JP2008001949A - Method for producing aluminum alloy sheet - Google Patents

Method for producing aluminum alloy sheet Download PDF

Info

Publication number
JP2008001949A
JP2008001949A JP2006173266A JP2006173266A JP2008001949A JP 2008001949 A JP2008001949 A JP 2008001949A JP 2006173266 A JP2006173266 A JP 2006173266A JP 2006173266 A JP2006173266 A JP 2006173266A JP 2008001949 A JP2008001949 A JP 2008001949A
Authority
JP
Japan
Prior art keywords
aluminum alloy
rolling
temperature
plate
pass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006173266A
Other languages
Japanese (ja)
Other versions
JP4668855B2 (en
Inventor
Koji Hisayuki
晃二 久幸
Hideo Ito
秀夫 伊藤
Seiji Tazaki
清司 田崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2006173266A priority Critical patent/JP4668855B2/en
Publication of JP2008001949A publication Critical patent/JP2008001949A/en
Application granted granted Critical
Publication of JP4668855B2 publication Critical patent/JP4668855B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Insulated Metal Substrates For Printed Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing an aluminum alloy sheet where low thermal expansibility is secured by the incorporation of Si and Ni, and also, a thin sheet can be produced by rolling. <P>SOLUTION: When an aluminum alloy stock having a composition comprising, by mass, 11 to 20% Si and 1 to 6% Ni, and the balance Al with inevitable impurities is subjected to hot rolling for one or more passes, so as to produce a sheet material, the material temperature upon the start of the rolling in each pass is set to the one within a range lower by 10 to 50°C than the solidus temperature of the aluminum alloy. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、例えばプリント基板等に用いられる低熱膨張性のアルミニウム合金板の製造方法に関する。   The present invention relates to a method for producing a low thermal expansion aluminum alloy plate used for, for example, a printed circuit board.

低熱膨張性アルミニウム合金としては、Al−Si合金やAl−Si−Ni合金が周知であり、特に後者は耐熱性にも良好であることが知られている(特許文献1〜4参照)。   As the low thermal expansion aluminum alloy, Al—Si alloy and Al—Si—Ni alloy are well known, and the latter is known to be particularly good in heat resistance (see Patent Documents 1 to 4).

ところで、図1に示すように、プリント配線基板(1)は、基板(2)上に絶縁層(3)を積層し、この絶縁層(3)上に通電層(4)を所要回路形状に積層したものであり、前記通電層(4)に電子部品(5)がハンダ(6)で接合される。一般に、このようなプリント配線基板(1)では、基板(2)の材料として熱伝導性に優れたアルミニウムまたはアルミニウム合金あるいは銅が用いられ、通電層(4)として銅箔が用いられる。軽量性の点では銅よりもアルミニウムまたはアルミニウム合金からなる基板(2)を用いることが好ましい。   By the way, as shown in FIG. 1, the printed wiring board (1) has an insulating layer (3) laminated on the board (2), and the conductive layer (4) is formed on the insulating layer (3) in a required circuit shape. The electronic component (5) is joined to the conductive layer (4) with solder (6). In general, in such a printed wiring board (1), aluminum, aluminum alloy or copper having excellent thermal conductivity is used as the material of the board (2), and copper foil is used as the energizing layer (4). In terms of light weight, it is preferable to use a substrate (2) made of aluminum or an aluminum alloy rather than copper.

前記プリント配線基板(1)において、銅箔(4)と熱膨張係数に差のある基板(2)を用いると、実装品である電子部品(5)から発生する熱や雰囲気温度により冷熱サイクルが繰り返され、逆方向の反りが繰り返し発生してハンダ(6)に疲労クラックが発生することがある。このため、基板(2)として、銅箔(4)の熱膨張係数(約17×10-6/K)に近いアルミニウム合金が望ましく、熱膨張係数が約24×10-6/Kの純アルミニウムよりも、上述した低熱膨張性のAl−Si合金やAl−Si−Ni合金が望まれる。
特開平6−41667号公報 特開平2−61025号公報 特開2001−335872号公報 特開平2−73937号公報
In the printed wiring board (1), when a board (2) having a difference in thermal expansion coefficient from the copper foil (4) is used, a cooling cycle is caused by heat generated from the electronic component (5) which is a mounted product or an ambient temperature. Repeatedly, warping in the opposite direction may occur repeatedly and fatigue cracks may occur in the solder (6). Therefore, an aluminum alloy close to the thermal expansion coefficient (about 17 × 10 −6 / K) of the copper foil (4) is desirable as the substrate (2), and pure aluminum having a thermal expansion coefficient of about 24 × 10 −6 / K. Instead, the above-described low thermal expansion Al—Si alloy or Al—Si—Ni alloy is desired.
JP-A-6-41667 JP-A-2-61025 JP 2001-335872 A JP-A-2-73937

上述した基板(2)には圧延板を用いるのが一般的である。基板(2)の熱膨張係数を銅箔に近づけるには相当量のSiおよびNiを添加する必要があるが、Si濃度を高くすると圧延性が低下し、基板(2)に用いるような薄板の製作が極めて困難である。特許文献4に記載されたAl−Si−Ni合金による管体の製作においては、押出成形した素管に抽伸加工を施し、さらに表面切削により所期する肉厚を得ている。しかし、押出成形ではプリント配線基板に用いるような寸法の大きい薄板を製作することは困難であった。   A rolled plate is generally used for the substrate (2) described above. In order to bring the thermal expansion coefficient of the substrate (2) closer to that of the copper foil, it is necessary to add a considerable amount of Si and Ni. However, if the Si concentration is increased, the rollability is lowered, and the thin plate used for the substrate (2) Production is extremely difficult. In the production of a tubular body made of an Al—Si—Ni alloy described in Patent Document 4, the extruded raw tube is subjected to a drawing process, and a desired thickness is obtained by surface cutting. However, it has been difficult to produce a thin plate having a large size used for a printed wiring board by extrusion molding.

本発明は、上述した技術背景に鑑み、SiおよびNiの含有によって低熱膨張性を確保し、かつ圧延によって薄板を製作できるアルミニウム合金板の製造方法の提供を目的とする。   In view of the above-described technical background, an object of the present invention is to provide a method for producing an aluminum alloy plate that can ensure low thermal expansion by containing Si and Ni and can produce a thin plate by rolling.

即ち、本発明のアルミニウム合金板の製造方法は下記〔1〕〜〔5〕に記載の構成を有する。   That is, the manufacturing method of the aluminum alloy plate of this invention has the structure as described in following [1]-[5].

〔1〕 Si:11〜20質量%およびNi:1〜6質量%を含有し、残部Alおよび不可避不純物からなるアルミニウム合金素材に対し、1パス以上の熱間圧延により板材を製造するに際し、
各パスにおける圧延開始時の材料温度を、前記アルミニウム合金の固相線温度よりも10〜50℃低い範囲内に設定することを特徴とするアルミニウム合金板の製造方法。
[1] Si: 11 to 20% by mass and Ni: 1 to 6% by mass, with respect to the aluminum alloy material consisting of the remaining Al and inevitable impurities, when producing a plate material by hot rolling of one pass or more,
A method for producing an aluminum alloy sheet, wherein a material temperature at the start of rolling in each pass is set within a range lower by 10 to 50 ° C. than a solidus temperature of the aluminum alloy.

〔2〕 前記材料温度を、前記アルミニウム合金の固相線温度よりも10〜30℃低い範囲内に設定する前項1に記載のアルミニウム合金板の製造方法。   [2] The method for producing an aluminum alloy plate according to item 1, wherein the material temperature is set within a range of 10 to 30 ° C. lower than the solidus temperature of the aluminum alloy.

