typified by GIG, Gd-Co
, Gd-Fe, Tb-Fe, Dy-Fe, and other rare earth transition metal amorphous thin films are known.

本発明はこれらの内で特に希土類遷移金属非晶質合金薄
膜に関するものである。非晶質膜は、多結晶薄膜のよう
にノイズの原因となる結晶粒界が存在しない、広い膜を
容易に製作できるなどの特長を有し、光磁気記録材料と
して好都合である。
Among these, the present invention particularly relates to rare earth transition metal amorphous alloy thin films. Amorphous films are advantageous as magneto-optical recording materials because they do not have crystal grain boundaries that cause noise, unlike polycrystalline thin films, and can be easily manufactured into wide films.

希土類遷移金属非晶質合金が光磁気記録媒体として使用
される為には、磁化容易方向が膜面に対して垂直方向に
向いていることが要求される。垂直磁気異方性は、いか
なる場合にも誘起できるものではなく、むしろ、磁性5
itsの反磁界作用により膜面に平行な方向へ配向する
傾向を示す、垂直磁化膜を得るためには、この反磁界に
打ち勝つだけの異方性エネルギーを付与することが必要
である。
In order for a rare earth transition metal amorphous alloy to be used as a magneto-optical recording medium, it is required that the direction of easy magnetization is perpendicular to the film surface. Perpendicular magnetic anisotropy cannot be induced in any case, but rather the magnetic 5
In order to obtain a perpendicularly magnetized film that exhibits a tendency to be oriented in a direction parallel to the film surface due to the action of the demagnetizing field, it is necessary to provide anisotropic energy sufficient to overcome this demagnetizing field.

得られる薄膜の垂直磁気異方性の程度は、−軸異方性定
数Kuの大きさによって表現でき、垂直磁化膜となるた
めには、このKuと飽和磁化Msとの間に少なくともK
 u > 2πM s ”の関係を満足しなければなら
ない0本発明において「垂直磁気異方性」とは少なくと
もか−る条件を充足するものを称する。
The degree of perpendicular magnetic anisotropy of the obtained thin film can be expressed by the magnitude of the -axis anisotropy constant Ku, and in order to become a perpendicularly magnetized film, there must be at least K between Ku and the saturation magnetization Ms.
In the present invention, "perpendicular magnetic anisotropy" refers to something that satisfies at least this condition.

垂直磁気記録媒体では一般に高い記録密度が要求され、
微小な磁区が安定して保持されるためにはMsが大きく
、かつ十分に大きなKuが得られることが大へん重要で
ある。また、光磁気ディスクではレーザ光を書込みパワ
ーとして用いるが、これを可使とするためには100〜
200℃程度の十分に低いキュリ一温度Tcとそれより
も十分に高い結晶化温度Tc ryを有し少なくともこ
の温度差は100℃以上であることが要求される。
Perpendicular magnetic recording media generally require high recording density.
In order to stably hold a minute magnetic domain, it is very important to obtain a large Ms and a sufficiently large Ku. In addition, magneto-optical disks use laser light as the writing power, but in order to make it usable, it is necessary to
It is required to have a sufficiently low Curie temperature Tc of about 200°C and a sufficiently higher crystallization temperature Tcry, with a temperature difference of at least 100°C or more.

垂直磁化膜として最も良く知られている希土類−遷移金
属の組合せは重希土類元素と鉄である0代表的なものに
TbFe、GdFe。
The most well-known rare earth-transition metal combination for perpendicular magnetization films is a heavy rare earth element and iron. Typical examples include TbFe and GdFe.

DyFe、GdTbFe、TbDyFeなどがある0例
えばTbFeはキュリ一温度Tc=140〜250℃、
カー回転角θ、〜0.3°、飽和磁化M !! = 5
0〜100 e m u / CC、垂直磁気異方性定
数Ku−10’ 〜10’ erg/ccなどの特性を
有する。
There are DyFe, GdTbFe, TbDyFe, etc. For example, TbFe has a Curie temperature Tc = 140 to 250°C,
Kerr rotation angle θ, ~0.3°, saturation magnetization M! ! = 5
It has characteristics such as 0 to 100 e mu / CC and perpendicular magnetic anisotropy constant Ku-10' to 10' erg/cc.

しかしこれらに用いられるTb、Dy、Gdなどの重希
土類元素は地殻中にわずかしか存在せず希少資源であり
、また複雑な分離工程を必要とし、大へん高価である。
However, the heavy rare earth elements such as Tb, Dy, and Gd used in these materials exist only in small amounts in the earth's crust and are rare resources, and require complicated separation processes and are very expensive.

また重希土類元素と鉄の原子磁気モーメントは反平行に
結合しているので飽和磁化Msやキュリ一温度Tcの組
成債存性が大きく均質な製品を数多く生産することが困
難である。
Furthermore, since the atomic magnetic moments of heavy rare earth elements and iron are coupled in an antiparallel manner, it is difficult to produce many homogeneous products with large compositional stability in saturation magnetization Ms and Curie temperature Tc.

一方Nd 、Prなどの軽希土類元素は地殻中に重希土
類元素よりもはるかに多く存在している。このような希
土類−鉄垂直磁化膜がNd。
On the other hand, light rare earth elements such as Nd and Pr exist in far greater amounts than heavy rare earth elements in the earth's crust. Such a rare earth-iron perpendicular magnetization film is Nd.

Prなどの軽希土類元素を用いて作製することができれ
ば、資源的な問題は一掃されるのである。
If it could be manufactured using a light rare earth element such as Pr, resource problems would be eliminated.

これまで軽希土類・鉄の非晶質合金の検討は例えばJ、
J、CroatがF e o、+so N d o、+
oやF e O,ao P r O,40付近の組成で
液体急冷法を用いてリボン合金を作製し、高い保磁力が
得られることから永久磁石としての可能性を論じている
(Appl、Phys、Lett、39 (4)。
Until now, studies on amorphous alloys of light rare earths and iron have been carried out by, for example, J.
J, Croat is Fe o, +so N do, +
A ribbon alloy was fabricated using a liquid quenching method with a composition near o, F e O, ao P r O, 40, and the possibility of using it as a permanent magnet was discussed because a high coercive force could be obtained (Appl, Phys. , Lett, 39 (4).

15、August、1981)、Lかしこのような方
法で得られるリボンは合金全体にわたって均質なものは
得られず、実質的に等方性のものしか得られていない、
またリボンの厚さは33〜208ILmであって記録媒
体として用いられるものではない。
15, August, 1981), but the ribbons obtained by this method are not homogeneous throughout the alloy, and are only substantially isotropic.
Further, the thickness of the ribbon is 33 to 208 ILm, and it is not used as a recording medium.

また最近では、K、Tsutsumi等がF e sb
s −N d 34− T i 4.5のスパッタ薄膜
が垂直磁気異方性を有することを報告している。
Also, recently, K. Tsutsumi et al.
It has been reported that a sputtered thin film of s -N d 34-T i 4.5 has perpendicular magnetic anisotropy.

