JP2000109944A - Wear resistant and high strength aluminum alloy molded body, its production and cylinder liner composed of the molded body - Google Patents

Wear resistant and high strength aluminum alloy molded body, its production and cylinder liner composed of the molded body

Info

Publication number
JP2000109944A
JP2000109944A JP28071298A JP28071298A JP2000109944A JP 2000109944 A JP2000109944 A JP 2000109944A JP 28071298 A JP28071298 A JP 28071298A JP 28071298 A JP28071298 A JP 28071298A JP 2000109944 A JP2000109944 A JP 2000109944A
Authority
JP
Japan
Prior art keywords
aluminum alloy
less
molded body
cylinder liner
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28071298A
Other languages
Japanese (ja)
Inventor
Yoshimasa Okubo
喜正 大久保
Naoki Tokizane
直樹 時実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP28071298A priority Critical patent/JP2000109944A/en
Publication of JP2000109944A publication Critical patent/JP2000109944A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce a high strength aluminum alloy molded body having wear resistance and high deforming performance and capable of molding complicated ones, to provide a method for producing it and to provide a cylinder liner composed of the molded body. SOLUTION: This molded body is composed of an aluminum alloy having a compsn. contg., by weight, 17 to <27% Si, 0.3 to <5.0% Cu, 0.2 to <2.0% Mg, and the balance Al with inevitable impurities, and in which the average particle size of Si particles distributed into the matrix is 1 to <5 μm, and, by subjecting the aluminum alloy stock to extrusion molding into a shape in which plural cylindrical bodies are arranged, the wear resistance thereof can be secured by the Si particles, moreover, its deforming performance can be maintained to a high degree, and even the one in which cylinder liners are plurally connected can be molded.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐摩耗性、高強度
のアルミニウム合金成形体、その製造方法及びその成形
体からなるシリンダライナーに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wear-resistant, high-strength aluminum alloy compact, a method for producing the same, and a cylinder liner made of the compact.

【0002】[0002]

【従来の技術】近年、乗用車用エンジンにおいて、シリ
ンダブロックは鋳鉄に代えてアルミニウム合金が使用さ
れるようになってきているが、ピストンとの摺動面の耐
摩耗性を確保するため、シリンダブロックに鋳鉄製シリ
ンダライナーが鋳ぐるまれているのが通常である。しか
し、地球環境の保全の観点から燃費効率の向上がますま
す重要な課題となってきており、シリンダライナーにつ
いてもアルミニウム合金化の試みが成されつつある。
2. Description of the Related Art In recent years, in a passenger car engine, an aluminum alloy has been used for a cylinder block in place of cast iron. However, in order to secure wear resistance of a sliding surface with a piston, a cylinder block is required. It is usual that a cast iron cylinder liner is cast inside. However, improvement of fuel efficiency has become an increasingly important issue from the viewpoint of preservation of the global environment, and attempts have been made to use aluminum alloys for cylinder liners.

【0003】すなわち、シリンダライナーをアルミニウ
ム合金にすることは、次のような利点が考えられる。
(1)鋳鉄製に比べて軽量である。(2)熱伝導率も高
い。(3)シリンダブロックと同じ熱膨張係数になるか
ら、昇温時密着性が上昇して放熱性の優れたエンジンと
なり、その結果、燃焼温度を上げることが出来、排ガス
の清浄化にも寄与する。(4)更に、アルミニウム合金
のピストンとも同じ熱膨張係数になり、ピストンとのク
リアランスを小さく出来、その結果、潤滑油の消費量逓
減、燃費の向上、騒音の逓減が期待できる。
[0003] The use of an aluminum alloy for the cylinder liner has the following advantages.
(1) Lighter than cast iron. (2) High thermal conductivity. (3) Since the coefficient of thermal expansion is the same as that of the cylinder block, the adhesion at the time of temperature rise is increased to provide an engine with excellent heat dissipation, and as a result, the combustion temperature can be increased, which also contributes to the purification of exhaust gas. . (4) Further, the coefficient of thermal expansion is the same as that of the aluminum alloy piston, and the clearance between the piston and the piston can be reduced. As a result, the consumption of lubricating oil can be reduced, the fuel consumption can be improved, and the noise can be reduced.

【0004】上記のような利点を得るために、シリンダ
ライナー用アルミニウム合金材として、例えば、特公平
6−37682号公報、特公平6−21309号公報に
記載されるものが提案されている。前者のものは、急冷
凝固アルミニウム合金粉末にセラミックス粒子や黒鉛粉
等の潤滑剤を添加した混合粉を粉末冶金法で押出成形す
ることにより得られる成形体であり、後者のものは、成
分調整した急冷凝固アルミニウム合金粉末を粉末冶金法
で押出成形することにより得られる成形体である。
In order to obtain the above advantages, there have been proposed, for example, Japanese Patent Publication No. 6-37682 and Japanese Patent Publication No. 6-21309 as aluminum alloy materials for cylinder liners. The former is a molded body obtained by extrusion-molding a powder mixture obtained by adding a lubricant such as ceramic particles or graphite powder to a rapidly solidified aluminum alloy powder by powder metallurgy, and the latter is a component having adjusted components. It is a compact obtained by extruding rapidly solidified aluminum alloy powder by powder metallurgy.

【0005】これらの成形体は、シリンダライナーとす
ることが出来るアルミニウム合金素材であり、アルミニ
ウム合金製のシリンダブロックと相まって、上記利点を
得ることが可能であるが、いずれも押出成形時の変形抵
抗が高く、変形能力が不足するから、押出成形時に割れ
が発生し易く、このため、例えば、これらの成形体で
は、マンドレル方式による押出成形で円筒形状のシリン
ダライナーを1本づつしか製造することが出来ない。従
って、エンジンブロックは、1本づつ作ったシリンダラ
イナーが必要な数だけ金型内に配置され、シリンダブロ
ック用のアルミニウム合金が鋳ぐるまれて製造され、あ
るいは、別に製造されたシリンダブロックにシリンダラ
イナーが圧入されて製造されることとなる。
[0005] These compacts are made of an aluminum alloy material that can be used as a cylinder liner. The above-mentioned advantages can be obtained in combination with a cylinder block made of an aluminum alloy. Is high and the deformation capacity is insufficient, so that cracks are likely to occur during extrusion molding. Therefore, for example, in these molded products, only one cylindrical cylinder liner can be manufactured by extrusion molding using a mandrel method. Absent. Accordingly, the engine block is manufactured by arranging cylinder cylinder liners made one by one in a required number of molds, and being manufactured by casting an aluminum alloy for the cylinder block, or by mounting the cylinder liner on a separately manufactured cylinder block. Is press-fitted.