〔3〕 熱間圧延を、圧延後の板厚が10mmになるまでは10%以下のリダクション率で行い、10mm未満5mm以上になるまでは20%以下のリダクション率で行い、5未満では40%以下のリダクション率で行う前項1または2に記載のアルミニウム合金板の製造方法。   [3] Hot rolling is performed at a reduction rate of 10% or less until the plate thickness after rolling is 10 mm, and at a reduction rate of 20% or less until it is less than 10 mm and 5 mm or more, and 40% if it is less than 5 mm. 3. The method for producing an aluminum alloy plate according to item 1 or 2, which is performed at the following reduction rate.

〔4〕 熱間圧延に供する素材を、ビレット温度:430〜480℃、押出速度0.1〜1m/minの押出成形により製作する前項1〜3のいずれか1項に記載のアルミニウム合金板の製造方法。   [4] The aluminum alloy sheet according to any one of items 1 to 3, wherein the material to be subjected to hot rolling is manufactured by extrusion molding at a billet temperature of 430 to 480 ° C and an extrusion speed of 0.1 to 1 m / min. Production method.

〔5〕 熱間圧延後の板材に450〜500℃で1〜5hの熱処理を施す前項1〜4のいずれか1項に記載のアルミニウム合金板の製造方法。   [5] The method for producing an aluminum alloy plate according to any one of items 1 to 4, wherein the plate after hot rolling is subjected to heat treatment at 450 to 500 ° C. for 1 to 5 hours.

また、本発明のアルミニウム合金板は下記〔6〕〔7〕に記載の構成を有する。   Moreover, the aluminum alloy plate of this invention has the structure as described in following [6] [7].

〔6〕 前項1〜5のいずれか1項に記載の製造方法により製造したことを特徴とするアルミニウム合金板。   [6] An aluminum alloy plate manufactured by the manufacturing method according to any one of items 1 to 5.

〔7〕 金属断面組織においてAl3Ni金属間化合物の平均粒径が20μm以下である前項6に記載のアルミニウム合金板。 [7] The aluminum alloy sheet according to item 6, wherein the average particle size of the Al 3 Ni intermetallic compound is 20 μm or less in the metal cross-sectional structure.

また、本発明のプリント配線基板は下記〔8〕〔9〕に記載の構成を有する。   Moreover, the printed wiring board of this invention has the structure as described in following [8] [9].

〔8〕 前項6または7に記載されたアルミニウム合金板をアルミニウム基板とし、このアルミニウム基板上に絶縁層があり、さらにこの絶縁層上に銅があることを特徴とするプリント配線基板。   [8] A printed wiring board characterized in that the aluminum alloy plate described in the above item 6 or 7 is an aluminum substrate, an insulating layer is provided on the aluminum substrate, and copper is further provided on the insulating layer.

〔9〕 前記絶縁層は、絶縁性樹脂または前記絶縁性樹脂に熱伝導性フィラーを配合した絶縁性樹脂組成物を含む、前項8に記載のプリント配線基板。   [9] The printed wiring board according to item 8, wherein the insulating layer includes an insulating resin or an insulating resin composition in which a thermally conductive filler is blended with the insulating resin.

上記〔1〕に記載のアルミニウム合金板の製造方法によれば、圧延時のマトリックスの流動によりAl3Ni金属間化合物が粉砕されるとともに分散され、かつ空隙の発生が防がれる。これらの作用により圧延中の割れの発生が抑制されて良好な圧延性が得られ薄板を製作することができる。材料となるアルミニウム合金はその組成により熱膨張性が低いものであるから、本製造方法により低熱膨張性の薄板を製作することができる。 According to the method for producing an aluminum alloy sheet described in [1] above, Al 3 Ni intermetallic compounds are pulverized and dispersed by the flow of the matrix during rolling, and the generation of voids is prevented. By these actions, the occurrence of cracks during rolling is suppressed, and good rolling properties can be obtained and a thin plate can be manufactured. Since the aluminum alloy used as a material has low thermal expansion due to its composition, a thin plate having low thermal expansion can be produced by this production method.

上記〔2〕に記載のアルミニウム合金板の製造方法によれば、特にマトリックスの流動性が良好であり、圧延性が良い。   According to the method for producing an aluminum alloy plate described in [2] above, the flowability of the matrix is particularly good and the rollability is good.

上記〔3〕に記載のアルミニウム合金板の製造方法によれば、最終目的の厚さの板材を効率良く製造することができる。   According to the method for producing an aluminum alloy plate described in [3] above, a plate material having a final target thickness can be produced efficiently.

上記〔4〕に記載のアルミニウム合金板の製造方法によれば、押出成形時に合金組織が微細化され、粗大組織による圧延割れを抑制することができる。   According to the method for producing an aluminum alloy sheet described in [4] above, the alloy structure is refined during extrusion, and rolling cracks due to a coarse structure can be suppressed.

上記〔5〕に記載のアルミニウム合金板の製造方法によれば、圧延板の熱膨張係数をさらに低下させることができる。   According to the method for producing an aluminum alloy plate described in [5] above, the thermal expansion coefficient of the rolled plate can be further reduced.

上記〔6〕〔7〕に記載のアルミニウム合金板は、〔1〕〜〔5〕に記載の方法で製造されたものであるから、低熱膨張性の板材である。   Since the aluminum alloy plate described in [6] and [7] is manufactured by the method described in [1] to [5], it is a low thermal expansion plate material.

上記〔8〕に記載されたプリント配線基板は、アルミニウム基板として、上記〔6〕または〔7〕に記載されたアルミニウム合金板を用いたものであるから、アルミニウム基板と通電層との熱膨張係数差が少なく加熱と冷却を繰り返しても反りが少ない。ひいては電子部品を取り付けるためのハンダにおけるクラック発生が抑制される。   Since the printed wiring board described in [8] uses the aluminum alloy plate described in [6] or [7] as an aluminum substrate, the thermal expansion coefficient between the aluminum substrate and the conductive layer is There is little difference, and even if heating and cooling are repeated, there is little warping. As a result, the generation of cracks in the solder for mounting the electronic components is suppressed.

上記〔9〕に記載されたプリント配線基板は、絶縁層とアルミニウム基板との接合性、絶縁層と通電層との接合性が良好である。   The printed wiring board described in [9] above has good bonding properties between the insulating layer and the aluminum substrate and bonding properties between the insulating layer and the conductive layer.

本発明に適用するアルミニウム合金は、Si:11〜20質量%およびNi:1〜6質量%を含有し、残部Alおよび不可避不純物からなるアルミニウム合金である。SiおよびNiの含有意義および濃度の限定理由は以下の通りである。   The aluminum alloy applied to the present invention is an aluminum alloy containing Si: 11 to 20% by mass and Ni: 1 to 6% by mass, the balance being Al and inevitable impurities. The reasons for limiting the content and concentration of Si and Ni are as follows.