(Jpn、J、Appl、Phys、23 (1984
)、  L189〜L171頁)しかしその特性はM 
S ” 430 e m u / CC%K u m 
2 X 10 ’erg/ccであった。またTiを含
まないFeNdスパッタ薄膜については作製条件は明ら
かでないが、薄膜の面内に異方性があるものしか報告さ
れていない。
(Jpn, J. Appl, Phys, 23 (1984
), pages L189-L171) However, its characteristics are
S” 430 e m u / CC% K u m
It was 2 x 10'erg/cc. Furthermore, although the manufacturing conditions for FeNd sputtered thin films that do not contain Ti are not clear, only thin films that have in-plane anisotropy have been reported.

軽希土類元素及び鉄の非晶質薄膜は高い飽和磁化を有す
るがそのために薄膜の反磁界作用に打ち勝つための垂直
磁気異方性エネルギーを付与することはほとんど不可能
とされてきた。
Although amorphous thin films of light rare earth elements and iron have high saturation magnetization, it has been considered almost impossible to impart perpendicular magnetic anisotropy energy to overcome the demagnetizing field effect of the thin film.

(目的) 本発明は、軽希土類及び鉄を中心とする新規な垂直磁気
記録媒体及びその製造方法を提供することを基本的目的
とする0本発明はさらに上述の従来法に比し優れた特性
を有する垂直磁気記録媒体及びその製造方法を提供する
ことをも目的とする。
(Objective) The basic object of the present invention is to provide a novel perpendicular magnetic recording medium mainly made of light rare earth elements and iron, and a method for manufacturing the same. Another object of the present invention is to provide a perpendicular magnetic recording medium having the following characteristics and a method for manufacturing the same.

〔課題を解決するための手段〕[Means to solve the problem]

(概要) すなわち、本発明は軽希土類及び鉄を中心とするまった
く新しい磁気記録媒体及びその製造方法を提供するもの
である0本発明の磁気記録媒体は鉄及び希土類元素を中
心とし、希土類元素とじてNd、Prを主体とする軽希
土類元素を用いた垂直磁化薄膜である。
(Summary) That is, the present invention provides a completely new magnetic recording medium mainly containing light rare earth elements and iron, and a method for manufacturing the same. This is a perpendicularly magnetized thin film using light rare earth elements mainly composed of Nd and Pr.

本発明の第1の態様としての垂直磁気記録媒体は、希土
類元素Rが31〜60原子%(但しRの内70原子%以
上がNd+Prの和、Rの残部はY、La、Ce、Sm
、Gd、Tb、Dy。
The perpendicular magnetic recording medium as the first aspect of the present invention has a rare earth element R of 31 to 60 atomic % (however, 70 atomic % or more of R is the sum of Nd + Pr, and the remainder of R is Y, La, Ce, S
, Gd, Tb, Dy.

Ho、Er及びYbの一種以上)、残部Feから成り垂
直磁気異方性を有することを特徴とする。
It is characterized by having perpendicular magnetic anisotropy.

本発明の第2の態様として、前記Feの30原子%未満
をGoにて置換した垂直記録媒体が提供される。
A second aspect of the present invention provides a perpendicular recording medium in which less than 30 at. % of the Fe is replaced with Go.

さらに本発明の別の態様として所定量以外の他の元素M
IO原子%以下(但しMはNi、Zr。
Furthermore, as another aspect of the present invention, other elements M other than the predetermined amount
IO atomic % or less (M is Ni, Zr.

Nb、V、Ta、Cr、Mo、W、Mn、Bi。Nb, V, Ta, Cr, Mo, W, Mn, Bi.

A!L、St 、Pb、Ge、Sn及びIfの一種以上
)を含むこともできる。
A! L, St 2 , Pb, Ge, Sn, and one or more of If).

以上は、式R(Fe、Co)Mで表わされ、R31〜6
0原子%、M0〜lO原子%、及び残部Fe(但しFe
の30原子%未満はCoで置換できる)から成る組成を
成す。
The above is represented by the formula R(Fe, Co)M, and R31-6
0 atom%, M0 to lO atom%, and the balance Fe (however, Fe
Less than 30 atomic % of Co can be substituted with Co).

本発明による垂直磁気記録媒体の製造方法は、基板上に
金属ガス凝集法による薄膜の形成において、上記の組成
を有する垂直磁気異方性を有する薄膜を基板温度を18
−0℃〜合金の結晶化温度以下の温度に保持すると共に
、膜厚を0.3〜3gmとする垂直磁気異方性を有する
薄膜を形成することを特徴とする。
A method for manufacturing a perpendicular magnetic recording medium according to the present invention includes forming a thin film on a substrate by a metal gas agglomeration method.
It is characterized by forming a thin film having perpendicular magnetic anisotropy with a film thickness of 0.3 to 3 gm while maintaining the temperature at -0°C to below the crystallization temperature of the alloy.

(作用効果概要) 本発明者らは前述のような事情から非晶質薄膜の作製条
件を詳細に検討した。その結果資源が豊富で安価なNd
、Prなどの軽希土類元素及び鉄を用いて、キュリ一温
度Tc=70〜250℃。
(Summary of Effects) The present inventors have studied in detail the conditions for producing an amorphous thin film based on the above-mentioned circumstances. As a result, Nd is an abundant and inexpensive resource.
, using light rare earth elements such as Pr and iron, Curie temperature Tc = 70-250°C.

飽和磁化Ms約450 e m u / c c以上、
垂直磁気異方性定数Ku2.5〜7X106e rg/
cc以上、カー回転角θに〜0.3°の特性、即ち前述
の重希土類−鉄非晶質薄膜と同等またはそれ以上の特性
を有する垂直磁化膜が得られた。
Saturation magnetization Ms approximately 450 em u/cc or more,
Perpendicular magnetic anisotropy constant Ku2.5~7X106e rg/
A perpendicularly magnetized film was obtained that had a property of cc or more and a Kerr rotation angle θ of 0.3°, that is, a perpendicularly magnetized film having properties equivalent to or better than the above-mentioned heavy rare earth-iron amorphous thin film.

本発明において、NdpPrと鉄との組合せは各々の原
子の磁気モーメントが平行に結合した場合、重希土類元
素・鉄の場合よりも高い飽和磁化が得られ、記録の読み
出し精度が向上する。熱磁気書込みを行なう場合は、高
い飽和磁化はもれ磁束が利用できて外部から加えなけれ
ばならない磁場が小さくても良い。
In the present invention, in the combination of NdpPr and iron, when the magnetic moments of the respective atoms are coupled in parallel, higher saturation magnetization can be obtained than in the case of heavy rare earth elements/iron, and the reading accuracy of recording is improved. When performing thermomagnetic writing, high saturation magnetization makes it possible to utilize leakage magnetic flux, and the magnetic field that must be applied from the outside may be small.

(好適な実施の態様) 本発明に用いる希土類元素Rとして、Rの内70%以上
はNdとPrを用い特にNdが望ましい、Rの残部は入
手上の事情などからCe、Y。
(Preferred Embodiment) As the rare earth element R used in the present invention, at least 70% of R is Nd and Pr, and Nd is particularly desirable, and the remainder is Ce and Y due to availability reasons.