【0006】上記のようにして製造されたエンジンブロ
ックは、図5に示すように、隣り合うシリンダライナー
の中心間距離、すなわち、ボア間隔lp がボア径l1
肉厚2l2 +鋳ぐるまれるアルミニウム合金の厚みl3
で構成されるため大きくなり、その結果エンジンを小型
化することができず、クランクシャフトに高い剛性が必
要になってしまうという難点がある。
In the engine block manufactured as described above, as shown in FIG. 5, the distance between the centers of adjacent cylinder liners, that is, the bore interval l p is the bore diameter l 1 +
Thickness 2l 2 + thickness of cast aluminum alloy l 3
Therefore, there is a problem that the engine cannot be downsized, and a high rigidity is required for the crankshaft.

【0007】この難点を解決するために、ボア間隔lを
小さくする方法として、図6に示すように、ポートホー
ル方式による押出成形でシリンダライナーaを複数連結
させ、ボア間隔lh を狭めることが考えられる(lh
p )。しかし、従来の成形体は、上述のように、変形
能力が不足するから、シリンダライナーaを複数連結さ
せることが出来ない。
To solve this difficulty, a method of reducing the bore interval l, as shown in FIG. 6, porthole scheme is more connecting cylinder liner a by extrusion molding by, to narrow the bore spacing l h Possible (l h <
l p ). However, as described above, the conventional molded body has insufficient deforming ability, so that a plurality of cylinder liners a cannot be connected.

【0008】[0008]

【発明が解決しようとする課題】本発明は、上記の複数
連結を実現するために、従来、シリンダー用アルミニウ
ム合金材として提案されている前記Al−Si系合金を
ベースとして、その組成、マトリックス性状と押出性と
の関連について種々実験、検討を行った結果としてなさ
れたものであり、その目的は、高強度、耐摩耗性を確保
することができ、しかも変形能力が高く、シリンダライ
ナーを複数連結させる等の複雑なものでも成形すること
が出来る耐摩耗性、高強度のアルミニウム合金成形体、
その製造方法及びその成形体からなるシリンダライナー
を提供することにある。
SUMMARY OF THE INVENTION In order to realize the above-mentioned plural connection, the present invention is based on the above Al-Si alloy which has been conventionally proposed as an aluminum alloy material for a cylinder. It was made as a result of conducting various experiments and studies on the relationship between the cylinder and the extrudability. The purpose was to ensure high strength and abrasion resistance, as well as high deformability, and to connect multiple cylinder liners. Abrasion resistance, high-strength aluminum alloy molded body that can be molded even with complicated things such as
An object of the present invention is to provide a cylinder liner made of the manufacturing method and the molded body.

【0009】[0009]

【課題を解決するための手段】本発明者らは、上記の実
験、検討の過程において、Al−Si−Cu−Mg系ア
ルミニウム合金中のSi含有量を17%以上27%未満
とし、Cu、Mgを所定範囲の含有量にして、スプレイ
フォーミング法により急冷凝固させSi粒径を1μm以
上5μm未満にした素材、あるいはエアー又は不活性ガ
スでアトマイズして製造した急冷凝固粉末を粉末冶金法
により作製し、Si粒径を1μm以上5μm未満にした
素材は、いずれも高強度を保持したままで、耐摩耗性を
有し、しかも変形性が良く従って押出性が良くなるか
ら、シリンダライナーを複数連結させる等の複雑なもの
でも押出成形することが出来ることを見い出し、本発明
を完成するに至った。
Means for Solving the Problems In the course of the above experiments and examinations, the present inventors set the Si content in an Al-Si-Cu-Mg-based aluminum alloy to 17% or more and less than 27%, A material containing Mg in a predetermined range and rapidly solidified by spray forming to produce a material having a Si particle size of 1 μm or more and less than 5 μm, or a rapidly solidified powder produced by atomizing with air or an inert gas by powder metallurgy. Any material having a Si particle size of 1 μm or more and less than 5 μm has high abrasion resistance while maintaining high strength, and also has good deformability and therefore extrudability, so that a plurality of cylinder liners are connected. It has been found that extrusion molding can be performed even for a complicated one, such as the formation of the resin, and the present invention has been completed.

【0010】すなわち、本発明によれば、Si17%以
上27%未満、Cu0.3%以上5.0%未満、Mg
0.2%以上2.0%未満を含有し、残部がAl及び不
可避的不純物からなる組成を有し、該組成のマトリック
ス中に分布するSi粒子の平均粒径が1μm以上5μm
未満のアルミニウム合金であり、該アルミニウム合金素
材を複数の筒体を並設した形状に押出成形してなること
を特徴とする耐摩耗性、高強度のアルミニウム合金成形
体が提供される。
That is, according to the present invention, Si is 17% or more and less than 27%, Cu is 0.3% or more and less than 5.0%,
It has a composition containing 0.2% or more and less than 2.0%, with the balance being Al and unavoidable impurities, and the average particle size of Si particles distributed in a matrix of the composition is 1 μm or more and 5 μm or less.
Abrasion-resistant, high-strength aluminum alloy formed by extruding the aluminum alloy material into a shape in which a plurality of cylinders are juxtaposed.

【0011】[0011]

【発明の実施の形態】本発明における合金成分の意義及
びそれらの限定範囲について説明すると、前記Siは、
アルミニウム合金素材(以下単にアルミ合金という)中
に17%以上27%未満、好ましくは20%以上23%
未満の範囲で含有していることが好ましい。この範囲に
あると硬いSi粒子がアルミ合金内に充分に分散し、例
えば、このアルミ合金をシリンダライナーに使用する場
合であれば、必要な耐摩耗性が得られる。Si量が17
%未満では耐摩耗性が不充分となり、27%以上になる
と変形性が低下するから、押出性も低下してシリンダラ
イナーを経済的な速度で押出成形した場合に割れが生じ
る等不都合になる。
BEST MODE FOR CARRYING OUT THE INVENTION The significance of the alloy components in the present invention and the limited range thereof will be described.
17% or more and less than 27%, preferably 20% or more and 23% in aluminum alloy material (hereinafter simply referred to as aluminum alloy)
It is preferable to contain it in the range of less than. In this range, the hard Si particles are sufficiently dispersed in the aluminum alloy. For example, when this aluminum alloy is used for a cylinder liner, required wear resistance can be obtained. Si content is 17
%, The abrasion resistance becomes insufficient, and if it exceeds 27%, the deformability decreases. Therefore, the extrudability also deteriorates, and when the cylinder liner is extruded at an economical speed, cracks may occur.