Siはアルミニウム合金の熱膨張係数を低くするために必要な元素である。Si濃度が高くなるほど熱膨張係数が低くなり、本発明においてはSi濃度が11〜20質量%のアルミニウム合金を用いる。11質量%未満では所期する低い熱膨張係数を得ることができず、20質量%を超えると熱膨張係数はさらに低くなるが、延性が低下して圧延が困難になるとともに、切断や穴あけ等の後加工も困難となる。また、Si濃度が高くなると熱伝導率が低下するため、プリント配線基板等の放熱性が要求される用途には適さない。熱膨張係数と圧延性の両者を勘案すると、さらに好ましいSi濃度は18〜20質量%である。   Si is an element necessary for reducing the thermal expansion coefficient of an aluminum alloy. The higher the Si concentration, the lower the thermal expansion coefficient. In the present invention, an aluminum alloy having an Si concentration of 11 to 20% by mass is used. If it is less than 11% by mass, the expected low coefficient of thermal expansion cannot be obtained, and if it exceeds 20% by mass, the coefficient of thermal expansion is further reduced, but the ductility is lowered and rolling becomes difficult, and cutting, drilling, etc. Post-processing is also difficult. Further, since the thermal conductivity decreases as the Si concentration increases, it is not suitable for applications that require heat dissipation such as a printed wiring board. Considering both the thermal expansion coefficient and the rollability, the more preferable Si concentration is 18 to 20% by mass.

Niは、Al3Niなる金属間化合物を形成してアルミニウム合金の熱膨張係数を低くする元素である。アルミニウム合金において圧延性に比較的大きい影響を与えるのは初晶Siであるが、Niの添加によりAl3Niなる金属間化合物を形成し、Si濃度を上記範囲に設定しても低い熱膨張係数を確保しつつ、圧延性を確保して圧延による薄板製造を可能にする。また、穴あけ等の加工性も確保することができる。Ni濃度が1質量%未満では熱膨張係数を低くする効果が乏しく、Ni濃度が6質量%を超えると合金の融点が高くなって、鋳造時の溶融温度を高くしなければならない。従って、本発明においてNi濃度は1〜6質量%とする。Ni濃度はAl−Si−Niの3元共晶点付近で融点が比較的低い5質量%付近が好ましく、さらに好ましいNi濃度は、4〜6質量%である。 Ni is an element that forms an intermetallic compound of Al 3 Ni and lowers the thermal expansion coefficient of the aluminum alloy. Although it is primary crystal Si that has a relatively large effect on rollability in an aluminum alloy, a low thermal expansion coefficient is obtained even when an intermetallic compound of Al 3 Ni is formed by the addition of Ni and the Si concentration is set within the above range. While ensuring the rollability, the rollability is ensured and the thin plate can be manufactured by rolling. In addition, workability such as drilling can be ensured. When the Ni concentration is less than 1% by mass, the effect of lowering the thermal expansion coefficient is poor, and when the Ni concentration exceeds 6% by mass, the melting point of the alloy becomes high and the melting temperature during casting must be increased. Therefore, in the present invention, the Ni concentration is 1 to 6% by mass. The Ni concentration is preferably near 5% by mass near the ternary eutectic point of Al—Si—Ni, which has a relatively low melting point, and more preferably 4 to 6% by mass.

また、アルミニウム合金の残部組成はAlおよび不純物である。不純物とは、Si、NiおよびAl以外の元素であり、合金の特性向上を目的として添加される元素、合金の特性を損なわない範囲で含有が許容される元素、および製造上不可避的に含有される元素を含むものである。   The balance composition of the aluminum alloy is Al and impurities. Impurities are elements other than Si, Ni and Al, elements added for the purpose of improving the characteristics of the alloy, elements allowed to be contained within a range that does not impair the characteristics of the alloy, and contained inevitably in production. It contains an element.

表1に参照されるように、上記組成のアルミニウム合金の熱膨張係数は約20×10-6/K〜約17×10-6/Kであるが、銅の熱膨張係数の17.0×10-6/Kに近似しており、本発明で製造したアルミニウム合金板をプリント配線基板(1)の基板として用いた場合に銅箔(4)との熱膨張係数の差を可及的に小さくすることができ、クラックの発生を軽減することが可能となる。 As shown in Table 1, the thermal expansion coefficient of the aluminum alloy having the above composition is about 20 × 10 −6 / K to about 17 × 10 −6 / K, but the thermal expansion coefficient of copper is 17.0 ×. 10 −6 / K, and when the aluminum alloy plate manufactured in the present invention is used as the substrate of the printed wiring board (1), the difference in coefficient of thermal expansion with the copper foil (4) is made as much as possible. It is possible to reduce the size, and the occurrence of cracks can be reduced.

上述したアルミニウム合金は、圧延用の素材に対し、1パス以上の熱間圧延を行い、所望の板厚に成形する。圧延開始時の材料温度を所定の高温領域内に保つことで圧延中のマトリックスの流動性を確保し、鋳造時に生成されたAl3Ni金属間化合物を粉砕し分散させるとともに、マトリックス中に空隙が生じるのを防ぐことができる。これらの作用により、圧延中の割れが抑制されて良好な圧延性を得ることができる。 The aluminum alloy described above is subjected to hot rolling for one or more passes on the rolling material and formed into a desired plate thickness. By maintaining the material temperature at the start of rolling within a predetermined high temperature region, the fluidity of the matrix during rolling is ensured, and the Al 3 Ni intermetallic compound produced during casting is pulverized and dispersed, and voids are present in the matrix. It can be prevented from occurring. By these actions, cracks during rolling can be suppressed and good rollability can be obtained.

各パスにおける圧延温度は以下のようにして設定する。   The rolling temperature in each pass is set as follows.

材料となるアルミニウム合金の固相線温度よりも10〜50℃低い領域、即ち(固相線温度−50℃)〜(固相線温度−10℃)を圧延温度範囲とし、各パスの圧延開始時の材料温度を圧延温度範囲内の温度に設定する。前記圧延温度範囲は圧延に適した流動性が得られる温度領域であり、上限値が(固相線温度−10℃)を超えて高くなると粒界割れが生じて圧延に適さず、下限値(固相線温度−50℃)よりも低くなると流動性が不足してAl3Ni金属間化合物の粉砕および分散が不十分となるおそれがある。さらに好ましい圧延温度範囲は固相線温度よりも10〜30℃低い範囲、即ち(固相線温度−30℃)〜(固相線温度−10℃)である。 Rolling temperature ranges from 10 to 50 ° C. lower than the solidus temperature of the aluminum alloy material, that is, (solidus temperature −50 ° C.) to (solidus temperature −10 ° C.). The material temperature is set to a temperature within the rolling temperature range. The rolling temperature range is a temperature range in which fluidity suitable for rolling is obtained, and when the upper limit value exceeds (solidus temperature −10 ° C.) and becomes higher, grain boundary cracking occurs and it is not suitable for rolling. If the temperature is lower than the solidus temperature of −50 ° C., the fluidity is insufficient and the Al 3 Ni intermetallic compound may be insufficiently pulverized and dispersed. A more preferable rolling temperature range is 10 to 30 ° C. lower than the solidus temperature, that is, (solidus temperature −30 ° C.) to (solidus temperature −10 ° C.).

1回目のパスにおいて前記圧延温度範囲内の温度に設定して圧延しても、圧延中あるいはパスを重ねる毎に材料温度は自然低下する。そこで2回目以降のパスでは、パス前の材料温度が前記圧延温度範囲よりも低下した場合は、前記圧延温度範囲内となるように材料を再昇温し、前記圧延温度範囲内の温度で圧延を開始する。材料温度が低下しても圧延温度範囲内であれば再昇温することは任意であり、昇温することなく圧延しても良いし、昇温しても良い。2回目以降のパスにおいて再昇温する場合は必ずしも1回目のパスと同じ温度である必要はなく、圧延温度範囲内の任意温度に昇温すれば良い。前記圧延温度範囲内は圧延に適した流動性が得られる温度域であるから、リダクション率や圧延速度に応じて再昇温温度を適宜設定することができる。また、パス回数は限定されず、1パスのみの場合を含む任意回数である。   Even if rolling is performed at a temperature within the rolling temperature range in the first pass, the material temperature naturally decreases during rolling or each time the passes are repeated. Therefore, in the second and subsequent passes, when the material temperature before the pass is lower than the rolling temperature range, the temperature of the material is increased again so as to be within the rolling temperature range, and rolling is performed at a temperature within the rolling temperature range. To start. Even if the material temperature is lowered, it is optional to raise the temperature again as long as it is within the rolling temperature range. Rolling may be performed without raising the temperature, or the temperature may be raised. When the temperature is increased again in the second and subsequent passes, the temperature need not necessarily be the same as that in the first pass, and may be increased to an arbitrary temperature within the rolling temperature range. Since the rolling temperature range is a temperature range in which fluidity suitable for rolling is obtained, the reheating temperature can be appropriately set according to the reduction rate and the rolling speed. Further, the number of passes is not limited and is an arbitrary number including the case of only one pass.