Sm、Dy、Tb、Ho、Gd、La、Er。Sm, Dy, Tb, Ho, Gd, La, Er.

ybなどその他の希土類元素を含んだものを用いても良
い。
Materials containing other rare earth elements such as yb may also be used.

Rは全体の組成の31原子%(at%)以上で薄膜面に
垂直な磁気異方性定数Kuが2.5×1106er/c
c以上となり十分に安定な垂直磁化膜となる。
R is 31 atomic % (at%) or more of the total composition, and the magnetic anisotropy constant Ku perpendicular to the thin film surface is 2.5 × 1106 er/c
c or more, resulting in a sufficiently stable perpendicular magnetization film.

Rが80at%以上では活性な希土類元素を多く含むた
め薄膜作成後の安定性に欠ける。従ってRの範囲は31
〜60at%とする。Rが33〜50at%はKu=3
X10’ el rg/cC以上の好ましい範囲である
(第8図参照)。
When R is 80 at % or more, the film contains a large amount of active rare earth elements, resulting in a lack of stability after forming a thin film. Therefore, the range of R is 31
~60at%. When R is 33 to 50 at%, Ku=3
The preferred range is X10'el rg/cC or more (see Figure 8).

第2図は飽和磁化Ms及びキュリ一温度Tcの組成依存
性を示す図であるが広い組成範囲にわたって飽和磁化M
s及びキュリ一温度Tcの変化の割合が小さく、重希土
類元素鉄の場合と較べて遥かに安定した品質の製品を容
易に作製できる様子がわかる。
Figure 2 shows the composition dependence of saturation magnetization Ms and Curie temperature Tc.
It can be seen that the rate of change in s and the Curie temperature Tc is small, and it is possible to easily produce a product with much more stable quality than in the case of heavy rare earth element iron.

Hの残りは鉄を主体とするがFeの30%未満をCoで
置換することは垂直磁化膜としての特性を損なうことな
く飽和磁化Ms、キュリ一温度Tcの上昇や薄膜の耐食
性を向上する効果がある。
The remainder of H is mainly iron, but substituting less than 30% of Fe with Co has the effect of increasing the saturation magnetization Ms, the Curie temperature Tc, and improving the corrosion resistance of the thin film without impairing the properties of the perpendicularly magnetized film. There is.

全体の組成の1Oat96未満の元素M即ち。Element M of less than 1 Oat96 of the total composition, ie.

Ni 、Zr、Nb、V、Ta’、Cr、Mo、W。Ni, Zr, Nb, V, Ta', Cr, Mo, W.

Mn、Bi 、All、Pb、Ge、Sn、Hfなどの
添加も垂直磁化膜としての特性を損なわない。
Addition of Mn, Bi, All, Pb, Ge, Sn, Hf, etc. does not impair the properties of the perpendicularly magnetized film.

また10at%以下のB、C,Sf 、P等のメタロイ
ドの添加は非晶質状態の生成を容易にする。
Furthermore, the addition of metalloids such as B, C, Sf 2 , P, etc. in an amount of 10 at % or less facilitates the formation of an amorphous state.

さらに、本発明の組成には全体の組成の10at%未満
のTfを含有させることもでき、Ku3x106erg
/ccめものを得ることができる。
Furthermore, the compositions of the present invention can also contain less than 10 at% of Tf of the total composition, Ku3x106erg
/cc You can get prizes.

また本発明による薄膜は飽和磁化Msが高いため、垂直
磁気異方性定数が2.5X10’ erg/ CCより
大きいことが必要である。一般に非晶質膜を作成するた
めの基板を構成する基板材料は通常ガラス、AR、ポリ
イミド系樹脂材、ポリエステル系樹脂材などを用いるが
、本発明の場合は垂直磁化膜を得るために基板の温度を
180℃以上、該合金組成の結晶化温度以下に保たなけ
ればならないのでこの温度に耐えるものを用いる。
Further, since the thin film according to the present invention has a high saturation magnetization Ms, it is necessary that the perpendicular magnetic anisotropy constant is larger than 2.5×10′ erg/CC. In general, glass, AR, polyimide resin material, polyester resin material, etc. are used as the substrate material for forming the substrate for creating an amorphous film, but in the case of the present invention, the substrate material is Since the temperature must be kept at 180° C. or higher and lower than the crystallization temperature of the alloy composition, a material that can withstand this temperature is used.

基板温度200〜300℃はKu=3XlO’erg/
cc以上が得られる好ましい範囲である(第4図)。
When the substrate temperature is 200 to 300℃, Ku=3XlO'erg/
The preferred range is cc or more (Fig. 4).

薄膜の厚さは厚くなるに従ってKuが大きくなり、垂直
磁化膜を得るためには0.3gm以上必要であるが、3
pmをこえると均一な層が得難く、生産上好ましくない
(第6図)。
As the thickness of the thin film increases, Ku increases, and in order to obtain a perpendicularly magnetized film, 0.3 gm or more is required, but 3
If it exceeds pm, it will be difficult to obtain a uniform layer, which is unfavorable in terms of production (Figure 6).

士砧88ζ上ス*帷1士仝尿ガス扉焦辻(上器1嵌虐さ
れ、スパッタ法、蒸着法、いずれの方法においても作製
できるが、スパッタ法の場合アルゴンの圧力は2xto
−1Torr付近が望ましい(第7図)。
Shikin 88ζ Upper *Scale 1 Urine gas door focus
A value around -1 Torr is desirable (Fig. 7).

スパッタの際に基板には基板と垂直方向に数〜数+Oe
の磁界が加わっていることが望ましい。
During sputtering, several to several + Oe are applied to the substrate in the direction perpendicular to the substrate.
It is desirable that a magnetic field of .

この磁界は基板下にとりつけた加熱用のシース線をソレ
ノイド状に巻きつけ、加熱電流として直流を用いること
によって容易に得ることができる。
This magnetic field can be easily obtained by winding a heating sheath wire attached under the substrate in a solenoid shape and using direct current as the heating current.

本発明による薄膜の状態は非晶質相あるいは約い(第5
図)。
The state of the thin film according to the present invention is an amorphous phase or a crystalline phase (fifth phase).
figure).

また大きな飽和磁化を有することに基づき、光磁気ディ
スクとして熱磁気書込みを行う場合は囲りの部分からの
もれ磁束が利用できるため外部から加える磁場が小さく
ても良い。
Furthermore, based on the large saturation magnetization, when performing thermomagnetic writing as a magneto-optical disk, leakage magnetic flux from the surrounding area can be used, so the magnetic field applied from the outside may be small.

〔実施例〕〔Example〕

以下に実施例を用いて詳細に説明する。薄膜は高周波ス
パッタ法を用いてAr雰囲気中でガラス基板上に作成し
た。
This will be explained in detail below using examples. The thin film was created on a glass substrate in an Ar atmosphere using a high frequency sputtering method.