【0012】また、上記マトリックス中に分布するSi
粒子の平均粒径は、1μm以上5μm未満の範囲である
ことが必要である。例えば、シリンダブロックに鋳ぐる
まれたシリンダライナーは、油膜保持力を耐摩耗性をよ
り高めるため、内面の仕上げ処理としてホーニング加工
あるいは酸又はアルカリでアルミニウム地金を溶解し
て、Si粒子を浮き出させるエッチング処理が施され
る。従って、Si粒子の平均粒径が1μmに満たないよ
うな微細であると、アルミ合金自体の耐磨耗性が低下
し、加えて表面からSi粒子が落下し易くなり、一層耐
磨耗性が低下することになる。逆に、Si粒子の平均粒
径が5μm以上であると、被削性や押出性が低下し、更
に、後に詳述するポートホールの接合部の強度が低下す
る。
Further, Si distributed in the matrix is
The average particle size of the particles needs to be in the range of 1 μm or more and less than 5 μm. For example, a cylinder liner cast into a cylinder block has a honing process or an acid or alkali to dissolve the aluminum base metal as a finishing treatment on the inner surface to raise the oil film holding power and the abrasion resistance, thereby raising the Si particles. An etching process is performed. Therefore, when the average particle diameter of the Si particles is less than 1 μm, the wear resistance of the aluminum alloy itself decreases, and in addition, the Si particles easily fall from the surface, and the wear resistance is further improved. Will decrease. Conversely, when the average particle size of the Si particles is 5 μm or more, machinability and extrudability are reduced, and further, the strength of a joint portion of a port hole described later is reduced.

【0013】Cuは、アルミニウム中に固溶し強度を高
め、後に詳述するMgと共存したときその傾向が一層高
まり、アルミ合金中に0.3%以上5.0%未満、好ま
しくは0.3%以上3.0%未満の範囲で含有している
ことが好ましい。アルミ合金中のCuの添加量が高まる
に連れて、アルミ合金の強度は高まるが、押出成形時の
変形抵抗の上昇及び割れ限界速度の低下、すなわち、押
出性が低下する。特に、ポートホール押出では溶着部に
押出割れが発生し易くなり、かつ耐蝕性も低下する。
[0013] Cu forms a solid solution in aluminum to increase the strength, and when coexisting with Mg, which will be described in detail later, the tendency is further increased. In the aluminum alloy, 0.3% or more and less than 5.0%, preferably 0. It is preferable to contain it in the range of 3% or more and less than 3.0%. As the addition amount of Cu in the aluminum alloy increases, the strength of the aluminum alloy increases, but the deformation resistance during extrusion molding and the crack limit speed decrease, that is, the extrudability decreases. In particular, in porthole extrusion, extrusion cracks tend to occur at the welded portion, and the corrosion resistance is also reduced.

【0014】Cu量が0.3%未満では強度が不充分と
なり、5.0%以上になると押出性が低下し、更に、5
50℃近辺となる局部溶解温度では液相量が増加するの
で、シリンダライナーを鋳ぐるんでシリンダブロックを
製造するような場合に、シリンダライナーが半溶融状態
となり変形するようになる。Cuのアルミ合金中の上限
含有量が3.0%未満の場合には、局部溶解温度が上昇
し、局部溶解した時の液相量が少なくなるので、シリン
ダブロックにシリンダライナーを鋳ぐるんだ時に、変形
する恐れがほとんどなくなる。
If the Cu content is less than 0.3%, the strength is insufficient, and if it is 5.0% or more, the extrudability deteriorates.
At a local melting temperature around 50 ° C., the amount of liquid phase increases. Therefore, when a cylinder block is manufactured by casting a cylinder liner, the cylinder liner becomes semi-molten and deforms. If the upper limit content of Cu in the aluminum alloy is less than 3.0%, the local melting temperature rises and the amount of liquid phase when locally melted decreases, so the cylinder liner is cast into the cylinder block. Occasionally, there is almost no risk of deformation.

【0015】Mgは、Cuと同様な傾向を示し、アルミ
合金中のMgの添加量が多くなるとアルミ合金の強度は
向上するが、一方で、押出性、ポートホールの接合部強
度、熱伝導率及び局部溶解温度が低下する。従って、M
gは、アルミ合金中に0.2%以上2.0%未満の範囲
で含有しているのが好ましい。Mg量が0.2%に満た
ないと強度が不充分となり、2.0%以上になると強度
上昇の効果が飽和してくると共に上記押出性等が低下す
る。なお、本発明の成形体には、Si、Cu、Mg以外
に、0.5%以下のFe、0.2%以下のNi、0.1
%以下のMn、Crなどが含有されていても、その特性
が害されることはない。
Mg shows the same tendency as Cu. When the amount of Mg in the aluminum alloy increases, the strength of the aluminum alloy improves, but on the other hand, the extrudability, the joint strength of the port hole, and the thermal conductivity are increased. And the local melting temperature decreases. Therefore, M
g is preferably contained in the aluminum alloy in a range of 0.2% or more and less than 2.0%. If the Mg content is less than 0.2%, the strength becomes insufficient. If the Mg content is 2.0% or more, the effect of increasing the strength is saturated and the above-mentioned extrudability is reduced. In addition, in addition to Si, Cu, and Mg, the molded body of the present invention contains 0.5% or less of Fe, 0.2% or less of Ni, 0.1% or less.
% Or less of Mn, Cr, etc., does not impair its properties.

【0016】前記筒体は、円、楕円、長円、多角、円
錐、角錐等、特に限定はない。成形体は、これら各種の
形状のものを複数並設した形状にしたものである。な
お、成形体は、筒体が1つであるものを排除するもので
はなく、本発明のアルミ合金は押出性が良いから、筒体
が1つのものを短時間で多数製造することが可能であ
り、生産性の向上に資することが出来る。
The cylindrical body is not particularly limited, such as a circle, an ellipse, an ellipse, a polygon, a cone, and a pyramid. The molded body has a shape in which a plurality of these various shapes are juxtaposed. It should be noted that the molded body does not exclude one having a single cylinder, and since the aluminum alloy of the present invention has good extrudability, it is possible to produce a large number of single cylinders in a short time. Yes, it can contribute to productivity improvement.

【0017】次に、上記構成のアルミニウム合金成形体
の製造は、Si17%以上27%未満(重量%、以下同
じ)、Cu0.3%以上5.0%未満、Mg0.2%以
上2.0%未満を含有し、残部がAl及び不可避的不純
物からなる組成を有して、該組成のマトリックス中に分
布するSi粒子の平均粒径が1μm以上5μm未満のア
ルミニウム合金にし、該アルミニウム合金のビレットを
ポートホール方式により、好ましくは470℃以上52
0℃以下の温度範囲で熱間押出加工し、複数の筒体を並
設した形状にすることにより行われる。
Next, the production of the aluminum alloy compact having the above-mentioned structure is carried out at 17% to less than 27% of Si (% by weight, the same applies hereinafter), 0.3% to less than 5.0% of Cu, and 0.2% to 2.0% of Mg. %, And the balance consists of Al and unavoidable impurities, and the average particle size of Si particles distributed in the matrix of the composition is 1 μm or more and less than 5 μm. By a porthole method, preferably at 470 ° C. or higher.
This is performed by hot extrusion in a temperature range of 0 ° C. or less to form a plurality of cylindrical bodies in parallel.

【0018】まず、上記所定成分のAl−Si−Cu−
Mg系アルミニウム合金をスプレイフォーミング法によ
り急冷凝固させ、プリフォーム(上記アルミニウム合金
素材)を得る。このスプレイフォーミング法は、上記合
金を溶解し、その合金の液相線温度の+50℃〜+15
0℃の範囲に保持し、ガスアトマイズ法により合金を微
細に液滴化し、急冷させながら液滴をコレクタ上に半凝
固状態で付着堆積させてプリフォームを得るものであ
る。
First, the predetermined component Al-Si-Cu-
The Mg-based aluminum alloy is rapidly solidified by a spray forming method to obtain a preform (the above aluminum alloy material). In this spray forming method, the above alloy is melted, and the liquidus temperature of the alloy is + 50 ° C. to + 15 ° C.
The preform is obtained by keeping the temperature in the range of 0 ° C., forming fine droplets of the alloy by a gas atomizing method, and depositing and depositing the droplets in a semi-solid state on a collector while cooling rapidly.

【0019】この際、急冷により晶出するSi粒子の粒
径を1μm以上5μm未満にする。ガスアトマイズ法で
使用するガスは、窒素あるいはアルゴン等の不活性ガス
であり、これにより溶湯の酸化を防いで相対密度を10
0%に近いプリフォームを得ると共に、晶出するSi粒
子の粒径調整はガス量の調整による。
At this time, the particle size of the Si particles crystallized by rapid cooling is set to 1 μm or more and less than 5 μm. The gas used in the gas atomization method is an inert gas such as nitrogen or argon, which prevents oxidation of the molten metal and reduces the relative density to 10%.
A preform close to 0% is obtained, and the particle size of the crystallized Si particles is adjusted by adjusting the gas amount.

【0020】すなわち、ガス量が多い過ぎると、過剰に
急冷されSi粒子の粒径が小さくなり、仮に1μm未満
になると耐磨耗性が不充分となり、加えて堆積歩留りも
低下する。従って、ガス量は溶湯1kg(M)あたり3
〜8Nm3 (G)の範囲(G/M比:3〜8)で調整さ
れる。G/M比が3に近いとSi粒子の粒径が5μmに
近くなり、逆にG/M比が8に近いとSi粒子の粒径が
1μmに近くなる。なお、堆積させるコレクタは、堆積
層を均一にするため、毎秒2〜5回転させながら、堆積
した分だけその位置を低下させて、円柱形のプリフォー
ムを得る。
That is, if the gas amount is too large, it is excessively rapidly cooled and the particle size of the Si particles becomes small, and if it is less than 1 μm, the abrasion resistance becomes insufficient and the deposition yield also decreases. Therefore, the gas amount is 3 kg per 1 kg (M) of molten metal.
88 Nm 3 (G) (G / M ratio: 3 to 8). When the G / M ratio is close to 3, the particle size of the Si particles is close to 5 μm, and when the G / M ratio is close to 8, the particle size of the Si particles is close to 1 μm. In addition, in order to make the deposited layer uniform, the position of the collector is lowered by an amount corresponding to the amount of the deposited layer while rotating it 2 to 5 times per second to obtain a cylindrical preform.

【0021】次に、得られたプリフォームを切削して押
出用ビレットとし、ポートホール方式で、好ましくは4
70℃〜520℃の温度で熱間押出し、シリンダライナ
ー等の複数の筒体を並設したホロー形材にする。なお、
ホロー形材がシリンダライナーの場合は、鋳ぐるまれて
シリンダブロックが製造される。
Next, the obtained preform is cut into an extruded billet, which is preferably manufactured by a porthole method.
Hot extrusion is performed at a temperature of 70 ° C. to 520 ° C. to form a hollow member in which a plurality of cylinders such as cylinder liners are juxtaposed. In addition,
When the hollow profile is a cylinder liner, the cylinder block is manufactured by casting.

【0022】なお、押出用ビレットは、スプレイフォー
ミング法以外に、粉末冶金法によっても製造される。す
なわち、アトマイズされた液滴をそのまま凝固させて急
冷凝固粉末を得、粉末冶金法の手法に従って脱ガス処理
を行う。この脱ガス処理は、缶に急冷凝固粉末を充填
し、例えば400〜500℃の温度で真空引きするか、
この粉末を冷間圧縮した予備成形体を不活性雰囲気又は
真空中で400〜500℃に加熱することにより行う。
脱ガス後、300〜500℃でホットプレスして粉末を
100%緻密化させ、粉末を充填している缶を除去し、
押出用ビレットを得る。後は上記と同様に押出成形を行
いホロー形材を得る。
The billet for extrusion is manufactured by a powder metallurgy method in addition to the spray forming method. That is, the atomized droplet is solidified as it is to obtain a rapidly solidified powder, and degassing is performed according to a powder metallurgy method. In this degassing process, a can is filled with quenched solidified powder and evacuated at a temperature of, for example, 400 to 500 ° C.,
This is performed by heating the preformed body obtained by cold-pressing the powder to 400 to 500 ° C. in an inert atmosphere or vacuum.
After degassing, the powder is hot-pressed at 300 to 500 ° C. to densify the powder by 100%, and the can filled with the powder is removed.
Obtain an extruded billet. Thereafter, extrusion molding is performed in the same manner as described above to obtain a hollow profile.

【0023】[0023]

【実施例】以下、本発明の実施例を説明すると共に、そ
れに基づいて効果を実証する。なお、これらの実施例
は、本発明の好ましい一実施態様を説明するためのもの
であって、これにより本発明が制限されるものではな
い。
EXAMPLES Examples of the present invention will be described below, and effects will be demonstrated based on the examples. It should be noted that these examples are for describing a preferred embodiment of the present invention, and the present invention is not limited thereto.

【0024】実施例1〜10 まず、表1の実施例1〜10に示す組成を有するAl−
Si−Cu−Mg系アルミニウム合金のプリフォーム
を、G/M比5でスプレーフォーミング(オスプレイ
法)によりそれぞれ製造する。各プリフォームは直径2
70mm、高さ500mmであり、これを直径254m
m、高さ350mmの円柱形に削り出し各押出ビレット
とした。これら各押出ビレットにより、図1に示す円筒
3連結形材1をそれぞれポートホール押出した。
Examples 1 to 10 First, Al— having the composition shown in Examples 1 to 10 in Table 1 was used.
Preforms of a Si-Cu-Mg-based aluminum alloy are manufactured by spray forming (Osprey method) at a G / M ratio of 5, respectively. Each preform has a diameter of 2
70 mm, height 500 mm, which is 254 m in diameter
Each of the extruded billets was cut into a cylindrical shape having a height of 350 mm and a height of 350 mm. Each of the extruded billets extruded the three-piece cylindrical member 1 shown in FIG. 1 through a porthole.

【0025】この時の温度条件は、ビレットが480
℃、コンテナが450℃、ダイスが450℃であり、そ
の時の押出速度は0.5m/分であった。なお、各押出
ビレットは、押出ダイスのオス型の2つのエントリーポ
ートに分割されて入り、図2中の水平の破線部位置で接
合してメス型開口部から押出成形され、上記各円筒3連
結形材1になる。
The temperature condition at this time is that the billet is 480
C., the container was 450.degree. C., and the die was 450.degree. C., and the extrusion speed at that time was 0.5 m / min. Each extruded billet is divided into two male entry ports of an extruding die, joined at the position indicated by a horizontal broken line in FIG. 2, extruded from a female opening, and connected to each of the cylinders 3 described above. Shape 1

【0026】実施例1〜10のそれぞれについて、下記
の方法により、(1) 押出性、(2) 平均Si粒径、(3) 接
合部の抗折力、(4) ディスクの摩耗量(耐摩耗性)、
(5) 局部溶解による変形開始温度(鋳ぐるみ性の目安を
得るため)を測定した。
For each of Examples 1 to 10, (1) extrudability, (2) average Si particle size, (3) bending strength of joint, (4) abrasion loss of disc Abrasion),
(5) Deformation onset temperature due to local melting (to obtain a measure of castability) was measured.

【0027】(1) 押出性:目視観察による。 (2) 平均Si粒径:押出成形後の円筒3連結形材を光学
顕微鏡による組織観察から測定する。 (3) 接合部の抗折力:図4に示す抗折試験、すなわち、
図3の接合部2を含む試験片3(寸法35mm×35m
m×4mm)を採取して、接合部2を曲げの支点となる
ように試験機4にセットし、ピン5に荷重をかけ、折れ
た荷重を測定する。 (4) ディスクの磨耗量:押出成形後の円筒3連結形材か
ら直径40mm、厚み2.5mmのディスクを採取し、
ピン−ディスク式磨耗試験により測定する。この試験は
採取したディスクと球状黒鉛鋳鉄FCD45製の直径5
mmのピンを摩擦磨耗させた後、表面あらさ計で摩擦表
面の形状をトレースしてディスクの磨耗深さを測定する
ことによる。なお、この時の試験条件は、面圧は1MP
a 、摩擦速度は5m/秒、潤滑は150℃の市販エンジ
ンオイル、摩擦時間は120分間とした。
(1) Extrudability: Observed by visual observation. (2) Average Si particle size: Measured by examining the structure of an extruded three-piece cylindrical member by an optical microscope. (3) Flexural strength of joint: Flexural test shown in FIG.
A test piece 3 including the joint 2 in FIG. 3 (dimensions 35 mm × 35 m
mx 4 mm), and the joint 2 is set on the tester 4 so as to be a fulcrum of bending, a load is applied to the pin 5, and the broken load is measured. (4) Abrasion amount of the disk: A disk having a diameter of 40 mm and a thickness of 2.5 mm was sampled from the extruded three-piece cylindrical member.
Measured by pin-disk abrasion test. In this test, the sampled disc and the spheroidal graphite cast iron FCD45
By friction-wearing the mm pin, the surface roughness is traced with a surface roughness meter to measure the wear depth of the disc. The test conditions at this time were that the surface pressure was 1MP.
a, friction speed was 5 m / sec, lubrication was 150 ° C. commercially available engine oil, and friction time was 120 minutes.

【0028】(5) 局部溶解による変形開始温度:押出成
形後の円筒3連結形材から直径5mm、長さ20mmの
試験片を採取し、この試験片に10gの圧縮荷重をかけ
昇温させ、その時の長さを測定すると熱膨張で初めは試
験片が伸びるが、局部溶解が始まると膨張が止まり収縮
し始め、20μm収縮した時の温度を測定し変形開始温
度とする。
(5) Deformation start temperature due to local melting: A test piece having a diameter of 5 mm and a length of 20 mm was sampled from the extruded three-piece cylindrical member, a 10 g compressive load was applied to the test piece, and the temperature was raised. When the length at that time is measured, the test piece initially expands due to thermal expansion, but when local melting starts, expansion stops and contraction starts, and the temperature when contracted by 20 μm is measured and defined as the deformation start temperature.

【0029】比較例1〜8 表2の比較例1〜8に示す成分のAl−Si−Cu−M
g系アルミニウム合金のプリフォームを、実施例1〜1
0と同じ条件でそれぞれ製造し、更に同じ条件で各円筒
3連結形材を得る。そして、比較例1〜8のそれぞれに
ついて、実施例1〜10と同様にして、(1) 押出性、
(2) 平均Si粒径、(3) 接合部の抗折力、(4) ディスク
の摩耗量(耐摩耗性)、(5) 局部溶解による変形開始温
度(鋳ぐるみ性の目安を得るため)、を測定する。
Comparative Examples 1 to 8 Al-Si-Cu-M of the components shown in Comparative Examples 1 to 8 in Table 2.
Examples 1 to 1 were prepared using g-type aluminum alloy preforms.
It is manufactured under the same conditions as 0, respectively, and further, each cylinder 3 connection shape is obtained under the same conditions. Then, for each of Comparative Examples 1 to 8, in the same manner as in Examples 1 to 10, (1) extrudability,
(2) Average Si grain size, (3) Bending strength of joint, (4) Disk wear (wear resistance), (5) Deformation starting temperature due to local melting (to obtain a measure of cast-in stuffing) , Is measured.

【0030】比較例9 比較例9に示す成分のAl−Si−Cu−Mg系アルミ
ニウム合金のプリフォームを製造する際、G/M比2と
すること以外は比較例1〜8と同じ条件で円筒3連結形
材を得ると共に、同様にして押出性などを測定した。以
上の測定結果を表3、表4に示す。
Comparative Example 9 When a preform of an Al—Si—Cu—Mg-based aluminum alloy having the components shown in Comparative Example 9 was produced, the same conditions as in Comparative Examples 1 to 8 were used except that the G / M ratio was set to 2. Along with obtaining a cylindrical three-piece shape, the extrudability and the like were measured in the same manner. Tables 3 and 4 show the above measurement results.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【表2】 [Table 2]

【0033】[0033]

【表3】 《表注》押出可否 ○:押出可 押出割れ 割れA:円筒内面の接合位置に微小割れ 接合部抗折力:抗折力=M/Z =Wl/H・t2/6 (W: 破壊荷重、H:試験片幅、t:試験片厚さ)[Table 3] << Table Note >> Extrusion possible ○: Extrusion possible Extrusion cracking Cracking A: Minute cracking at the joining position on the inner surface of the cylinder Joint bending strength: Bending strength = M / Z = Wl / H ・ t 2/6 (W: Breaking load , H: specimen width, t: specimen thickness)

【0034】[0034]

【表4】 《表注》押出可否 ×:押詰まり( 押出機の最大荷重2700トンでも 押出不可 押出割れ 割れB:円筒内面の接合位置に割れ 割れC:全表面に割れ[Table 4] << Table Note >> Possibility of extrusion ×: Clogging (extruding is impossible even with a maximum load of 2700 tons of the extruder. Extrusion cracking Cracking: Cracking at the joining position on the inner surface of the cylinder

【0035】表3によれば、実施例1〜10は良好な製
品が得られ、強度、耐摩耗性(抗折力は300MPa 以
上、磨耗量0.3mm未満) 共に優れている。なお、実施
例5は内面に微細な割れが生じたが、製品に支障ないと
判断できる。
According to Table 3, good products are obtained in Examples 1 to 10, which are excellent in both strength and abrasion resistance (deflecting force is 300 MPa or more, wear amount is less than 0.3 mm). In addition, in Example 5, although fine cracks occurred on the inner surface, it can be determined that there is no problem with the product.

【0036】これに対して、表4に示すように、比較例
1はSi量が少ないため、摩耗量が多い。比較例2はS
i量が過剰のため、押出性がわるく押出割れが発生し、
接合性も劣り抗折力が低い。比較例3はCu、Mg量が
少ないため抗折力が低く、比較例4はCu量が多いた
め、押出性がわるく割れが発生し、局部溶解による変形
開始温度も低い。
On the other hand, as shown in Table 4, Comparative Example 1 has a small amount of Si and therefore has a large amount of wear. Comparative Example 2 is S
Excessive i content causes poor extrudability and extrusion cracking,
Poor bondability and low bending strength. Comparative Example 3 has a low transverse rupture strength due to small amounts of Cu and Mg, and Comparative Example 4 has a large amount of Cu, resulting in poor extrudability and cracking, and a low deformation start temperature due to local melting.

【0037】また、比較例5〜7は変形抵抗が高く押出
ができなかった。比較例8はNiが2.5%も含有して
いるため、押出性がわるく割れが発生した。比較例9は
G/M比を2としたため、Si粒径が粗大になり、押出
性が悪く割れが発生し、抗折力も低い。
In Comparative Examples 5 to 7, the deformation resistance was so high that extrusion was not possible. In Comparative Example 8, since 2.5% of Ni was contained, extrudability deteriorated and cracks occurred. In Comparative Example 9, since the G / M ratio was set to 2, the Si particle size was large, the extrudability was poor, cracks occurred, and the bending strength was low.

【0038】実施例11〜13 成分がSiが22.5%、Cuが1.0%、Mgが0.
5%、Feが0.08%、残部がAlおよび不純物から
なるアルミニウム合金のプリフォームを2本、G/M比
5でオスプレイ法により製造した。製造したプリフォー
ムは直径270mm、高さ1300mmであり、直径2
54mm、高さ320mmの円柱を6本削り出して押出
ビレットとし、各押出ビレットを押出温度を変化させる
こと以外は実施例1〜10と同様にして、円筒3連結形
材をそれぞれポートホール押出した。得られた円筒3連
結形材について、実施例1〜10と同様な測定をした。
押出条件を表5に示す。また、測定結果を表6に示す。
Examples 11 to 13 The components were 22.5% of Si, 1.0% of Cu, and 0.1% of Mg.
Two aluminum alloy preforms each containing 5%, 0.08% Fe, and the balance of Al and impurities were manufactured by the Osprey method at a G / M ratio of 5. The manufactured preform has a diameter of 270 mm, a height of 1300 mm, and a diameter of 2 mm.
Extrusion billets were formed by cutting out six cylinders having a height of 54 mm and a height of 320 mm, and each of the three extruded billets was porthole extruded in the same manner as in Examples 1 to 10 except that the extrusion temperature was changed. . The same measurement as in Examples 1 to 10 was performed on the obtained three-piece cylindrical connecting member.
The extrusion conditions are shown in Table 5. Table 6 shows the measurement results.

【0039】比較例10〜12 実施例11〜13と同じ各押出ビレットを用い、押出温
度を本発明の好ましい範囲(470℃以上520℃以
下)外として、円筒3連結形材をそれぞれポートホール
押出しにより作製し、得られた円筒3連結形材につい
て、実施例1〜10と同様な測定を行った。押出条件を
表5に、また測定結果を表6に示す。
Comparative Examples 10 to 12 Using the same extruded billets as in Examples 11 to 13, except that the extrusion temperature was outside the preferred range of the present invention (470 ° C. or more and 520 ° C. or less), each of the three cylinders was extruded through a porthole. And the same measurement as in Examples 1 to 10 was performed on the obtained cylindrical three-link shape. The extrusion conditions are shown in Table 5, and the measurement results are shown in Table 6.

【0040】[0040]

【表5】 [Table 5]

【0041】[0041]

【表6】 [Table 6]

【0042】表6によれば、実施例11〜13は良好な
製品が得られ、強度、耐磨耗性(抗折力は300MPa
以上、磨耗量0.3mm以下) 共に優れている。これに対
して、比較例10はビレット温度が低いため、変形抵抗
が高く押出ができなかった。比較例11はビレット温度
が低いため、接合部の強度が低く、比較例12はビレッ
ト温度が高いため、押し出し表面に割れが生じ、更に接
合部の強度も低い。
According to Table 6, in Examples 11 to 13, good products were obtained, and the strength and abrasion resistance (the bending strength was 300 MPa)
As described above, the wear amount is 0.3 mm or less. On the other hand, in Comparative Example 10, since the billet temperature was low, the deformation resistance was high and extrusion was not possible. Comparative Example 11 has a low billet temperature and therefore has a low joint strength, and Comparative Example 12 has a high billet temperature and has a crack on the extruded surface and further has a low joint strength.

【0043】[0043]

【発明の効果】本発明によれば、Al−Si−Cu−M
g系アルミニウム合金中のSi含有量を17%以上27
%未満とし、Cu、Mgを所定範囲の含有量にして、S
i粒径を1μm以上5μm未満にしたから、高強度を保
持したままで、耐磨耗性を有し、しかも変形性が良く従
って押出性が良くなるから、シリンダライナーを複数連
結させる等の複雑なものでも押出成形することが可能と
なる。
According to the present invention, Al-Si-Cu-M
The Si content in the g-based aluminum alloy is 17% or more 27
%, The content of Cu and Mg within a predetermined range, and S
i Since the particle size is 1 μm or more and less than 5 μm, it has abrasion resistance while maintaining high strength, and has good deformability and good extrudability, so it is complicated to connect a plurality of cylinder liners. It is possible to extrude even a simple one.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態を示すアルミニウム合金成形
体の断面図である。
FIG. 1 is a sectional view of an aluminum alloy compact showing an embodiment of the present invention.

【図2】本発明の実施形態を示すアルミニウム合金成形
体の斜視図である。
FIG. 2 is a perspective view of an aluminum alloy compact showing an embodiment of the present invention.

【図3】本発明の実施形態を示すアルミニウム合金成形
体の試験片の斜視図である。
FIG. 3 is a perspective view of a test piece of an aluminum alloy molded body according to the embodiment of the present invention.

【図4】本発明の実施形態を示すアルミニウム合金成形
体の抗折力を測定する試験機の側面図である。
FIG. 4 is a side view of a tester for measuring a transverse rupture force of the aluminum alloy compact according to the embodiment of the present invention.

【図5】従来例を示す概要図である。FIG. 5 is a schematic diagram showing a conventional example.

【図6】従来例との対比説明に用いた本発明の実施形態
を示すシリンダライナーの概要図である。
FIG. 6 is a schematic view of a cylinder liner showing an embodiment of the present invention used for comparison with a conventional example.

【符号の説明】[Explanation of symbols]

1 円筒3連結形材 2 接合部 3 試験片 4 試験機 5 ピン a シリンダライナー DESCRIPTION OF SYMBOLS 1 Cylinder 3 connection shape material 2 Joint 3 Test piece 4 Testing machine 5 Pin a Cylinder liner

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 612 C22F 1/00 612 626 626 630 630D 630A 651 651B 683 683 694 694B ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme court ゛ (Reference) C22F 1/00 612 C22F 1/00 612 626 626 630 630D 630A 651 651B 683 683 694 694B

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 Si17%以上27%未満(重量%、以
下同じ)、Cu0.3%以上5.0%未満、Mg0.2
%以上2.0%未満を含有し、残部がAl及び不純物か
らなる組成を有し、マトリックス中に分布するSi粒子
の平均粒径が1μm以上5μm未満のアルミニウム合金
であり、該アルミニウム合金素材を複数の筒体を並設し
た形状に押出成形してなることを特徴とする耐摩耗性、
高強度アルミニウム合金成形体。
1. Si 17% or more and less than 27% (weight%, the same applies hereinafter), Cu 0.3% or more and less than 5.0%, Mg 0.2
% Or less and less than 2.0%, the balance being Al and impurities, the average particle size of Si particles distributed in the matrix is 1 μm or more and less than 5 μm. Abrasion resistance characterized by being extruded into a shape in which a plurality of cylinders are juxtaposed,
High strength aluminum alloy compact.
【請求項2】 Si17%以上27%未満、Cu0.3
%以上5.0%未満、Mg0.2%以上2.0%未満を
含有し、残部がAl及び不純物からなる組成を有し、マ
トリックス中に分布するSi粒子の平均粒径が1μm以
上5μm未満のアルミニウム合金にし、該アルミニウム
合金を、ポートホール方式で熱間押出加工し、複数の筒
体を並設した形状にすることを特徴とする耐摩耗性、高
強度のアルミニウム合金成形体の製造方法。
2. Si 17% or more and less than 27%, Cu 0.3
% To less than 5.0%, Mg 0.2% to less than 2.0%, with the balance being Al and impurities, and the Si particles distributed in the matrix having an average particle size of 1 μm to less than 5 μm. A method for producing a wear-resistant, high-strength aluminum alloy molded article, characterized in that said aluminum alloy is hot-extruded by a porthole method into a shape in which a plurality of cylindrical bodies are juxtaposed. .
【請求項3】 熱間押出温度が470〜520℃である
ことを特徴とする請求項2記載の耐摩耗性、高強度のア
ルミニウム合金成形体の製造方法。
3. The method for producing a wear-resistant, high-strength aluminum alloy compact according to claim 2, wherein the hot extrusion temperature is 470 to 520 ° C.
【請求項4】 請求項1記載のアルミニウム合金成形体
からなる内燃機関用のシリンダライナー。
4. A cylinder liner for an internal combustion engine comprising the aluminum alloy molded product according to claim 1.
JP28071298A 1998-10-02 1998-10-02 Wear resistant and high strength aluminum alloy molded body, its production and cylinder liner composed of the molded body Pending JP2000109944A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28071298A JP2000109944A (en) 1998-10-02 1998-10-02 Wear resistant and high strength aluminum alloy molded body, its production and cylinder liner composed of the molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28071298A JP2000109944A (en) 1998-10-02 1998-10-02 Wear resistant and high strength aluminum alloy molded body, its production and cylinder liner composed of the molded body

Publications (1)

Publication Number Publication Date
JP2000109944A true JP2000109944A (en) 2000-04-18

Family

ID=17628908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28071298A Pending JP2000109944A (en) 1998-10-02 1998-10-02 Wear resistant and high strength aluminum alloy molded body, its production and cylinder liner composed of the molded body

Country Status (1)

Country Link
JP (1) JP2000109944A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003105470A (en) * 2001-09-27 2003-04-09 Toyo Aluminium Kk Al-Si BASED POWDER ALLOY MATERIAL, AND PRODUCTION METHOD THEREFOR
KR20030048174A (en) * 2001-12-11 2003-06-19 현대자동차주식회사 Liner assembly for cylinder block
JP2007211349A (en) * 2007-04-02 2007-08-23 Yamaha Motor Co Ltd Cylinder liner of engine
JP2010174374A (en) * 2001-03-31 2010-08-12 Yamaha Motor Co Ltd Cylinder liner of engine, method for producing the same, and cylinder block of engine
US20100224290A1 (en) * 2009-03-09 2010-09-09 Honda Motor Co., Ltd. Aluminum alloy casting and method for producing the same, and apparatus for producing slide member
JP2011012338A (en) * 2009-06-30 2011-01-20 Hyundai Motor Co Ltd Aluminum alloy for vehicle cylinder liner and method of manufacturing vehicle cylinder liner using the same
JP2014214329A (en) * 2013-04-23 2014-11-17 住友電工焼結合金株式会社 Raw material powder for cylinder liner, cylinder liner and method of manufacturing cylinder liner

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010174374A (en) * 2001-03-31 2010-08-12 Yamaha Motor Co Ltd Cylinder liner of engine, method for producing the same, and cylinder block of engine
JP2003105470A (en) * 2001-09-27 2003-04-09 Toyo Aluminium Kk Al-Si BASED POWDER ALLOY MATERIAL, AND PRODUCTION METHOD THEREFOR
KR20030048174A (en) * 2001-12-11 2003-06-19 현대자동차주식회사 Liner assembly for cylinder block
JP2007211349A (en) * 2007-04-02 2007-08-23 Yamaha Motor Co Ltd Cylinder liner of engine
US20100224290A1 (en) * 2009-03-09 2010-09-09 Honda Motor Co., Ltd. Aluminum alloy casting and method for producing the same, and apparatus for producing slide member
CN101829765A (en) * 2009-03-09 2010-09-15 本田技研工业株式会社 Aluminium alloy castings and production method thereof and the equipment and the method for producing sliding component
US9555469B2 (en) 2009-03-09 2017-01-31 Honda Motor Co., Ltd. Aluminum alloy casting and method for producing the same, and apparatus for producing slide member
JP2011012338A (en) * 2009-06-30 2011-01-20 Hyundai Motor Co Ltd Aluminum alloy for vehicle cylinder liner and method of manufacturing vehicle cylinder liner using the same
JP2014214329A (en) * 2013-04-23 2014-11-17 住友電工焼結合金株式会社 Raw material powder for cylinder liner, cylinder liner and method of manufacturing cylinder liner

Similar Documents

Publication Publication Date Title
US4938810A (en) Heat-resistant, wear-resistant, and high-strength aluminum alloy powder and body shaped therefrom
US9272327B2 (en) Method for producing shaped article of aluminum alloy, shaped aluminum alloy article and production system
US6030577A (en) Process for manufacturing thin pipes
EP0144898A2 (en) Aluminum alloy and method for producing same
US5578386A (en) Nickel coated carbon preforms
US7069897B2 (en) Forged piston for internal combustion engine and manufacturing method thereof
JPWO2008016169A1 (en) Aluminum alloy molded product manufacturing method, aluminum alloy molded product and production system
JPS6210237A (en) Aluminum alloy for hot forging
US6086819A (en) Process for manufacturing thin-walled pipes
FR2604186A1 (en) PROCESS FOR MANUFACTURING HYPERSILICALLY ALUMINUM ALLOY PARTS OBTAINED FROM COOLED COOLED POWDERS AT HIGH SPEED
JP2000042709A (en) Manufacture of cylinder liner from hyper-eutectic aluminum-silicon alloy
JPS5913041A (en) Aluminum alloy powder having high resistance to heat and abrasion and high strength and molding of said alloy powder and its production
JP3976991B2 (en) Metal casting wrap
CN1041399A (en) Produce the method that still keeps the Al-alloy parts of good fatigue strength after being heated for a long time
JP4359231B2 (en) Method for producing aluminum alloy molded product, and aluminum alloy molded product
JPS6121295B2 (en)
JP2000109944A (en) Wear resistant and high strength aluminum alloy molded body, its production and cylinder liner composed of the molded body
EP0892075A1 (en) Aluminium alloy for a piston and method of manufacturing a piston
JPS5913040A (en) Heat- and wear-resistant high-strength aluminum alloy powder and molded body of said alloy powder and their manufacture
JPS6050137A (en) Heat- and wear-resistant high-strength aluminum alloy member of hard particle dispersion type and its production
JPS5966918A (en) Double layer structure hollow member made of aluminum alloy
JPH0246659B2 (en)
US6889746B2 (en) Material for plastic working and production method thereof
JPS63266004A (en) High strength aluminum alloy powder having heat and wear resistances
JPH0417724B2 (en)