また、熱間圧延においては、板厚が薄くなるほど高リダクション率の圧延が可能である。下記式で表されるリダクション率(%)は、圧延後の板厚が10mmになるまでは10%以下、圧延後の板厚が10mm未満5mm以上のときに20%以下、圧延後の板厚が5mm未満のときに40%以下で圧延することが望ましく、各パスのリダクションを上記範囲で設定することにより、最終目的の厚さの板材を効率良く製造することができる。特に好ましいリダクション率は、圧延後の板厚が10mmになるまでは5〜7%、10mm未満5mm以上のときは10〜15%、5mm未満のときは20〜30%である。   Moreover, in hot rolling, rolling with a high reduction rate is possible, so that plate | board thickness becomes thin. The reduction ratio (%) represented by the following formula is 10% or less until the sheet thickness after rolling reaches 10 mm, 20% or less when the sheet thickness after rolling is less than 10 mm and 5 mm or more, and the sheet thickness after rolling. When the thickness is less than 5 mm, it is desirable to perform rolling at 40% or less. By setting the reduction of each pass within the above range, a plate material having a final target thickness can be efficiently manufactured. A particularly preferable reduction rate is 5 to 7% until the plate thickness after rolling reaches 10 mm, 10 to 15% when it is less than 10 mm and 5 mm or more, and 20 to 30% when it is less than 5 mm.

リダクション率(%)={(圧延後の板厚−圧延前の板厚)/圧延前の板厚}×100
上述した熱間圧延には、所定組成の合金を鋳造した平板状鋳塊(スラブ)を供することも、ビレットを鋳造して押出成形した押出材を供することも、押出前のビレットを供することもできる。押出成形により材料の合金組織が微細化され、粗大組織による圧延割れを抑制することができる。ビレットの押出方法、押出条件は何ら制限を受けないが、好適にはビレット温度:430〜480℃の熱間で、押出速度0.1〜1m/minで押出成形することにより、良好に押し出すことができる。また、押出に際しては押出温度を一定に保つために、コンテナ温度も430〜480℃に設定しておくことが望ましい。特に好ましい押出条件は、ビレット温度:450〜470℃の熱間で、押出速度0.5〜0.7m/minである。
Reduction rate (%) = {(plate thickness after rolling−plate thickness before rolling) / plate thickness before rolling} × 100
In the hot rolling described above, a flat ingot (slab) obtained by casting an alloy of a predetermined composition, an extruded material obtained by casting a billet and extrusion molding, or a billet before extrusion may be provided. it can. The alloy structure of the material is refined by extrusion, and rolling cracks due to a coarse structure can be suppressed. The billet extrusion method and extrusion conditions are not limited at all. However, the billet is preferably extruded by extrusion molding at a billet temperature of 430 to 480 ° C. at an extrusion speed of 0.1 to 1 m / min. Can do. Further, in order to keep the extrusion temperature constant during extrusion, it is desirable to set the container temperature at 430 to 480 ° C. Particularly preferable extrusion conditions are a billet temperature of 450 to 470 ° C. and an extrusion speed of 0.5 to 0.7 m / min.

上述した工程で熱間圧延すれば、Al3Ni金属間化合物が粉砕されかつ分散されながら圧延されるため、良好な圧延性が得られ、薄板の製作が可能である。本発明において製作する板材の厚さは限定されないが、0.5〜4mmの薄板製作も可能である。また、製造されたアルミニウム合金板の金属組織においては、Al3Ni金属間化合物が粉砕されて平均粒径が20μm以下に微細化されている。 If hot rolling is performed in the above-described steps, the Al 3 Ni intermetallic compound is rolled while being pulverized and dispersed, so that good rolling properties can be obtained and a thin plate can be manufactured. Although the thickness of the board | plate material manufactured in this invention is not limited, 0.5-4 mm thin board manufacture is also possible. Moreover, in the metal structure of the manufactured aluminum alloy plate, the Al 3 Ni intermetallic compound is pulverized to reduce the average particle size to 20 μm or less.

最終厚さまで圧延したアルミニウム合金板は、熱処理により熱膨張係数を低下させることができる。熱処理条件は450〜500℃で1〜5h保持することが好ましい。450℃未満または1h未満では上記効果に乏しく、500℃を超えると最終製品の機械的性質や形状に悪影響を及ぼすおそれがある。また5hを超えて長時間処理してもさらなる低熱膨張化は期待できない。さらに好ましい熱処理条件は、480〜500℃で1〜3である。   The aluminum alloy sheet rolled to the final thickness can be reduced in thermal expansion coefficient by heat treatment. The heat treatment condition is preferably maintained at 450 to 500 ° C. for 1 to 5 hours. If the temperature is less than 450 ° C. or less than 1 hour, the above effect is poor, and if it exceeds 500 ° C., the mechanical properties and shape of the final product may be adversely affected. Further, even if the treatment is performed for longer than 5 hours, further reduction in thermal expansion cannot be expected. Furthermore, preferable heat processing conditions are 1-3 at 480-500 degreeC.

本発明の方法で製造したアルミニウム合金板の用途は限定されないが、低熱膨張性で薄板加工が可能であることから、プリント配線基板のアルミニウム基板として好適に用いることができる。低熱膨張性であるためにハンダクラックを低減することができ、特に冷熱サイクルが繰り返される環境、例えば車載用プリント配線基板のベース板として最適である。
前記用途において、好ましい板厚は0.5〜5mmであり、特に好ましい板厚さは0.5〜4mmである。その他の用途して、車載用、LED用、PDPドライバー用、液晶ドライバー用、各種パワートランジスター用の基板としても好適である。また、発熱する各種電子部品を搭載する筐体やシャーシ等の構造部材、その他の熱膨張による不具合を緩和する部品や部材等の各種用途に広く使用できる。
Although the use of the aluminum alloy plate manufactured by the method of the present invention is not limited, it can be suitably used as an aluminum substrate of a printed wiring board because it has low thermal expansion and can be processed into a thin plate. Since it has a low thermal expansion property, it can reduce solder cracks, and is particularly suitable as an environment in which a cooling / heating cycle is repeated, for example, as a base plate for an in-vehicle printed wiring board.
In the said use, preferable plate | board thickness is 0.5-5 mm, and especially preferable plate | board thickness is 0.5-4 mm. As other applications, it is also suitable as a substrate for in-vehicle use, LED use, PDP driver use, liquid crystal driver use, and various power transistors. Further, it can be widely used for various applications such as a case or a structural member such as a chassis for mounting various electronic components that generate heat, and other parts and members for alleviating problems caused by thermal expansion.