Arガスを導入する前にスパッタ容器内を5×10−’
 T o r r以上の真空にした。スパッタの速度は
約21Lm/hrであった。スパッタ作成中は基板には
バイアス電圧を加えていない。
Before introducing Ar gas, the inside of the sputtering chamber is 5×10-'
The vacuum was increased to more than T o r r. The sputtering speed was about 21 Lm/hr. No bias voltage was applied to the substrate during sputtering.

基板の加熱は基板の下にとりつけた円筒状の銅製ボビン
の外周に巻回したシース線の電流を調整することにより
行った。
The substrate was heated by adjusting the current of a sheathed wire wound around the outer periphery of a cylindrical copper bobbin attached below the substrate.

電流は直流を用いたため、基板上には数十〇sの磁界が
発生している。試料の磁気特性は最大磁場強さが20k
Oeのトルク磁力計及び振動試料型磁力計(VSM)を
用いた。薄膜の構造解析はCu−にα線を用いたX線回
折と、透過式電子顕微鏡によった。
Since direct current was used, a magnetic field of several tens of seconds was generated on the substrate. The magnetic properties of the sample have a maximum magnetic field strength of 20k.
An Oe torque magnetometer and a vibrating sample magnetometer (VSM) were used. The structure of the thin film was analyzed by X-ray diffraction using α-rays for Cu- and a transmission electron microscope.

(実施例1) 第1図にFe+。6−!Nd!、X=18.30 。(Example 1) Figure 1 shows Fe+. 6-! Nd! , X=18.30.

35.38.4057)組成でAr圧が1〜2×10−
’Torr、基板温度220 N290℃、膜厚500
0A〜1.2gmの条件で作成した薄膜の磁化の温度依
存性を示す。
35.38.4057) Composition with Ar pressure of 1 to 2 x 10-
'Torr, substrate temperature 220N290℃, film thickness 500
The temperature dependence of magnetization of thin films created under conditions of 0 A to 1.2 gm is shown.

ここで磁化は容易磁化軸方向に飽和磁化させた後、VS
Mで10kOeの磁場中で測定を行った。
Here, magnetization is easy after saturated magnetization in the direction of the magnetization axis, and then VS
Measurements were carried out at M in a magnetic field of 10 kOe.

キュリ一温度TcはM2 /T (M :磁化、T:温
度)曲線の外挿線が温度軸と交錯する点より求めた。
The Curie temperature Tc was determined from the point where the extrapolated line of the M2/T (M: magnetization, T: temperature) curve intersects the temperature axis.

第1図中Tcryは結晶化温度を示す。In FIG. 1, Tcry indicates the crystallization temperature.

キュリ一温度は350〜400K(77〜127℃) 
でDyFe (Tc 〜70℃)、TbFe (Tc 
N140℃)とは?同等であった。
Curi temperature is 350-400K (77-127℃)
DyFe (Tc ~70℃), TbFe (Tc
What is N140℃? They were equivalent.

またキュリ一温度(T c)と結晶化温度(Tcry)
の差が約200℃あることがらレーザ光による熱磁気書
き込みが十分行えることが判る。
Also, Curie temperature (Tc) and crystallization temperature (Tcry)
The difference in temperature is approximately 200° C., which indicates that thermomagnetic writing using laser light can be performed satisfactorily.

第2図は第1図のキュリ一温度及び結晶化温度を組成(
F e 160−! N dx )と対比させたもので
ある。キュリ一温度は広い組成範囲にわたってほとんど
変化しないことが判る。
Figure 2 shows the composition of the Curie temperature and crystallization temperature in Figure 1 (
Fe 160-! N dx ). It can be seen that the Curie temperature hardly changes over a wide composition range.

また第2図にはまた77K及び300にでの飽和磁化の
組成依存性を示す。
FIG. 2 also shows the compositional dependence of saturation magnetization at 77K and 300K.

(実施例2) F e 6s N d 3g及びF e so N d
 4oの組成で基板温度が240 N290℃、Ar圧
が1〜2×106Torrの条件で作成したスパッタ薄
膜を77K及び300にで磁気特性を測定した。その結
果を第3図に示す、薄膜の垂直方向(1)及び水平方向
(//)の測定から77におよび300Kにおいてこれ
らの薄膜が垂直磁化膜である様子がわかる。
(Example 2) Fe 6s N d 3g and Fe so N d
The magnetic properties of a sputtered thin film prepared with a composition of 4o under conditions of a substrate temperature of 240N, 290°C, and an Ar pressure of 1 to 2 x 106 Torr were measured at 77K and 300K. The results are shown in FIG. 3. From measurements of the thin films in the vertical direction (1) and horizontal direction (//), it can be seen that these thin films are perpendicularly magnetized films at 77 and 300K.

これらの薄膜のカー回転角θ、を求めたところ、θに〜
0.3°が得られた。これは前述の重希土元素−鉄非晶
質垂直磁化膜と同等以上であった。
When we determined the Kerr rotation angle θ of these thin films, we found that θ is ~
0.3° was obtained. This was equivalent to or higher than the above-mentioned heavy rare earth element-iron amorphous perpendicular magnetization film.

(実施例3) F e 6s N d 3g (7)組成でAr圧1〜
2 X 10−’Torr、厚さ6000〜12650
A(7)薄膜を作成し、トルクメータで垂直磁気異方性
定数Kuを求めた。スパッタ中の基板温度は70〜33
0℃の間で変化させた。その結果を第4図に示す。
(Example 3) Fe 6s N d 3g (7) Composition with Ar pressure of 1~
2 X 10-'Torr, thickness 6000-12650
A (7) thin film was prepared, and the perpendicular magnetic anisotropy constant Ku was determined using a torque meter. The substrate temperature during sputtering is 70-33
The temperature was varied between 0°C. The results are shown in FIG.

Kuの値は基板温度が260〜290℃で最大値を示す
0図中黒丸は垂直磁化膜であることを示し、白丸はそう
でないことを表わす、基板温度Tsが結晶化温度Tcr
y(I−,320℃)よりも高い場合はもはや垂直磁化
膜の性質を示さない。
The value of Ku has a maximum value when the substrate temperature is 260 to 290°C. In the figure, black circles indicate that the film is perpendicularly magnetized, and white circles indicate that it is not. The substrate temperature Ts is the crystallization temperature Tcr.
If the temperature is higher than y (I-, 320° C.), it no longer exhibits the properties of a perpendicularly magnetized film.

基板温度Tsが212℃、287℃、335℃の場合の
スパッタ薄膜のX線回折パターンを第5図に示す、Ts
=335℃及び287℃の場合には、Nd2 Fe+7
やNdに相当すると考えられる鋭いピークが現われてい
る。
Figure 5 shows the X-ray diffraction patterns of the sputtered thin film when the substrate temperature Ts is 212°C, 287°C, and 335°C.
= 335°C and 287°C, Nd2 Fe+7
A sharp peak appears that is thought to correspond to Nd and Nd.

電子顕微鏡の観察からもTs=212℃、287℃の場
合には微細結晶の領域が存在し、Ts=335℃の場合
には結晶化がかなり進んでいることが判った。これらの
ことから垂直磁気異方性を有するためには非晶質相ある
いは約数A〜約10OAの微細結晶相が好ましいことが
わかる。
Observation with an electron microscope also revealed that regions of fine crystals existed when Ts = 212°C and 287°C, and that crystallization had progressed considerably when Ts = 335°C. From these facts, it can be seen that in order to have perpendicular magnetic anisotropy, an amorphous phase or a fine crystalline phase of about several A to about 10 OA is preferable.

(実施例4) F e 6s N d 3sの組成のスパッタ膜を基板
温度210〜290℃、Ar圧力1〜2XlO−ITo
rrの条件で膜厚を変化させて作成し、トルクメータで
磁気異方性定数Kuを求めた結果を第6図に示す。
(Example 4) A sputtered film having a composition of F e 6s N d 3s was sputtered at a substrate temperature of 210 to 290°C and an Ar pressure of 1 to 2XlO-ITo.
Figure 6 shows the results of the magnetic anisotropy constant Ku obtained using a torque meter after the film was prepared by changing the film thickness under the conditions of rr.

第6図中黒丸は垂直磁化膜を示し、白丸は薄膜の膜面内
の異方性を有する場合である。第6図中の添数は基板の
温度を示す、前述の条件Ku≧2 、5 X 10 ’
 e r g / CCを満足するためには、膜厚り約
0.71Lm以上が必要であることが判る。
The black circles in FIG. 6 indicate perpendicular magnetization films, and the white circles indicate cases where the thin film has in-plane anisotropy. The subscript in FIG. 6 indicates the temperature of the substrate, and the above-mentioned conditions Ku≧2, 5 x 10'
It can be seen that in order to satisfy e r g /CC, a film thickness of approximately 0.71 Lm or more is required.

(実施例5) FegNdgを基板温度210〜290℃、膜厚614
0〜12650Aの条件で作成したスパッタ膜の磁気異
方性定数KuのAr圧依存性を第7rI4に示す。
(Example 5) FegNdg was deposited at a substrate temperature of 210 to 290°C and a film thickness of 614°C.
The Ar pressure dependence of the magnetic anisotropy constant Ku of the sputtered film produced under the conditions of 0 to 12650 A is shown in 7th rI4.

Ar圧は2xlO−’TorrあたりでKuは鈍いピー
クを示すが、相対的にAr圧力便存性は他の要因、すな
わち基板温度や膜厚はど顕著ではない。
When the Ar pressure is around 2xlO-'Torr, Ku shows a dull peak, but relatively the Ar pressure compatibility is not as significant as other factors, such as substrate temperature and film thickness.

(実施例6) F e 100−! N d!においてX=18〜50
の広い組成範囲において基板温度250〜280℃。
(Example 6) Fe 100-! Nd! In X=18~50
substrate temperature of 250 to 280°C over a wide composition range.

Ar圧1〜3X10−ITorr、膜厚6000〜13
000Aのスパッタ薄膜を作成し、垂直磁気異方性定数
Kuを求めた結果を第8図に示す。
Ar pressure 1~3X10-ITorr, film thickness 6000~13
A sputtered thin film of 000A was prepared and the perpendicular magnetic anisotropy constant Ku was determined. The results are shown in FIG.

Kuの最大値はNd40原子%辺りで得られ。The maximum value of Ku is obtained around 40 atomic % of Nd.

1〜2XIO’erg/ccにも達する高い値を示す。It shows a high value reaching 1-2XIO'erg/cc.

Nd量がこれより減少する場合、Kuは急激に低下し、
31原子%未満では2.5X106e r g / 6
 c未満の債しか得られない。
When the amount of Nd decreases below this, Ku decreases rapidly,
2.5X106e r g/6 for less than 31 atomic%
Only bonds worth less than c can be obtained.

(実施例7) F e @a N d 3s M s 173組成でM
としてZr。
(Example 7) F e @a N d 3s M s M with 173 composition
As Zr.

Hf、Di 、V、Nb、Ta、Cr、Mo、W。Hf, Di, V, Nb, Ta, Cr, Mo, W.

Mn 、AIL、Sb 、Ge 、SnをTs=220
〜290℃、Ar圧1〜2XIO’ Torr、膜厚6
300〜l100OAを作成し磁気特性を測定した。
Mn, AIL, Sb, Ge, Sn, Ts=220
~290℃, Ar pressure 1~2XIO' Torr, film thickness 6
300 to 1100 OA were prepared and their magnetic properties were measured.

いずれも垂直磁化膜が得られた。In both cases, perpendicularly magnetized films were obtained.

(実施例8) F 646 CoHN d n (1)組成で、Ts−
240℃、Ar圧2xlO−’T6rr、膜厚7400
Aを作成し、磁気特性を測定した。
(Example 8) F 646 CoHN d n (1) composition, Ts-
240℃, Ar pressure 2xlO-'T6rr, film thickness 7400
A was prepared and its magnetic properties were measured.

いずれもKu2.5X10’ erg/cc以上の垂直
磁化膜が得られた。
In all cases, perpendicular magnetization films with a Ku of 2.5×10′ erg/cc or more were obtained.

(実施例9) F e @6 N d 2@ P r Hmの組成でT
s=260℃、Ar圧1.5〜2XlO”″’Torr
、膜厚7900Aのスパッタ薄膜を作成しKu2.5X
10’erg/cc以上の垂直磁化膜が得られた。
(Example 9) T with the composition F e @ 6 N d 2 @ P r Hm
s=260℃, Ar pressure 1.5~2XlO""'Torr
, a sputtered thin film with a thickness of 7900A was created and Ku2.5X
A perpendicular magnetization film of 10'erg/cc or more was obtained.

(実施例10) F e go N d n D ”j s 、  F 
e 5IIN d HCe He 。
(Example 10) F e go N d n D ”j s, F
e 5IIN d HCe He.

F e 5v N d 311 Ce +o V s 
(7)組成でTs=240〜290℃、Ar圧1〜2x
to−1Torr、膜厚7300〜L100OAのスパ
ッタ薄膜を作成し、Ku2.5X10’ erg/cc
以上の垂直磁化膜が得られた。
F e 5v N d 311 Ce +o V s
(7) Composition: Ts=240-290℃, Ar pressure 1-2x
To-1 Torr, a sputtered thin film with a film thickness of 7300 to L100OA was created, and Ku2.5X10' erg/cc
The above perpendicular magnetization film was obtained.

(実施例11) T: m  −N  j  −〒 z  −/?11ゑ
1tk −911〒 a  =  9  &%  11
  ”t’+Ar圧2XIO−’Torr、膜厚940
0Aのスパッタ膜を作成し、Ku=3.lX10’ e
rg/ c cの垂直磁化膜が得られた。
(Example 11) T: m −N j −〒 z −/? 11ゑ1tk -911〒 a = 9 &% 11
"t'+Ar pressure 2XIO-'Torr, film thickness 940
A sputtered film of 0A was created, and Ku=3. lX10'e
A perpendicular magnetization film of rg/cc was obtained.