本発明のプリント配線基板は、図1に参照されるように、上述した本発明のアルミニウム合金材を基板(2)とし、このアルミニウム基板(2)上に絶縁層(3)を積層し、さらにこの絶縁層(3)上に所要回路形状の通電層(4)として銅箔が積層されたものである。プリント配線基板(1)においては、アルミニウム基板(2)の熱膨張係数が低いため、通電層(4)との熱膨張係数差が小さい。このため、通電層(4)上に取り付けられた電子部品(5)から発生する熱によって加熱と冷却が繰り返されても、反りが少なく、ハンダ(6)におけるクラック発生が抑制される。   As shown in FIG. 1, the printed wiring board of the present invention uses the above-described aluminum alloy material of the present invention as a substrate (2), and an insulating layer (3) is laminated on the aluminum substrate (2). A copper foil is laminated on the insulating layer (3) as a current-carrying layer (4) having a required circuit shape. In the printed wiring board (1), since the thermal expansion coefficient of the aluminum substrate (2) is low, the difference in thermal expansion coefficient from the conductive layer (4) is small. For this reason, even if heating and cooling are repeated by heat generated from the electronic component (5) mounted on the energization layer (4), there is little warpage and the occurrence of cracks in the solder (6) is suppressed.

絶縁層(3)は、クラッド材(10)に直接または間接的に接合される絶縁材料からなる。絶縁性が有れば絶縁材料は特に限定しないが、絶縁性樹脂または前記絶縁性樹脂に熱伝導性フィラーを配合した絶縁性樹脂組成物を推奨できる。これらの樹脂ベースの絶縁層は、アルミニウム基板および通電層との接合性が良く、かつセラミックに比べて割れにくく、大面積の基板の製作が可能である。なお、本発明において絶縁層(3)は前記絶縁性樹脂または絶縁性樹脂組成物に限定されるものではなく、セラミックも用いることができる。セラミックの場合は、例えば接着剤によりアルミニウム基板(2)に接合する。   The insulating layer (3) is made of an insulating material bonded directly or indirectly to the clad material (10). The insulating material is not particularly limited as long as it has insulating properties, but an insulating resin or an insulating resin composition in which a thermally conductive filler is blended with the insulating resin can be recommended. These resin-based insulating layers have good bondability with the aluminum substrate and the current-carrying layer, and are less likely to break than ceramics, and can produce a large-area substrate. In the present invention, the insulating layer (3) is not limited to the insulating resin or the insulating resin composition, and ceramic can also be used. In the case of ceramic, for example, it is bonded to the aluminum substrate (2) with an adhesive.

前記絶縁性樹脂は、限定されないが、耐熱性が優れて熱膨張率が小さく、クラッド材(10)に密着して接着性の優れているものが好ましい。これらの条件を満たす樹脂として、エポキシ樹脂またはポリイミド樹脂を推奨できる。さらに、エポキシ樹脂は、特に銅箔との接着性が良く、吸湿性が少なく、かつ安価である点でも推奨できる。ポリイミド樹脂は、耐薬品性が優れるとともに厚さ方向の熱膨張率が小さく、変形が抑制される点でも推奨できる。   The insulating resin is not limited, but is preferably a resin having excellent heat resistance, a low coefficient of thermal expansion, and being in close contact with the clad material (10) and excellent adhesion. An epoxy resin or a polyimide resin can be recommended as a resin that satisfies these conditions. Furthermore, epoxy resin can be recommended because it has particularly good adhesion to copper foil, low hygroscopicity, and is inexpensive. Polyimide resin is recommended because it has excellent chemical resistance and has a small coefficient of thermal expansion in the thickness direction, and deformation is suppressed.

また、前記絶縁性樹脂に熱伝導性フィラーを配合した絶縁性樹脂組成物を用いることによって、絶縁層の熱伝導性を高め、ひいては放熱性能を高めることができる。熱伝導性フィラーは絶縁体であって高熱伝導率を有するものが好ましく、その例としては、金属酸化物または金属窒化物が挙げられ、具体的にはSiO2、Al23、BeO、MgO、Si34、BN、AlNを例示できる。これらの熱伝導性フィラーは単独で使用しても任意の複数種を併用しても良い。熱伝導性フィラーは、樹脂組成物中の濃度が多くなるほど絶縁層(3)の熱伝導率が高くなり、40〜90容量%が好ましい。40容量%未満では熱伝導率向上効果が乏しく、90容量%を越えるとアルミニウム基板(2)との密着性が低下して放熱性能が低下する。特に好ましい濃度は60〜80容量%である。また、熱伝導性フィラーの粒径は絶縁層の厚さよりも小さければよく、10〜40μmが好ましい。 Further, by using an insulating resin composition in which a heat conductive filler is blended with the insulating resin, the heat conductivity of the insulating layer can be increased, and the heat dissipation performance can be improved. The thermally conductive filler is preferably an insulator and has a high thermal conductivity, and examples thereof include metal oxides or metal nitrides. Specifically, SiO 2 , Al 2 O 3 , BeO, MgO , Si 3 N 4 , BN, and AlN. These heat conductive fillers may be used alone or in combination of any plural kinds. The heat conductive filler has a higher thermal conductivity of the insulating layer (3) as the concentration in the resin composition increases, and is preferably 40 to 90% by volume. If it is less than 40% by volume, the effect of improving the thermal conductivity is poor, and if it exceeds 90% by volume, the adhesion to the aluminum substrate (2) is lowered and the heat dissipation performance is lowered. A particularly preferred concentration is 60 to 80% by volume. Moreover, the particle size of a heat conductive filler should just be smaller than the thickness of an insulating layer, and 10-40 micrometers is preferable.

絶縁層(3)の厚さは、上記の2種類のいずれの場合も0.01〜0.5mmが好ましい。   The thickness of the insulating layer (3) is preferably 0.01 to 0.5 mm in any of the above two types.

上述したクラッド材(10)、絶縁層(3)、通電層(4)の接合は、例えばホットプレス等の周知の方法により適宜行う。   The joining of the clad material (10), the insulating layer (3), and the energization layer (4) is appropriately performed by a known method such as hot pressing.

例えば、絶縁層(3)の絶縁性樹脂として熱硬化性樹脂を用いたホットプレスの一例を説明すると、通電層(4)、絶縁層(3)、アルミニウム基板(2)を重ね合わせ、上下をステンレス鋼板で挟み、さらにクッション材を介して押圧し、加熱する。このホットプレスにより、絶縁層(3)が硬化するとともにアルミニウム基板(2)と通電層(4)に接合され、これらが一体化される。また、絶縁層(3)の一部に通電層(4)を接合する場合は、位置合わせシートおよび当て板を用いて接合を行っても良い。即ち、位置合わせシートに通電層(4)を張り付け、通電層(4)に対応する位置に孔をあけた当て板を介して絶縁層(3)上に配置し、アルミニウム基板(2)に重ねる。これらをステンレス鋼板で挟み、さらにクッション材を介して押圧して加熱しても良い。これにより、絶縁層(3)の所定位置に通電層(4)が接合される。通電層に用いられる銅は、純銅でも銅合金でも良く、銅板、銅箔、銅メッキ層等など製法、形状による制限は受けない。   For example, to explain an example of hot pressing using a thermosetting resin as the insulating resin of the insulating layer (3), the conductive layer (4), the insulating layer (3), and the aluminum substrate (2) are overlapped, and It is sandwiched between stainless steel plates, further pressed through a cushion material, and heated. By this hot pressing, the insulating layer (3) is hardened and bonded to the aluminum substrate (2) and the conductive layer (4), and these are integrated. Further, when the energization layer (4) is bonded to a part of the insulating layer (3), the bonding may be performed using an alignment sheet and a backing plate. That is, the current-carrying layer (4) is attached to the alignment sheet, placed on the insulating layer (3) through a contact plate having a hole corresponding to the current-carrying layer (4), and overlapped with the aluminum substrate (2). . These may be sandwiched between stainless steel plates and further heated by pressing through a cushioning material. As a result, the energization layer (4) is bonded to a predetermined position of the insulating layer (3). Copper used for the energization layer may be pure copper or a copper alloy, and is not limited by the manufacturing method or shape such as a copper plate, copper foil, copper plating layer, or the like.