(実施例12) F e @@ N 、d 3w及びFe@aNd*oの
組成で、基板温度Tsが各+290℃、250℃、Ar
圧2xto−ITorr、膜厚が各々1265OA。
(Example 12) With the compositions Fe@@N, d3w and Fe@aNd*o, the substrate temperature Ts was +290°C, +250°C, and Ar
The pressure is 2xto-ITorr, and the film thickness is 1265OA each.

4860λのスパッタ膜を作成した。Fe@6Nd4.
において4.2〜300にで求めたトルク曲線を第9 
(1)、(2)図に示す、。
A sputtered film with a thickness of 4860λ was created. Fe@6Nd4.
The torque curve obtained from 4.2 to 300 is
(1), (2) As shown in the figure.

また、15kOe磁界中でのKu及び回転ヒステリシス
損Wの低温での温度変化を第10図に示す。
Further, FIG. 10 shows temperature changes in Ku and rotational hysteresis loss W at low temperatures in a 15 kOe magnetic field.

低温においてKuは増加し1例えばF e HN d 
4(+の組成では液体窒素温度付近(〜80K)でKu
は最大値3XlO’ erg/ccにも達することがわ
かる。
At low temperatures, Ku increases and 1 e.g. F e HN d
4 (+ composition) Ku
It can be seen that it reaches a maximum value of 3XlO' erg/cc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の、一実施例・F e 100−iN
d、スパッタ薄膜の磁化温度特性を示すグラフ、 第2図はF e I(10−! N d z IIN!
Iのキュリ一温度Tc、結晶化温度Tc ry、及び飽
和磁化Ms(77K及び300K)を示すグラフ、第3
図(a) 〜(C)は、Fe+ao−1Ndx(X=3
0.35.40)スパー/ 夕薄膜(F)77K及び3
00にでの各磁化曲線を示すグラフ、第4図はF e 
@、 N d Bスパッタ薄膜の基板温度と垂直磁気異
方性定数Kuの関係を示すグラフ、第5図はF e 6
m N d 3fスパツタ薄膜の各基板温度によるX線
回折パターンを示すグラフ、第6図はFe醪N d 3
gスパッタ薄膜の厚さとKuとの関係を示すグラフ。 第7図はF 66* N d 31スパツタ薄膜のAr
圧とKuの関係を示すグラフ、 第8図はFe1゜。−xNd、スパッタ薄膜のNd量と
Kuの関係を示すグラフ、 第9 (1)’、(2)図は、F e @6 N d4
6において4.2〜300にで求めたトルク曲線を示し
、第10 (1)  、 (2)図は、 Fe1g10
−1 Ndx(x=35.40)スパッタ薄膜の垂直磁
気異方性定数Kuとヒステリシス損Wの温度変化を示す
グラフ、である。 出願人  住友特殊金属株式会社 代理人   弁理士  加藤  覇道 温度T(K) X(m%hυ) ArIHPb104TORR) 第7m   Fe、、Ne4.:M、’Jiii層qA
r/f−と4#aa*’llB性m図中7ov)プaつ
数字(;L廁(ンへンX  (ep≦Nd) 第8図 Fs=Ni、2)ら夕j献庚っ軸温気異方性を
改twit図面の浄IF(内容佇変更なし) 第q(2)図  Fe6gNd@ズノへり月莞−>4.
2.7乙300に7℃F@。〜暢 bル2曲線 手続補正書印発) 昭和59年12月28日 特許庁長官  志 賀   学  殿 1、事件の表示   昭和59年特許願第236661
号(昭和59年11月12日出願) 2、発明の名称 垂直磁気記録媒体及びその製造方法 3、補正をする者 事件との関係   特許出願人 氏名     住友特殊金属株式会社 4、代理人 5、補正命令の日付   自発 6、補正により増加する発明の数   なし手続中南正
書泪発) 昭和60年6月2【1日
FIG. 1 shows one embodiment of the present invention: F e 100-iN
d, a graph showing the magnetization temperature characteristics of a sputtered thin film.
Graph showing Curie temperature Tc, crystallization temperature Tcry, and saturation magnetization Ms (77K and 300K) of I, third
Figures (a) to (C) show Fe+ao-1Ndx (X=3
0.35.40) Spar/Yuu thin film (F) 77K and 3
A graph showing each magnetization curve at 00, Fig. 4 is F e
@, Graph showing the relationship between substrate temperature and perpendicular magnetic anisotropy constant Ku of N d B sputtered thin film, Figure 5 is F e 6
A graph showing the X-ray diffraction pattern of m N d 3f sputtered thin film depending on each substrate temperature, Figure 6 is Fe-based N d 3
Graph showing the relationship between the thickness of g-sputtered thin film and Ku. Figure 7 shows the Ar of F66*Nd31 sputtered thin film.
A graph showing the relationship between pressure and Ku, Figure 8 is Fe1°. -xNd, graph showing the relationship between the amount of Nd in the sputtered thin film and Ku, Figures 9 (1)' and (2) are F e @6 N d4
6 shows the torque curve obtained from 4.2 to 300, and the 10th (1) and (2) figures are Fe1g10
1 is a graph showing temperature changes in perpendicular magnetic anisotropy constant Ku and hysteresis loss W of a -1 Ndx (x=35.40) sputtered thin film. Applicant Sumitomo Special Metals Co., Ltd. Agent Patent Attorney Kato Hado Temperature T(K) X(m%hυ) ArIHPb104TORR) 7th m Fe,, Ne4. :M, 'Jiii layer qA
r/f- and 4#aa*'llB sex m diagram 7ov) pua number (;L 廁(NhenX (ep≦Nd) Fig. 8 Modified axial temperature anisotropy IF of twit drawing (no change in content) Figure q(2) Fe6gNd@ZunoheriMoon->4.
2.7 otsu 300 and 7℃F @. ~Noburu 2 Curve Procedure Amendment Form) December 28, 1980 Manabu Shiga, Commissioner of the Patent Office 1, Indication of Case Patent Application No. 236661, 1982
No. (filed on November 12, 1980) 2. Name of the invention Perpendicular magnetic recording medium and its manufacturing method 3. Person making the amendment Relationship to the case Name of patent applicant Sumitomo Special Metals Co., Ltd. 4. Agent 5. Amendment Date of order Spontaneous 6, number of inventions increased by amendment None (Procedure Nakaminami Seisho Yakusho) June 2, 1985 [1]

Claims (1)

【特許請求の範囲】 1)希土類元素Rが31〜60原子at%(但し、Rの
内70原子%以上がNd+Prの和、Rの残部はY、L
a、Ce、Sm、Gd、Tb、Dy、Ho、Er及びY
bの一種以上)、残部Feから成り垂直磁気異方性を有
することを特徴とする垂直磁気記録媒体。 2)垂直磁気異方性定数Kuが2.5×10^6erg
/cc以上であることを特徴とする特許請求の範囲第1
項記載の垂直磁気記録媒体。 3)31〜60原子%の希土類元素R(Rの内70原子
%以上がNd+Prの和かつRの残部はY、La、Ce
、Sm、Gd、Tb、Dy、Ho、Er及びYbの一種
以上)、残部Fe及びFeの30原子%未満のCoから
成り、垂直磁気異方性を有することを特徴とする垂直磁
気記録媒体。 4)31〜60原子%の希土類元素R(Rの内70原子
%以上がNd+Prの和かつRの残部はY、La、Ce
、Sm、Gd、Tb、Dy、Ho、Er及びYbの一種
以上)、10原子%以内のNi、Zr、Nb、V、Ta
、Cr、Mo、W、Mn、Bi、Al、Si、Pb、G
e、Sn及びHfの少なくとも一種以上、残部Feから
成り、垂直磁気異方性を有することを特徴とする垂直磁
気記録媒体。 5)31〜60原子%の希土類元素R(Rの内70原子
%以上がNd+Prの和でありRの残部はY、La、C
e、Sm、Gd、Tb、Dy、Ho、Er及びYbの一
種以上)、10原子%以内のNi、Zr、Nb、V、T
a、Cr、Mo、W、Mn、Bi、Al、Si、Pb、
Ge、Sn及びHfの少なくとも一種以上、残部Fe及
びFeの30原子%未満のCoから成り、垂直磁気異方
性を有することを特徴とする垂直磁気記録媒体。 6)基板上に金属ガス凝集法により薄膜を形成する垂直
磁気記録媒体の製造方法において、基板温度を180℃
〜合金の結晶化温度以下の温度に保持して、式R(Fe
、Co)Mにより本質上表わされ、R31〜60原子%
、M0〜10原子%、及び残部Fe(但しCoはFeの
30原子%未満を置換)から成り、Rは希土類元素の内
NdとPrの和をRの内70原子%以上、残部のRをY
、La、Ce、Sm、Gd、Tb、Dy、Ho、Er及
びYbの一種以上とし、MはNi、Zr、Nb、V、T
a、Cr、Mo、W、Mn、Bi、Al、Si、Pb、
Ge、Sn及びHfの少なくとも一種以上とする組成か
ら成り、膜厚を0.3〜3μmとする垂直磁気異方性を
有する薄膜を形成することを特徴とする垂直磁気記録媒
体の製造方法。
[Claims] 1) The rare earth element R is 31 to 60 at% (however, 70 at% or more of R is the sum of Nd+Pr, and the remainder of R is Y, L
a, Ce, Sm, Gd, Tb, Dy, Ho, Er and Y
(b), the remainder being Fe, and having perpendicular magnetic anisotropy. 2) Perpendicular magnetic anisotropy constant Ku is 2.5×10^6erg
Claim 1 characterized in that it is equal to or more than /cc
The perpendicular magnetic recording medium described in . 3) 31 to 60 atomic% rare earth element R (70 atomic% or more of R is the sum of Nd + Pr, and the remainder of R is Y, La, Ce
, Sm, Gd, Tb, Dy, Ho, Er, and Yb), the balance being Fe and less than 30 atomic % of Co, and having perpendicular magnetic anisotropy. 4) 31 to 60 atomic% rare earth element R (70 atomic% or more of R is the sum of Nd + Pr, and the remainder of R is Y, La, Ce
, Sm, Gd, Tb, Dy, Ho, Er and Yb), Ni, Zr, Nb, V, Ta within 10 atomic %
, Cr, Mo, W, Mn, Bi, Al, Si, Pb, G
1. A perpendicular magnetic recording medium comprising at least one of e, Sn, and Hf with the balance being Fe, and having perpendicular magnetic anisotropy. 5) 31 to 60 atomic% rare earth element R (70 atomic% or more of R is the sum of Nd + Pr, and the remainder of R is Y, La, C
e, Sm, Gd, Tb, Dy, Ho, Er and Yb), Ni, Zr, Nb, V, T within 10 atomic %
a, Cr, Mo, W, Mn, Bi, Al, Si, Pb,
1. A perpendicular magnetic recording medium comprising at least one of Ge, Sn and Hf, the balance being Fe and less than 30 atomic % of Co, and having perpendicular magnetic anisotropy. 6) In a method for manufacturing perpendicular magnetic recording media in which a thin film is formed on a substrate by a metal gas agglomeration method, the substrate temperature is set at 180°C.
~ held at a temperature below the crystallization temperature of the alloy, the formula R(Fe
, Co)M, R31 to 60 atom %
, M0 to 10 atomic%, and the remainder Fe (however, Co replaces less than 30 atomic% of Fe), R is the sum of Nd and Pr among the rare earth elements, and 70 atomic% or more of R, and the remainder R Y
, La, Ce, Sm, Gd, Tb, Dy, Ho, Er and Yb, and M is Ni, Zr, Nb, V, T
a, Cr, Mo, W, Mn, Bi, Al, Si, Pb,
1. A method for producing a perpendicular magnetic recording medium, comprising forming a thin film having a perpendicular magnetic anisotropy and having a thickness of 0.3 to 3 μm and having a composition of at least one of Ge, Sn, and Hf.
JP59236661A 1984-11-12 1984-11-12 Perpendicular magnetic recording medium Expired - Lifetime JPH0670924B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP59236661A JPH0670924B2 (en) 1984-11-12 1984-11-12 Perpendicular magnetic recording medium
DE8585114367T DE3581378D1 (en) 1984-11-12 1985-11-12 VERTICAL MAGNETIZED RECORDING MEDIUM AND METHOD FOR THE PRODUCTION THEREOF.
EP85114367A EP0184034B1 (en) 1984-11-12 1985-11-12 Perpendicular magnetic recording medium and method of producing same
JP5021629A JPH0738357B2 (en) 1984-11-12 1993-01-18 Method of manufacturing perpendicular magnetic recording medium
US08/154,393 US5660929A (en) 1984-11-12 1993-11-18 Perpendicular magnetic recording medium and method of producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP59236661A JPH0670924B2 (en) 1984-11-12 1984-11-12 Perpendicular magnetic recording medium
JP5021629A JPH0738357B2 (en) 1984-11-12 1993-01-18 Method of manufacturing perpendicular magnetic recording medium

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP5021629A Division JPH0738357B2 (en) 1984-11-12 1993-01-18 Method of manufacturing perpendicular magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS61222104A true JPS61222104A (en) 1986-10-02
JPH0670924B2 JPH0670924B2 (en) 1994-09-07

Family

ID=26358722

Family Applications (2)

Application Number Title Priority Date Filing Date
JP59236661A Expired - Lifetime JPH0670924B2 (en) 1984-11-12 1984-11-12 Perpendicular magnetic recording medium
JP5021629A Expired - Lifetime JPH0738357B2 (en) 1984-11-12 1993-01-18 Method of manufacturing perpendicular magnetic recording medium

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP5021629A Expired - Lifetime JPH0738357B2 (en) 1984-11-12 1993-01-18 Method of manufacturing perpendicular magnetic recording medium

Country Status (1)

Country Link
JP (2) JPH0670924B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6212941A (en) * 1985-07-09 1987-01-21 Seiko Epson Corp Photomagnetic recording medium
JPS6247846A (en) * 1985-08-26 1987-03-02 Seiko Epson Corp Photomagnetic recording medium
JPS62132254A (en) * 1985-12-05 1987-06-15 Hitachi Maxell Ltd Photomagnetic recording medium
JPS62154346A (en) * 1985-12-27 1987-07-09 Hitachi Maxell Ltd Photomagnetic recording medium
JPS63214940A (en) * 1987-03-04 1988-09-07 Daicel Chem Ind Ltd Magneto-optical recording medium
JPS63237240A (en) * 1987-03-26 1988-10-03 Daicel Chem Ind Ltd Improvement of magneto-optical recording medium
JPH0423247A (en) * 1990-05-17 1992-01-27 Matsushita Electric Ind Co Ltd Magneto-optical recording medium
US5612145A (en) * 1991-11-14 1997-03-18 Victor Company Of Japan, Ltd. Perpendicular magnetic medium and manufacturing method for the medium
JP2006519927A (en) * 2003-02-14 2006-08-31 ザ・ナノスティール・カンパニー Method for modifying iron-based glass to increase crystallization temperature without changing melting temperature

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11110838A (en) * 1997-09-30 1999-04-23 Toyota Motor Corp Magneto-optical recording medium and its manufacture

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58165306A (en) * 1982-03-26 1983-09-30 Hitachi Ltd Vertical magnetic recording medium
JPS59103314A (en) * 1982-12-03 1984-06-14 Seiko Instr & Electronics Ltd Photomagnetic recording medium
JPS59108304A (en) * 1982-12-14 1984-06-22 Seiko Instr & Electronics Ltd Optical magnetic recording medium
JPS60117436A (en) * 1983-11-29 1985-06-24 Sharp Corp Magnetooptic storage element
JPS60128606A (en) * 1983-12-15 1985-07-09 Seiko Instr & Electronics Ltd Photo-magnetic recording medium
JPS60173810A (en) * 1984-02-20 1985-09-07 Seiko Instr & Electronics Ltd Photomagnetic recording medium
JPS60187008A (en) * 1984-03-07 1985-09-24 Sumitomo Metal Mining Co Ltd Vertically magnetized magnetic thin-film
JPS60193125A (en) * 1984-03-13 1985-10-01 Mitsubishi Electric Corp Vertical magnetic recording medium

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58165306A (en) * 1982-03-26 1983-09-30 Hitachi Ltd Vertical magnetic recording medium
JPS59103314A (en) * 1982-12-03 1984-06-14 Seiko Instr & Electronics Ltd Photomagnetic recording medium
JPS59108304A (en) * 1982-12-14 1984-06-22 Seiko Instr & Electronics Ltd Optical magnetic recording medium
JPS60117436A (en) * 1983-11-29 1985-06-24 Sharp Corp Magnetooptic storage element
JPS60128606A (en) * 1983-12-15 1985-07-09 Seiko Instr & Electronics Ltd Photo-magnetic recording medium
JPS60173810A (en) * 1984-02-20 1985-09-07 Seiko Instr & Electronics Ltd Photomagnetic recording medium
JPS60187008A (en) * 1984-03-07 1985-09-24 Sumitomo Metal Mining Co Ltd Vertically magnetized magnetic thin-film
JPS60193125A (en) * 1984-03-13 1985-10-01 Mitsubishi Electric Corp Vertical magnetic recording medium

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6212941A (en) * 1985-07-09 1987-01-21 Seiko Epson Corp Photomagnetic recording medium
JPH0470705B2 (en) * 1985-07-09 1992-11-11 Seiko Epson Corp
JPS6247846A (en) * 1985-08-26 1987-03-02 Seiko Epson Corp Photomagnetic recording medium
JPS62132254A (en) * 1985-12-05 1987-06-15 Hitachi Maxell Ltd Photomagnetic recording medium
JPS62154346A (en) * 1985-12-27 1987-07-09 Hitachi Maxell Ltd Photomagnetic recording medium
JP2587408B2 (en) * 1985-12-27 1997-03-05 日立マクセル株式会社 Magneto-optical recording medium
JPS63214940A (en) * 1987-03-04 1988-09-07 Daicel Chem Ind Ltd Magneto-optical recording medium
JPS63237240A (en) * 1987-03-26 1988-10-03 Daicel Chem Ind Ltd Improvement of magneto-optical recording medium
JPH0423247A (en) * 1990-05-17 1992-01-27 Matsushita Electric Ind Co Ltd Magneto-optical recording medium
US5612145A (en) * 1991-11-14 1997-03-18 Victor Company Of Japan, Ltd. Perpendicular magnetic medium and manufacturing method for the medium
JP2006519927A (en) * 2003-02-14 2006-08-31 ザ・ナノスティール・カンパニー Method for modifying iron-based glass to increase crystallization temperature without changing melting temperature

Also Published As

Publication number Publication date
JPH0738357B2 (en) 1995-04-26
JPH0670924B2 (en) 1994-09-07
JPH0645176A (en) 1994-02-18

Similar Documents

Publication Publication Date Title
Gomi et al. rf sputtering of highly Bi‐substituted garnet films on glass substrates for magneto‐optic memory
US5514452A (en) Magnetic multilayer film and magnetoresistance element
US4367257A (en) Thin magnetic recording medium
US5660929A (en) Perpendicular magnetic recording medium and method of producing same
US20060188743A1 (en) Fept magnetic thin film having perpendicular magnetic anisotropy and method for preparation thereof
Ried et al. Crystallization behaviour and magnetic properties of magnetostrictive TbDyFe films
JPS61222104A (en) Vertical magnetic recording medium and manufacture thereof
CA1315612C (en) Perpendicular magnetic storage medium
US5053287A (en) Magnetooptical recording media and processes for production thereof
US4497870A (en) Magneto-optical recording medium
Goml et al. Sputtered Iron Garner Fills for Magneto-Optical Storage
JP2694110B2 (en) Magnetic thin film and method of manufacturing the same
Shima et al. Overlayer-induced anisotropic alignment of Nd 2 Fe 14 B nanograins
Sellmyer et al. Magneto-optical and structural properties of nanocrystalline MnBi-based films
EP0418804B1 (en) Soft magnetic thin film
Stavrou et al. Magnetic anisotropy and spin reorientation effects in Gd/Fe and Gd/(FeCo) multilayers for high density magneto-optical recording
Stavrou et al. Magnetic anisotropy in Gd/(FeCo) and Gd/Fe multilayers for high density magneto-optical recording
JP2710453B2 (en) Soft magnetic alloy film
JP2680586B2 (en) Magneto-optical storage medium
Ohnuma et al. The influence of deposition conditions on the magnetic properties in PtMnSb films
Furukawa et al. Soft Magnetic Properties of Nanocrystalline Fe-Ceramic Films
JPH0470705B2 (en)
Van De Riet FeGdN: a new soft magnetic metallic thin film material
JP2635421B2 (en) Soft magnetic alloy film
Carey et al. The magnetic properties of DyFeCo thin films

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term