材料合金として、表1の合金記号a〜hに示す組成のAl−Si−Ni合金を用いた。表1に、各合金の固相線温度および熱膨張係数を示す。前記熱膨張係数は後述する圧延試験1で製作した厚さ2mmの圧延板で測定したものである。これらのAl−Si−Ni合金を合金記号i〜kのAl−Si合金と比較すると、Niの添加によりSi濃度を下げても同等の低い熱膨張性を得られることがわかる。なお、Al−Si合金の熱膨張係数は、材料合金をブックモールド法により製作した鋳塊により測定したものである。   As a material alloy, an Al—Si—Ni alloy having a composition shown in alloy symbols a to h in Table 1 was used. Table 1 shows the solidus temperature and the thermal expansion coefficient of each alloy. The thermal expansion coefficient was measured with a 2 mm thick rolled plate produced in rolling test 1 described later. When these Al-Si-Ni alloys are compared with the Al-Si alloys of alloy symbols i to k, it can be seen that the same low thermal expansion can be obtained even if the Si concentration is lowered by the addition of Ni. The thermal expansion coefficient of the Al—Si alloy is measured by an ingot produced from a material alloy by the book mold method.

また、各Al−Si−Ni合金は固相線温度が560℃であるから、本発明で規定する圧延開始時の温度範囲は510〜550℃であり、特に好ましい温度範囲は530〜550℃である。   In addition, since each Al—Si—Ni alloy has a solidus temperature of 560 ° C., the temperature range at the start of rolling specified in the present invention is 510 to 550 ° C., and a particularly preferable temperature range is 530 to 550 ° C. is there.

Figure 2008001949
Figure 2008001949

[圧延試験1:No.1a〜1h]
表1の合金記号a〜hのAl−Si−Ni合金について、ブックモールド法により鋳塊を製作し、面削により厚さ15mmの圧延用素材とした。この素材に対し、13パスの熱間圧延を行い、最終厚さが2mmのアルミニウム合金板を製作した。1パス毎に圧延開始時の材料温度を540℃に昇温するものとし、各パス毎に厚さを1mm減じるように熱間圧延した。各パスにおけるリダクションは表2に示すとおりである。
[Rolling test 1: No. 1a-1h]
About the Al-Si-Ni alloy of the alloy symbol ah of Table 1, the ingot was manufactured by the book mold method, and it was set as the raw material for rolling of thickness 15mm by surface cutting. This material was subjected to 13 passes of hot rolling to produce an aluminum alloy plate having a final thickness of 2 mm. The material temperature at the start of rolling was increased to 540 ° C. for each pass, and hot rolling was performed so that the thickness was reduced by 1 mm for each pass. The reduction in each pass is as shown in Table 2.

各パスにおいて圧延材の割れの状況を観察し、割れがないものまたは微細な割れで実用上支障のないものを○、割れが生じたものを×で評価し、評価結果を表2に示す。さらに、最終厚さの板についてAl3Ni金属間化合物の粒径を測定したところ、いずれの合金においても平均粒径が20μm以下であった。 In each pass, the state of cracking of the rolled material was observed, and those having no cracks or fine cracks that had no practical problems were evaluated with “○”, and those with cracks were evaluated with “×”, and the evaluation results are shown in Table 2. Furthermore, when the particle diameter of the Al 3 Ni intermetallic compound was measured for the final thickness plate, the average particle diameter was 20 μm or less in any of the alloys.

[圧延試験2:No.2a〜2h]
表1の合金記号a〜hのAl−Si−Ni合金について、ブックモールド法によりビレットを鋳造し、コンテナ温度:450℃、ビレット温度:450℃、押出速度:1.0m/minで厚さ15mmの平板を押出し、圧延用素材とした。この素材に対し、No.1a〜1hと同じ条件で13パスの熱間圧延を行い、最終厚さが2mmのアルミニウム合金板を製作した。表2に各パスにおける材料の割れの状況および最終厚さの板におけるAl3Ni金属間化合物の粒径を示す。
[Rolling test 2: No. 2a to 2h]
For the Al—Si—Ni alloys of alloy symbols a to h in Table 1, billets are cast by a book mold method, container temperature: 450 ° C., billet temperature: 450 ° C., extrusion speed: 1.0 m / min, and thickness is 15 mm. A flat plate was extruded to obtain a rolling material. This material was subjected to 13 passes of hot rolling under the same conditions as No. 1a to 1h to produce an aluminum alloy plate having a final thickness of 2 mm. Table 2 shows the state of cracking of the material in each pass and the particle size of the Al 3 Ni intermetallic compound in the final thickness plate.

Figure 2008001949
Figure 2008001949

表2より、全てのパスにおいて圧延開始時の材料温度を圧延温度範囲内の一定温度に昇温することにより薄板に圧延できることを確認した。
[圧延試験3:No.3a〜3h]
上記圧延試験1と同じ方法で鋳造・面削した圧延用素材に対し、10パス目まで上記圧延試験1と同じ条件で圧延し、11パス目をリダクション40%で圧延し、12パス目をリダクション33.3%で圧延し、最終厚さが2mmのアルミニウム合金板を製作した。表3に各パスにおける材料の割れの状況および最終厚さの板におけるAl3Ni金属間化合物の粒径を示す。
[圧延試験4:No.4a〜4h]
上記圧延試験2と同じ方法で押し出した圧延用素材に対し、10パス目まで上記圧延試験2と同じ条件で圧延し、11パス目をリダクション40%で圧延し、12パス目をリダクション33.3%で圧延し、最終厚さが2mmのアルミニウム合金板を製作した。表3に各パスにおける材料の割れの状況および最終厚さの板におけるAl3Ni金属間化合物の粒径を示す。
From Table 2, it was confirmed that the material temperature at the start of rolling could be rolled into a thin plate by raising the temperature to a constant temperature within the rolling temperature range in all passes.
[Rolling test 3: No. 3a-3h]
Rolling material cast and chamfered by the same method as in rolling test 1 is rolled up to the 10th pass under the same conditions as in rolling test 1, the 11th pass is rolled at 40% reduction, and the 12th pass is reduced. An aluminum alloy plate having a final thickness of 2 mm was produced by rolling at 33.3%. Table 3 shows the state of material cracking in each pass and the particle size of the Al 3 Ni intermetallic compound in the final thickness plate.
[Rolling test 4: No. 4a-4h]
The material for rolling extruded by the same method as the rolling test 2 is rolled up to the 10th pass under the same conditions as the rolling test 2, the 11th pass is rolled with 40% reduction, and the 12th pass is reduced 33.3. % To produce an aluminum alloy plate having a final thickness of 2 mm. Table 3 shows the state of material cracking in each pass and the particle size of the Al 3 Ni intermetallic compound in the final thickness plate.

Figure 2008001949
Figure 2008001949

表3より、圧延後の板厚が5mm未満となるパスではリダクションを高くしても材料が割れることなく圧延できることを確認した。   From Table 3, it was confirmed that the material can be rolled without cracking even if the reduction is increased in the pass where the plate thickness after rolling is less than 5 mm.

[圧延試験5:No.5a〜5h]
上記圧延試験1と同じ方法で鋳造・面削した圧延用素材に対し、1回目のパスは材料温度を540℃に昇温して圧延し、2回目以降のパスは、パス前の材料温度が前記圧延温度範囲よりも低下したとき、即ち510℃未満に低下したときのみ540℃に再昇温して圧延した。表4において圧延温度が「540℃」と示したパスは再昇温したパスであり、その他の温度を記載したパスは前パス中に自然低下した材料温度のままで圧延したものである。また、各パスのリダクションおよび圧延後の板厚は圧延試験1と同じである。
[Rolling test 5: No. 5a to 5h]
Rolling material cast and faced by the same method as in rolling test 1 above, the first pass is rolled with the material temperature raised to 540 ° C., and the second and subsequent passes have a material temperature before the pass. Only when the temperature falls below the rolling temperature range, that is, when the temperature falls below 510 ° C, the temperature is raised again to 540 ° C and rolled. In Table 4, the pass whose rolling temperature is indicated as “540 ° C.” is a pass that has been re-heated, and the pass that describes other temperatures is the one that was rolled at the material temperature that naturally decreased during the previous pass. Further, the reduction of each pass and the plate thickness after rolling are the same as in rolling test 1.

表4に各パスにおける材料の割れの状況および最終厚さの板におけるAl3Ni金属間化合物の粒径を示す。 Table 4 shows the state of material cracking in each pass and the particle size of the Al 3 Ni intermetallic compound in the final thickness plate.

Figure 2008001949
Figure 2008001949

[圧延試験6:No.6a〜6h]
上記圧延試験2と同じ方法で押し出した圧延用素材に対し、1回目のパスは材料温度を540℃に昇温して圧延し、2回目以降のパスは、パス前の材料温度が前記圧延温度範囲よりも低下したとき、即ち510℃未満に低下したときのみ540℃に再昇温して圧延した。表5において圧延温度が「540℃」と示したパスは再昇温したパスであり、その他の温度を記載したパスは前パス中に自然低下した材料温度のままで圧延したものである。また、各パスのリダクションおよび圧延後の板厚は圧延試験1と同じである。
[Rolling test 6: No. 6a to 6h]
For the rolling material extruded in the same manner as in the rolling test 2, the first pass is rolled with the material temperature raised to 540 ° C., and the second and subsequent passes have the material temperature before the pass at the rolling temperature. Only when the temperature falls below the range, that is, when the temperature falls below 510 ° C, the temperature is raised again to 540 ° C and rolled. In Table 5, the pass whose rolling temperature is “540 ° C.” is a pass that has been re-heated, and the pass that describes other temperatures is the one that was rolled at the material temperature that naturally decreased during the previous pass. Further, the reduction of each pass and the plate thickness after rolling are the same as in rolling test 1.

表5に各パスにおける材料の割れの状況および最終厚さの板におけるAl3Ni金属間化合物の粒径を示す。 Table 5 shows the state of material cracking in each pass and the particle size of the Al 3 Ni intermetallic compound in the final thickness plate.

Figure 2008001949
Figure 2008001949

表4および表5より、材料温度が圧延温度範囲外に低下したときのみ昇温した場合でも薄板に圧延できることを確認した。   From Table 4 and Table 5, it was confirmed that even when the temperature was raised only when the material temperature fell outside the rolling temperature range, it could be rolled into a thin plate.

[圧延試験7:No7a〜7h]
比較例として、表1の合金記号a〜hのAl−Si−Ni合金について510〜550℃の圧延温度範囲よりも低い温度で圧延した。圧延は圧延試験1と同じく鋳造および面削により製作した圧延用素材に対し、1パス毎に圧延開始時の材料温度を480℃に昇温し、各パス毎に厚さを1mm減じるように熱間圧延した。この圧延において、表6に示すように、1パス目で割れが発生し、2パス目でその割れが拡大した。
[Rolling test 7: No7a-7h]
As a comparative example, the Al—Si—Ni alloys of alloy symbols a to h in Table 1 were rolled at a temperature lower than the rolling temperature range of 510 to 550 ° C. For rolling, as in rolling test 1, the material temperature for rolling produced by casting and chamfering was increased to 480 ° C. at the start of rolling for each pass, and the thickness was reduced by 1 mm for each pass. Rolled for a while. In this rolling, as shown in Table 6, a crack occurred in the first pass, and the crack expanded in the second pass.

[圧延試験8:No.8a〜8h]
比較例として、表1の合金記号a〜hのAl−Si−Ni合金について510〜550℃の圧延温度範囲よりも低い温度で圧延した。圧延は圧延試験2と同じ方法で押し出した圧延用素材に対し、1パス毎に圧延開始時の材料温度を480℃に昇温し、各パス毎に厚さを1mm減じるように熱間圧延した。この圧延において、表6に示すように、1パス目で割れが発生し、2パス目でその割れが拡大した。
[Rolling test 8: No. 8a-8h]
As a comparative example, the Al—Si—Ni alloys of alloy symbols a to h in Table 1 were rolled at a temperature lower than the rolling temperature range of 510 to 550 ° C. For rolling, the material for rolling extruded in the same manner as in rolling test 2 was hot-rolled so that the material temperature at the start of rolling was raised to 480 ° C. for each pass and the thickness was reduced by 1 mm for each pass. . In this rolling, as shown in Table 6, a crack occurred in the first pass, and the crack expanded in the second pass.

Figure 2008001949
Figure 2008001949

表6より、合金の固相線温度に基づいて設定した圧延温度範囲よりも低い温度では薄板製作ができなかった。   From Table 6, it was not possible to produce a thin plate at a temperature lower than the rolling temperature range set based on the solidus temperature of the alloy.

[最終圧延材に対する熱処理]
圧延試験1および圧延試験2で製作した厚さ2mmの圧延板に対し、500℃で3時間の熱処理を行った。熱処理の前後における熱膨張係数を表7に示す。
[Heat treatment for the final rolled material]
The 2 mm thick rolled plates produced in rolling test 1 and rolling test 2 were heat treated at 500 ° C. for 3 hours. Table 7 shows the thermal expansion coefficient before and after the heat treatment.

Figure 2008001949
Figure 2008001949

表7より、圧延後に熱処理を施すことで熱膨張係数を低下させ得ることを確認した。   From Table 7, it was confirmed that the thermal expansion coefficient can be lowered by performing heat treatment after rolling.

本発明のアルミニウム合金材の製造方法によれば低熱膨張性の薄板製作が可能であり、プリント配線基板のアルミニウム基板等の熱膨張によって不具合を生じる部材材料として広く利用することができる。   According to the method for producing an aluminum alloy material of the present invention, it is possible to produce a thin plate having low thermal expansion, and it can be widely used as a member material that causes problems due to thermal expansion of an aluminum substrate or the like of a printed wiring board.

プリント配線基板の断面図である。It is sectional drawing of a printed wiring board.

符号の説明Explanation of symbols

1…プリント配線基板
2…アルミニウム基板
3…絶縁層
4…通電層(銅箔)
DESCRIPTION OF SYMBOLS 1 ... Printed wiring board 2 ... Aluminum substrate 3 ... Insulating layer 4 ... Current carrying layer (copper foil)

Claims (9)

Si:11〜20質量%およびNi:1〜6質量%を含有し、残部Alおよび不可避不純物からなるアルミニウム合金素材に対し、1パス以上の熱間圧延により板材を製造するに際し、
各パスにおける圧延開始時の材料温度を、前記アルミニウム合金の固相線温度よりも10〜50℃低い範囲内に設定することを特徴とするアルミニウム合金板の製造方法。
When manufacturing a plate material by hot rolling of one or more passes for an aluminum alloy material containing Si: 11 to 20% by mass and Ni: 1 to 6% by mass, and the balance Al and inevitable impurities,
A method for producing an aluminum alloy sheet, wherein a material temperature at the start of rolling in each pass is set within a range lower by 10 to 50 ° C. than a solidus temperature of the aluminum alloy.
前記材料温度を、前記アルミニウム合金の固相線温度よりも10〜30℃低い範囲内に設定する請求項1に記載のアルミニウム合金板の製造方法。   The manufacturing method of the aluminum alloy plate of Claim 1 which sets the said material temperature in the range lower by 10-30 degreeC than the solidus temperature of the said aluminum alloy. 熱間圧延を、圧延後の板厚が10mmになるまでは10%以下のリダクション率で行い、10mm未満5mm以上になるまでは20%以下のリダクション率で行い、5mm未満では40%以下のリダクション率で行う請求項1または2に記載のアルミニウム合金板の製造方法。   Hot rolling is performed at a reduction rate of 10% or less until the plate thickness after rolling is 10 mm, and at a reduction rate of 20% or less until it is less than 10 mm and 5 mm or more, and when it is less than 5 mm, reduction is 40% or less. The manufacturing method of the aluminum alloy plate of Claim 1 or 2 performed at a rate. 熱間圧延に供する素材を、ビレット温度:430〜480℃、押出速度0.1〜1m/minの押出成形により製作する請求項1〜3のいずれか1項に記載のアルミニウム合金板の製造方法。   The method for producing an aluminum alloy plate according to any one of claims 1 to 3, wherein a material to be subjected to hot rolling is produced by extrusion molding at a billet temperature of 430 to 480 ° C and an extrusion speed of 0.1 to 1 m / min. . 熱間圧延後の板材に450〜500℃で1〜5hの熱処理を施す請求項1〜4のいずれか1項に記載のアルミニウム合金板の製造方法。   The manufacturing method of the aluminum alloy plate of any one of Claims 1-4 which heat-process for 1 to 5 hours at 450-500 degreeC to the board | plate material after hot rolling. 請求項1〜5のいずれか1項に記載の製造方法により製造したことを特徴とするアルミニウム合金板。   An aluminum alloy plate produced by the production method according to any one of claims 1 to 5. 金属断面組織においてAl3Ni金属間化合物の平均粒径が20μm以下である請求項6に記載のアルミニウム合金板。 The aluminum alloy plate according to claim 6, wherein the average particle diameter of the Al 3 Ni intermetallic compound is 20 µm or less in the metal cross-sectional structure. 請求項6または7に記載されたアルミニウム合金板をアルミニウム基板とし、このアルミニウム基板上に絶縁層があり、さらにこの絶縁層上に銅があることを特徴とするプリント配線基板。   A printed wiring board characterized in that the aluminum alloy plate according to claim 6 or 7 is used as an aluminum substrate, an insulating layer is provided on the aluminum substrate, and copper is provided on the insulating layer. 前記絶縁層は、絶縁性樹脂または前記絶縁性樹脂に熱伝導性フィラーを配合した絶縁性樹脂組成物を含む、請求項8に記載のプリント配線基板。
The printed wiring board according to claim 8, wherein the insulating layer includes an insulating resin or an insulating resin composition in which a thermally conductive filler is blended with the insulating resin.
JP2006173266A 2006-06-23 2006-06-23 Method for producing aluminum alloy plate Expired - Fee Related JP4668855B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006173266A JP4668855B2 (en) 2006-06-23 2006-06-23 Method for producing aluminum alloy plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006173266A JP4668855B2 (en) 2006-06-23 2006-06-23 Method for producing aluminum alloy plate

Publications (2)

Publication Number Publication Date
JP2008001949A true JP2008001949A (en) 2008-01-10
JP4668855B2 JP4668855B2 (en) 2011-04-13

Family

ID=39006577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006173266A Expired - Fee Related JP4668855B2 (en) 2006-06-23 2006-06-23 Method for producing aluminum alloy plate

Country Status (1)

Country Link
JP (1) JP4668855B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021181598A (en) * 2020-05-19 2021-11-25 昭和電工株式会社 Low thermal-expansion rolled aluminum alloy material and method for producing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5966918A (en) * 1982-10-12 1984-04-16 Showa Denko Kk Double layer structure hollow member made of aluminum alloy
JPH02298239A (en) * 1989-05-12 1990-12-10 Kobe Steel Ltd Method for rolling al-si series alloy
JPH0641667A (en) * 1992-07-22 1994-02-15 Sky Alum Co Ltd Al base printed wiring board
JPH06152087A (en) * 1992-10-29 1994-05-31 Furukawa Electric Co Ltd:The High-cooling metal base printed wiring board

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5966918A (en) * 1982-10-12 1984-04-16 Showa Denko Kk Double layer structure hollow member made of aluminum alloy
JPH02298239A (en) * 1989-05-12 1990-12-10 Kobe Steel Ltd Method for rolling al-si series alloy
JPH0641667A (en) * 1992-07-22 1994-02-15 Sky Alum Co Ltd Al base printed wiring board
JPH06152087A (en) * 1992-10-29 1994-05-31 Furukawa Electric Co Ltd:The High-cooling metal base printed wiring board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021181598A (en) * 2020-05-19 2021-11-25 昭和電工株式会社 Low thermal-expansion rolled aluminum alloy material and method for producing the same

Also Published As

Publication number Publication date
JP4668855B2 (en) 2011-04-13

Similar Documents

Publication Publication Date Title
EP2978019B1 (en) Method for manufacturing bonded body and method for manufacturing power-module substrate
JPWO2006077755A1 (en) Semiconductor device member and manufacturing method thereof
JP6151813B1 (en) Vapor chamber manufacturing method
EP2530707A2 (en) Method for joining metal-ceramic substrates to metal bodies
JP2011105982A (en) Aluminum alloy and method for producing the same
WO2013099849A1 (en) Sn-Cu-BASED LEAD-FREE SOLDER ALLOY
JP6031576B2 (en) Copper alloy plate for heat dissipation parts
EP1874971A1 (en) Clad member and printed-circuit board
WO2016152648A1 (en) Copper alloy sheet for heat dissipating component and heat dissipating component
WO2018168858A1 (en) Solder material
JP4988243B2 (en) Printed wiring board
JP5030633B2 (en) Cr-Cu alloy plate, semiconductor heat dissipation plate, and semiconductor heat dissipation component
WO2018062255A1 (en) Copper alloy sheet for heat dissipation component, heat dissipation component, and method for producing heat dissipation component
JP4138844B2 (en) Cr-Cu alloy, manufacturing method thereof, heat sink for semiconductor, and heat dissipation component for semiconductor
JP2018168470A (en) Copper alloy sheet for vapor chamber
JP4668855B2 (en) Method for producing aluminum alloy plate
CN106132909B (en) Ceramics-the manufacturing method of aluminium conjugant, the manufacturing method of power module substrate and ceramics-aluminium conjugant, power module substrate
JP2011023545A (en) Heat dissipation structure and power module
JP4568092B2 (en) Cu-Ni-Ti copper alloy and heat sink
JP4988248B2 (en) Printed wiring board
JP2008025004A (en) Clad material and its manufacturing method, and printed wiring board
JP2001203299A (en) Aluminium board and ceramics circuit board using the same
JP5917903B2 (en) Brazing clad material
JP2010126791A (en) Heat dissipation material, heat dissipation plate for semiconductor and heat dissipation component for semiconductor using the same, and method for producing heat dissipation material
JP5286507B2 (en) Method for producing Cr-Cu alloy plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4668855

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees