JPH0120218B2 - - Google Patents
Info
- Publication number
- JPH0120218B2 JPH0120218B2 JP17763682A JP17763682A JPH0120218B2 JP H0120218 B2 JPH0120218 B2 JP H0120218B2 JP 17763682 A JP17763682 A JP 17763682A JP 17763682 A JP17763682 A JP 17763682A JP H0120218 B2 JPH0120218 B2 JP H0120218B2
- Authority
- JP
- Japan
- Prior art keywords
- aluminum alloy
- inner layer
- hollow member
- resistant
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229910000838 Al alloy Inorganic materials 0.000 claims description 44
- 229910052742 iron Inorganic materials 0.000 claims description 19
- 229910052748 manganese Inorganic materials 0.000 claims description 18
- 229910052759 nickel Inorganic materials 0.000 claims description 15
- 229910000765 intermetallic Inorganic materials 0.000 claims description 13
- 239000013078 crystal Substances 0.000 claims description 12
- 238000001125 extrusion Methods 0.000 claims description 11
- 229910052751 metal Inorganic materials 0.000 claims description 10
- 239000002184 metal Substances 0.000 claims description 10
- 239000002131 composite material Substances 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- 239000000463 material Substances 0.000 description 27
- 239000000843 powder Substances 0.000 description 25
- 239000000956 alloy Substances 0.000 description 19
- 229910045601 alloy Inorganic materials 0.000 description 18
- 238000005266 casting Methods 0.000 description 16
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 15
- 238000000034 method Methods 0.000 description 14
- 238000001192 hot extrusion Methods 0.000 description 11
- 239000000203 mixture Substances 0.000 description 9
- 229910001018 Cast iron Inorganic materials 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 5
- 239000011159 matrix material Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 238000004512 die casting Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 229910002804 graphite Inorganic materials 0.000 description 4
- 239000010439 graphite Substances 0.000 description 4
- 239000010687 lubricating oil Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 238000005275 alloying Methods 0.000 description 3
- 238000000889 atomisation Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 229910021364 Al-Si alloy Inorganic materials 0.000 description 2
- 229910000979 O alloy Inorganic materials 0.000 description 2
- 229910002796 Si–Al Inorganic materials 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 229910018191 Al—Fe—Si Inorganic materials 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910017082 Fe-Si Inorganic materials 0.000 description 1
- 229910017133 Fe—Si Inorganic materials 0.000 description 1
- 229910019018 Mg 2 Si Inorganic materials 0.000 description 1
- 229910003310 Ni-Al Inorganic materials 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 229910001634 calcium fluoride Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 235000012438 extruded product Nutrition 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 238000009689 gas atomisation Methods 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 239000011796 hollow space material Substances 0.000 description 1
- 238000010409 ironing Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 1
- 229910052982 molybdenum disulfide Inorganic materials 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000011856 silicon-based particle Substances 0.000 description 1
- 239000007779 soft material Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F7/00—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
- B22F7/06—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
- B22F7/08—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/0408—Light metal alloys
- C22C1/0416—Aluminium-based alloys
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Composite Materials (AREA)
- Manufacturing & Machinery (AREA)
- Pistons, Piston Rings, And Cylinders (AREA)
- Extrusion Of Metal (AREA)
- Powder Metallurgy (AREA)
Description
この発明は内燃機関や斜板式コンプレツサ等に
使用されるシリンダライナとして好適なアルミニ
ウム合金製中空部材に係り、更に詳しく言えば特
に熱安定性を改善した耐熱耐摩耗性高力アルミニ
ウム合金内層と該内層より軟質なアルミニウム合
金外層とよりなる押出し法によつて形成された複
合構造中空部材に係る。
最近、自動車の軽量化やフロントエンジン・フ
ロントドライブ(FF)方式の採用のためエンジ
ンの軽量化が必要となり、シリンダブロツクは鋳
鉄からAl合金が使用されるように変つて来てい
るが、この場合、シリンダブロツクの摺動面の耐
摩耗性を高めるため鋳鉄製シリンダライナが鋳ぐ
るまれているのが普通である。このシリンダライ
ナをアルミニウム合金製にすることができれば軽
量になるほか、熱伝導度および熱膨脹係数が鋳鉄
よりも大きく、昇温時にもライナとブロツクの密
着性が良くなり、従つて放熱性の良いエンジンが
得られる。その結果ライナの温度が低くなるので
潤滑油の寿命を長くし、或いは低粘度の潤滑油の
使用が可能となり、また熱膨脹係数がピストン材
料のアルミニウム合金と同程度になるので、ピス
トンとの間のクリアランスを小さく設定できるた
め潤滑油の消費量やブローバイガスの発生を少量
に押え、燃費および効率の向上も期待される。
また高Si含有のAl合金製シリンダライナは摩
擦係数が小さいためピストンリングとの間のフリ
クシヨンロスが低減されることによつても燃費の
向上、出力の向上が期待される。
然しながら従来公知のアルミニウム合金では上
記のような鋳ぐるみ用シリンダライナとしては不
充分である。例えばアメリカ・アルミナム協会規
格(AA規格)のA390.0合金(Si16〜18%、Cu4
〜5%、Mg0.5〜0.65%、Fe0.5%、Ti0.2%、
Zn0.1%、残Al)(本明細書において合金組成は
すべて重量%で示す)のような鋳造合金は固液共
存温度域が広いため大きな押湯を必要とする結果
歩留りが悪くなるほか、微細化処理や金型鋳造法
によつても初晶Siはなお大きく晶出するため被削
性が悪い。更に致命的欠点として、シリンダブロ
ツクに鋳ぐるむときに溶湯の熱によつて材料が軟
化するため、耐摩耗性が著しく低下する上に、被
削面にいわゆるびびりやむしれを生じ易く、また
ホーニング加工を困難にする等の欠点がある。
これに対して、近年粉末冶金法により前記の
A390.0合金に類似組成の合金を粉末にして、こ
れを熱間押出しして中空体とする技術が提案され
ている(特開昭52−109415号)。これによれば12
〜30%Si、1〜5%Cu、0.5〜1.5%Mg、残Alの
過共晶Al―Si合金溶湯をアトマイズ法または遠
心力による微粒化法によつて粒状化し、これを押
出すことによつて中空体を得る方法であり、この
方法によつて得られる材料は初晶Siを20μm以下
とすることができるため延性や機械加工性にすぐ
れ、摩擦係数が小さく、優れた耐摩耗性を有す
る。更に上記組成のAl―Si合金にNiを0.5〜1.5%
加えた粉末にSiC、Sn、黒鉛等を混じて中空体を
押出すことも提案されている。
本発明者は上記の発明のトレース実験を行なつ
たが、20%Si―4%Cu―0.8%Mg―0.5%Ni―Al
残の標準組成の合金粉末の押出材をシリンダライ
ナ(外径73mm、内径65mm、高さ105mm)として
ADC12合金(JIS H5302)のシリンダブロツク
(重量3.4Kg)に溶湯温度675℃でダイカスト法で
鋳ぐるむ試験の結果によれば、鋳ぐるみ前にT6
処理で硬さHRB80程度のものが、鋳ぐるみ後に
はHRB40程度に軟化してしまうことが判明した。
従つてこの種合金の中空体もシリンダブロツクに
鋳ぐるんでシリンダライナとして使用することが
できない。
また鋳ぐるみはダイカスト法や低圧鋳造法によ
るが、ライナはコストの点からできるだけ薄肉と
することが好ましいので、鋳ぐるみ時のライナ搬
送工程や位置決め時に加わる機械的応力により変
形し易くなり、これを防ぐためには高剛性(高硬
度)であることが必要になる。
本発明者はこれらの欠点を解消し、鋳ぐるみ時
の熱負荷に対しても軟化することがなく、更に使
用時に負荷される温度域においても軟化せず、耐
摩耗性、耐焼付性にすぐれた高力アルミニウム合
金材料として、重量比でSi10〜30%を含有する高
Si―Al合金に更に、Mn、Fe、Ni等の合金元素
を多量に添加し、15μm以下のSi結晶粒と20μm以
下のMn、Fe、Niの1種または2種以上を含む金
属間化合物とを微細に分散させた耐熱耐摩耗性高
力アルミニウム合金粉末成形体およびその製造方
法を先に提示した(特願昭57−119901号、特開昭
59−13040号公報、特願昭57−119902号、特開昭
59−13041号公報)。
これらの耐熱耐摩耗性高力アルミニウム合金粉
末成形体は上記の金属組織を有するものであり、
耐摩耗、耐焼付の点で優れている上に耐熱性が優
れ、熱負荷の作用の下においても硬度が低下する
ことがきわめて少なく、従つてシリンダライナ材
としてアルミニウム合金製シリンダブロツクに鋳
ぐるんで使用するのには充分なものである。
然しながら上記の耐熱耐摩耗性高力アルミニウ
ム合金粉末成形体は該合金溶湯を急冷凝固させて
得られる粉末を熱間押出成形する方法で得られる
ものであるが、その合金粉末はMn、Fe、Ni等の
添加により生ずる金属間化合物を多量に含むもの
であるためシリンダライナの如き中空部材を熱間
押出成形するに当つて押出抵抗が大となり、その
ため大容量の押出装置を必要とすると共に押出速
度をきわめて低速にしなければならず、かつ押出
しダイスの寿命を短くし、またシリンダライナの
外周にシリンダブロツクへの密着結合を確実にす
るため凹凸部、すなわちセレーシヨンをシリンダ
ライナの外周に形成することが難しい等の問題点
がある。
この発明は上記の問題点を解決する中空部材を
提供することを目的とし、その第1の発明はアル
ミニウム合金製中空部材において重量比でSi10〜
30%、Mn、Fe、Niのうち1種または2種以上3
〜15%、残余は実質的にAlからなり、大きさ
15μm以下のSi結晶粒と前記のMn、Fe、Niのう
ち1種または2種以上を含む大きさ20μm以下の
金属間化合物とが微細に分散している金属組織を
有する耐熱耐摩耗性高力アルミニウム合金製の内
層と該内層より軟質のアルミニウム合金の外層と
よりなる押出し法によつて形成された複層構造を
有することを特徴とするアルミニウム合金製中空
部材およびその第2の発明は第1の発明の内層の
化学成分組成にCu0.5〜5%、Mg0.2〜3%を添
加したものに係る。
本発明の複層構造中空部材の内層は熱負荷の作
用によつても軟化することなく、かつ摺動状態に
おいて優れた耐摩耗性と耐焼着性を発揮する耐熱
耐摩耗性高力アルミニウム合金よりなり、該内層
より軟質の鋳造用、ダイカスト用または展伸用ア
ルミニウム合金の外層を有しているので押出し成
形加工が容易であり、該中空体の寸法精度を高め
る目的での中空体のしごき加工や、外周面へのセ
レーシヨン形成加工が容易に行なわれ、また外層
材は内層材に比べ合金元素の添加量が少なく熱伝
導率および熱膨脹係数が大であるので、内層の摺
動面温度を一層低温に維持することを可能にする
とともに、その外層の鋳ぐるみ材への密着が一層
確実に得られる等の利点を有する。
次に添付図面に示す鋳ぐるみ用シリンダライナ
の実施例について本発明を説明する。第1図に示
すシリンダライナ1は内層2と外層3との複層構
造をしている。内層2はSi10〜30%、Mn、Fe、
Niの1種または2種以上を3〜15%と、更に必
要によりCu0.5〜5%およびMg0.2〜3%を含み、
残部実質的にAlからなり、外層3は前記内層材
より軟質のJIS H5202鋳造用、JIS H5302ダイキ
ヤスト用またはJIS H4100展伸用アルミニウム合
金または類似合金からなつている。なお内層2と
外層3との境界部は鋳ぐるみに際して成分元素が
相互に拡散して冶金学的に接合している。本発明
において内層材の化学成分組成は次のとおりとす
る。
まず、Siは微細なSi粒子、或いはMg2Siや、Al
―Fe―Siの如き金属間化合物として基地中に分
散することにより、高温強度や耐摩耗性、耐焼着
性にすぐれた効果を示すが、その含有量が10%以
下では分散晶出量が少なくて効果が不充分であ
り、他方30%を超えると溶解温度が高くなるほか
に、急冷しても粉粒体中に大きな径の初晶Siとし
て析出して粉粒体の圧縮性を著しく悪化させ、圧
粉体を作り難くする上に、熱間押出時に於て変形
抵抗が大きくなるほか、得られる押出材の延性や
衝撃値を低下させ、或いは被削性を悪くする。シ
リンダライナとして使用する場合Si添加量の増加
に伴ない熱膨脹係数は小さくなるので外層材料と
の密着状態が悪くなる。従つてSi含有量は10〜30
%とするが、好ましい範囲は14〜25%である。
Fe、Ni、MnはAlに対する固溶度が小さく、
かつAl中での拡散速度が遅いことを利用して微
細化合物として分散させて高温強度を高める目的
で添加するものであり、その量は単独または2種
以上を合計で3〜15%とする。これらの元素は溶
湯を急冷して粉粒体とする場合Al中に過飽和に
固溶され、また固溶しきれない分はAl―Fe―Si
三元化合物或いはAl3Ni、Mn12Si7Al5のような金
属間化合物として粉粒体中に棒状の相となつて晶
出する。この化合物は熱間押出により分断され、
材料組織中に細かく分散される。更に、基地中の
過飽和分からも高温加熱によつて上記の如き化合
物として析出される。これらの化合物は微細で硬
度が高く、かつAl中の拡散速度が遅いため粗大
化が起り難いので、材料の高温強度を大きくす
る。また材料中のSi結晶粒と共に材料の硬度を高
め、耐摩耗性、耐焼着性に寄与する。
添加量が3%未満では効果が顕著ではなく、他
方15%を超えると溶融時に高温を必要とするほ
か、粉粒体の圧縮や押出しに際しての変形抵抗を
大きくし、押出加工を困難にするほか、得られる
押出材の延性や衝撃値を低下させ、被削性を悪く
する。上記の3〜15%の範囲内で、Niを単独で
5〜15%を添加した場合、Fe3〜15%およびMn5
〜15%の1種または2種を含有させた場合、或い
はFe3〜12%およびMn5〜12%の1種または2種
とNi3〜10%とを含有させた場合特に良好な耐
熱、耐摩耗特性が得られる。
CuまたはMgは一般にSi―Al系合金に添加して
時効硬化性を付与する元素として周知であるが、
本発明においても、この目的でCuを0.5〜5%、
Mgを0.2〜3%添加してもよい。Cuが0.5%未満、
Mgが0.2%未満では上記の効果が充分に奏され
ず、またCuを5%、Mgを3%を越えて添加して
も上記効果の増加は顕著には認められなくなる。
次に製造方法を実施例について説明する。所定
の目標化学組成となるように調整したアルミニウ
ム合金溶湯をガスアトマイズ法で噴霧化し、第1
表に示す化学組成の合金粉とした。
The present invention relates to an aluminum alloy hollow member suitable as a cylinder liner for use in internal combustion engines, swash plate compressors, etc., and more specifically, it relates to a heat-resistant, wear-resistant, high-strength aluminum alloy inner layer with particularly improved thermal stability, and the inner layer. The present invention relates to a composite structure hollow member formed by an extrusion method with a softer aluminum alloy outer layer. Recently, it has become necessary to reduce the weight of automobiles and to adopt front engine/front drive (FF) systems, and the cylinder block has changed from cast iron to Al alloy. In order to improve the wear resistance of the cylinder block's sliding surface, a cast iron cylinder liner is usually cast into the cylinder block. If this cylinder liner could be made of aluminum alloy, it would not only be lightweight, but also have a higher thermal conductivity and coefficient of thermal expansion than cast iron, which would improve the adhesion between the liner and the block even when the temperature rises, which would result in an engine with good heat dissipation. is obtained. As a result, the temperature of the liner becomes lower, which prolongs the life of the lubricating oil or allows the use of lubricating oil with a lower viscosity.Also, the coefficient of thermal expansion is similar to that of the aluminum alloy of the piston material, which reduces the Since the clearance can be set small, lubricating oil consumption and blow-by gas generation can be kept to a small amount, which is expected to improve fuel efficiency and efficiency. Furthermore, the cylinder liner made of Al alloy with high Si content has a small coefficient of friction, so it is expected to improve fuel efficiency and output by reducing friction loss between it and the piston ring. However, conventionally known aluminum alloys are insufficient as cylinder liners for castings as described above. For example, A390.0 alloy (Si16-18%, Cu4
~5%, Mg0.5~0.65%, Fe0.5%, Ti0.2%,
Casting alloys such as 0.1% Zn, residual Al) (all alloy compositions in this specification are expressed in weight percent) have a wide solid-liquid coexistence temperature range, so they require a large feeder, resulting in poor yields. Even with refinement treatment and mold casting, primary Si crystals still crystallize in a large size, resulting in poor machinability. Furthermore, a fatal drawback is that the material is softened by the heat of the molten metal when it is cast into the cylinder block, which significantly reduces wear resistance and tends to cause chatter and peeling on the machined surface, and it is difficult to honing. There are drawbacks such as making it difficult. On the other hand, in recent years powder metallurgy has been used to
A technique has been proposed in which an alloy having a similar composition to the A390.0 alloy is powdered and then hot extruded to form a hollow body (Japanese Patent Application Laid-open No. 109415/1983). According to this 12
A molten hypereutectic Al-Si alloy containing ~30% Si, 1-5% Cu, 0.5-1.5% Mg, and residual Al is granulated by atomization or atomization using centrifugal force, and then extruded. Therefore, it is a method to obtain a hollow body, and the material obtained by this method can have primary Si crystals of 20 μm or less, so it has excellent ductility and machinability, has a small coefficient of friction, and has excellent wear resistance. have Furthermore, 0.5 to 1.5% Ni is added to the Al-Si alloy with the above composition.
It has also been proposed to mix SiC, Sn, graphite, etc. with the added powder and extrude a hollow body. The present inventor conducted a tracing experiment of the above invention, and found that 20%Si-4%Cu-0.8%Mg-0.5%Ni-Al
The remaining extruded alloy powder with standard composition was used as a cylinder liner (outer diameter 73 mm, inner diameter 65 mm, height 105 mm).
According to the results of a test in which a cylinder block (weight 3.4 kg) of ADC12 alloy (JIS H5302) was die-cast at a molten metal temperature of 675℃, T6
It was discovered that a material with a hardness of about H R B80 during processing softens to about H R B40 after casting.
Therefore, a hollow body made of this type of alloy cannot be cast into a cylinder block and used as a cylinder liner. Castings are made by die-casting or low-pressure casting, but it is preferable to make the liner as thin as possible from a cost perspective, so it is easy to deform due to mechanical stress applied during the liner transportation process and positioning during casting. In order to prevent this, it is necessary to have high rigidity (high hardness). The inventor of the present invention has solved these drawbacks, and has created a material that does not soften under the heat load during casting, does not soften even in the temperature range that is applied during use, and has excellent wear resistance and seizure resistance. As a high-strength aluminum alloy material, high-strength aluminum alloy containing 10 to 30% Si by weight
Furthermore, a large amount of alloying elements such as Mn, Fe, and Ni are added to the Si-Al alloy to form an intermetallic compound containing Si crystal grains of 15 μm or less and one or more of Mn, Fe, and Ni of 20 μm or less. We have previously proposed a heat-resistant, abrasion-resistant, high-strength aluminum alloy powder compact in which aluminum is finely dispersed, and a method for manufacturing the same (Japanese Patent Application No. 119901/1983,
Publication No. 59-13040, Japanese Patent Application No. 57-119902, Japanese Unexamined Patent Publication No. Sho
59-13041). These heat-resistant, wear-resistant, high-strength aluminum alloy powder compacts have the above-mentioned metal structure,
It has excellent wear resistance and seizure resistance, and has excellent heat resistance, with very little loss of hardness even under the action of heat loads. Therefore, it can be cast into aluminum alloy cylinder blocks as a cylinder liner material. It is sufficient for use. However, the above-mentioned heat-resistant, wear-resistant, high-strength aluminum alloy powder compact is obtained by hot extrusion molding of powder obtained by rapidly cooling and solidifying the molten alloy, but the alloy powder contains Mn, Fe, Ni, etc. Since it contains a large amount of intermetallic compounds produced by the addition of metals such as The extrusion speed has to be low, the life of the extrusion die is shortened, and it is difficult to form uneven portions, that is, serrations, on the outer periphery of the cylinder liner to ensure tight connection to the cylinder block. There is a problem with this. The purpose of this invention is to provide a hollow member that solves the above problems, and the first invention is an aluminum alloy hollow member with a weight ratio of Si10 to
30%, one or more of Mn, Fe, Ni3
~15%, the remainder consists essentially of Al, and the size
A heat-resistant, wear-resistant, high-strength metal structure with a finely dispersed Si crystal grain of 15 μm or less and an intermetallic compound of 20 μm or less containing one or more of the above-mentioned Mn, Fe, and Ni. A hollow member made of an aluminum alloy, characterized in that it has a multilayer structure formed by an extrusion method, comprising an inner layer made of an aluminum alloy and an outer layer made of an aluminum alloy that is softer than the inner layer, and a second invention thereof is a first invention. According to the invention, 0.5 to 5% of Cu and 0.2 to 3% of Mg are added to the chemical composition of the inner layer. The inner layer of the multilayer hollow member of the present invention is made of a heat-resistant, wear-resistant, high-strength aluminum alloy that does not soften even under the action of heat loads and exhibits excellent wear resistance and seizure resistance in sliding conditions. Since it has an outer layer of aluminum alloy for casting, die casting, or drawing that is softer than the inner layer, extrusion processing is easy, and the hollow body can be ironed for the purpose of increasing the dimensional accuracy of the hollow body. It is easy to form serrations on the outer peripheral surface, and the outer layer material has less alloying elements and higher thermal conductivity and thermal expansion coefficient than the inner layer material, so the temperature of the sliding surface of the inner layer can be further reduced. It has advantages such as making it possible to maintain the temperature at a low temperature and also ensuring that the outer layer adheres to the casting material more reliably. Next, the present invention will be described with reference to an embodiment of a cylinder liner for a casting shown in the accompanying drawings. A cylinder liner 1 shown in FIG. 1 has a multilayer structure including an inner layer 2 and an outer layer 3. Inner layer 2 is Si10-30%, Mn, Fe,
3 to 15% of one or more types of Ni, further containing 0.5 to 5% of Cu and 0.2 to 3% of Mg as necessary,
The remainder is substantially made of Al, and the outer layer 3 is made of an aluminum alloy for JIS H5202 casting, JIS H5302 die casting, or JIS H4100 drawing, which is softer than the inner layer material, or a similar alloy. The boundary between the inner layer 2 and the outer layer 3 is metallurgically bonded by mutual diffusion of component elements during casting. In the present invention, the chemical composition of the inner layer material is as follows. First, Si is fine Si particles, Mg 2 Si, Al
-When dispersed in the matrix as an intermetallic compound such as Fe-Si, it exhibits excellent effects on high-temperature strength, wear resistance, and seizure resistance, but if its content is less than 10%, the amount of dispersed crystallization is small. On the other hand, if it exceeds 30%, not only will the melting temperature become high, but even if it is rapidly cooled, it will precipitate as primary Si crystals with a large diameter in the powder, which will significantly deteriorate the compressibility of the powder. This not only makes it difficult to produce a green compact, but also increases the deformation resistance during hot extrusion, reduces the ductility and impact value of the resulting extruded material, or impairs machinability. When used as a cylinder liner, the coefficient of thermal expansion decreases as the amount of Si added increases, resulting in poor adhesion to the outer layer material. Therefore, the Si content is 10 to 30
%, but the preferred range is 14 to 25%. Fe, Ni, and Mn have low solid solubility in Al;
Moreover, it is added for the purpose of increasing high-temperature strength by dispersing it as a fine compound by taking advantage of the slow diffusion rate in Al, and the amount thereof is 3 to 15% in total, either alone or in combination of two or more. When the molten metal is rapidly cooled to form powder, these elements are supersaturated in solid solution in Al, and the portion that cannot be dissolved in solid solution is dissolved in Al-Fe-Si.
It crystallizes as a rod-shaped phase in powder as a ternary compound or an intermetallic compound such as Al 3 Ni, Mn 12 Si 7 Al 5 . This compound is separated by hot extrusion,
Finely dispersed in the material structure. Furthermore, the above-mentioned compounds are precipitated from the supersaturated fraction in the base by high temperature heating. These compounds are fine and have high hardness, and have a slow diffusion rate in Al, so coarsening is difficult to occur, so they increase the high-temperature strength of the material. Together with the Si crystal grains in the material, it increases the hardness of the material and contributes to wear resistance and seizure resistance. If the amount added is less than 3%, the effect will not be significant, while if it exceeds 15%, high temperatures will be required during melting, and the deformation resistance will increase when compressing or extruding the powder, making extrusion processing difficult. , lowers the ductility and impact value of the resulting extruded material, and impairs machinability. Within the above range of 3 to 15%, when Ni is added alone at 5 to 15%, Fe3 to 15% and Mn5
Particularly good heat resistance and wear resistance properties when containing one or two types of ~15%, or when containing one or two types of Fe3~12% and Mn5~12% and Ni3~10%. is obtained. Cu or Mg is generally known as an element added to Si-Al alloys to impart age hardenability.
In the present invention, Cu is added at 0.5 to 5% for this purpose.
Mg may be added in an amount of 0.2 to 3%. Cu less than 0.5%,
If Mg is less than 0.2%, the above effects will not be sufficiently exhibited, and even if Cu is added in excess of 5% and Mg is added in excess of 3%, no significant increase in the above effects will be observed. Next, the manufacturing method will be described with reference to examples. The molten aluminum alloy adjusted to have a predetermined target chemical composition is atomized using the gas atomization method.
An alloy powder having the chemical composition shown in the table was prepared.
【表】
得られた合金粉粒子の組織はいずれも微細なSi
結晶粒が分散した基地中に棒状に成長した金属間
化合物が多量に晶出した組織を示している。第2
図は供試材3についてその金属組織を例示する顕
微鏡写真(740倍)である。
この合金粉を篩分けして−48メツシユの粉末を
使用した。このようにすることにより製品押出材
のSi結晶粒の大きさを15μm以下とすることがで
きることが多くの実験結果から判つている。
次に−48メツシユの粉末を300℃に予熱し、同
温度に加熱されている分割可能な金型中に入れ、
上下パンチで圧縮して外径175.4mm、内径66.5mm、
高さ100mm、真密度比70%の圧粉体とした。
次にビレツトの熱間押出法で得られた
A5056TE、A6061TE(JIS H4080)アルミニウ
ム合金製パイプ(外径204mm、内径175.5mm、長さ
500mm)内に前記圧粉体を5個積み重ねて挿入し、
両端部をかしめて中空複合ビレツトとした。次に
この中空複合ビレツトをN2ガス中で450℃に予熱
後、大よそ同温度に保持されたコンテナ(内径
208mm)中に挿入し、径66mmのフローテイングマ
ンドレルを中空複合ビレツトの孔に挿通し、間接
押出法により熱間押出を行ない、第1図に示すよ
うな内層2、外層3よりなる外径73mm、内径66mm
の複層構造中空部材1を得た。
上記熱間押出の過程でアルミニウム合金粉末は
圧縮され、塑性流動を伴なつて圧着拡散により結
合されるが、粉末中に棒状をなして存在する金属
間化合物は分断され、組織中に粒状をなして微細
に分散する。従つて得られた複層構造中空部材の
内層は第3図に例示するようにAl―Si共晶から
なる基地中に初晶Si結晶粒とMn、Fe、Niの一種
または二種以上を含む金属間化合物とが微細均一
に分散した組織となる。
上記方法による場合熱間押出比を10以上にする
ことにより合金粉中の細長い棒状の金属間化合物
は20μm以下の大きさに分断され押出材中に分散
する。
次に、押出された複層構造中空部材に300℃×
10Hrの熱処理を施したのち、所定長さに切断し
た中空部材に径66mmのマンドレルを挿通した状態
で外周側にダイスを配し、しごき加工と同時にセ
レーシヨン付け加工を施して第4図および第5図
に示す如き外面にセレーシヨン4を有する中空体
1′とした。この中空体の内外層の境界部はおよ
そ径70.5mmの位置にあり、該境界は拡散結合によ
り冶金学的に結合している。
このようにして得られた複層構造中空部材1′
はADC12合金のシリンダブロツク中にダイカス
ト法で鋳ぐるまれた。このときのADC12合金溶
湯の温度は675℃であつた。
アルミニウム合金製シリンダブロツク中に鋳ぐ
るまれた本発明に係る複層構造中空部材のライナ
は鋳ぐるみの際の熱負荷による内層の硬度低下は
きわめて少なく、なお充分な硬度を維持してお
り、内燃機関に使用するのに充分な耐摩耗性を示
す。第2表には第1表の供試粉末による内層にア
ルミニウム合金展伸材を前記したように押出し外
層とした複層構造中空材のライナーをADC12材
のシリンダブロツク本体にダイカスト法で鋳ぐる
み、内径68mmに仕上げ加工したのち、エンジンに
組込み、耐久テストを行なつて摩耗量を調査した
結果を、従来の片状黒鉛鋳鉄製ライナの摩耗量と
の比で示してある。第2表には鋳ぐるみ後の内層
硬度を併記してある。[Table] The structure of the obtained alloy powder particles is composed of fine Si.
It shows a structure in which a large amount of rod-shaped intermetallic compounds have crystallized in a matrix in which crystal grains are dispersed. Second
The figure is a micrograph (740x magnification) illustrating the metal structure of sample material 3. This alloy powder was sieved and -48 mesh powder was used. It has been found from many experimental results that by doing so, the size of the Si crystal grains in the extruded product can be reduced to 15 μm or less. Next, -48 mesh powder was preheated to 300℃ and placed in a divisible mold heated to the same temperature.
Compressed with upper and lower punches, outer diameter 175.4mm, inner diameter 66.5mm,
The compact was made into a compact with a height of 100 mm and a true density ratio of 70%. Next, it was obtained by billet hot extrusion method.
A5056TE, A6061TE (JIS H4080) aluminum alloy pipe (outer diameter 204mm, inner diameter 175.5mm, length
500mm), stacking and inserting 5 of the green compacts,
Both ends were caulked to form a hollow composite billet. Next, this hollow composite billet was preheated to 450℃ in N2 gas, and then placed in a container (inner diameter
208 mm), a floating mandrel with a diameter of 66 mm is inserted into the hole of the hollow composite billet, and hot extrusion is performed using the indirect extrusion method to form an outer diameter of 73 mm consisting of the inner layer 2 and outer layer 3 as shown in Figure 1. , inner diameter 66mm
A multilayer structure hollow member 1 was obtained. In the process of hot extrusion, the aluminum alloy powder is compressed and bonded by pressure diffusion accompanied by plastic flow, but the intermetallic compounds that exist in the form of rods in the powder are fragmented and form granules in the structure. to disperse finely. Therefore, the inner layer of the obtained multilayer hollow member contains primary Si crystal grains and one or more types of Mn, Fe, and Ni in the Al--Si eutectic matrix, as illustrated in Fig. 3. This results in a structure in which intermetallic compounds are finely and uniformly dispersed. In the case of the above method, by setting the hot extrusion ratio to 10 or more, the elongated rod-shaped intermetallic compound in the alloy powder is divided into pieces of 20 μm or less in size and dispersed in the extruded material. Next, the extruded multilayer hollow member was heated to 300°C.
After heat treatment for 10 hours, a mandrel with a diameter of 66 mm was inserted into the hollow member cut to a predetermined length, a die was placed on the outer circumference, and serrations were applied at the same time as ironing, as shown in Figures 4 and 5. A hollow body 1' having serrations 4 on the outer surface as shown in the figure was prepared. The boundary between the inner and outer layers of this hollow body is located at a position of approximately 70.5 mm in diameter, and the boundary is metallurgically bonded by diffusion bonding. Multilayer structure hollow member 1′ obtained in this way
was die-cast into a cylinder block made of ADC12 alloy. The temperature of the ADC12 alloy molten metal at this time was 675°C. The liner of the multi-layer structure hollow member according to the present invention, which is cast into an aluminum alloy cylinder block, shows very little decrease in hardness of the inner layer due to heat load during casting, and still maintains sufficient hardness to prevent internal combustion. Shows sufficient wear resistance for use in engines. Table 2 shows a liner made of a multi-layer hollow material with an inner layer made of the sample powder in Table 1 and an extruded aluminum alloy outer layer as described above, which is cast into a cylinder block body made of ADC12 material by a die-casting method. After finishing the liner to an inner diameter of 68 mm, it was assembled into an engine, and durability tests were conducted to investigate the amount of wear. The results are shown in comparison to the amount of wear of a conventional flake graphite cast iron liner. Table 2 also shows the hardness of the inner layer after casting.
【表】
耐久テストは回転数5500r.p.m.、油温95℃、水
温100℃とし、相手ピストンリングとしては第1
圧力リングとオイルリングの外周面にそれぞれ鉄
基地中にSiCを面積比で15〜20%分散させた鉄め
つきを施したものを使用した。なお第2圧力リン
グとしては表面処理なしの鋳鉄リングを使用し
た。また比較材の鋳鉄製ライナを使用したエンジ
ンにおいては外周面にクロムめつきを施した第1
圧力リングとオイルリングを使用した。
第2表より明らかなように本発明の複層構造中
空部材製のシリンダライナはCu、Mgを含まない
ものでも従来の片状黒鉛鋳鉄製ライナと同程度の
耐摩耗性を示しており、Cu、Mgを含有させて時
効硬化させたものはむしろ摩耗量が少なく、充分
実用に耐えるものである。
以上説明したように本願発明に係る化学組成の
アルミニウム合金溶湯はMn、FeあるいはNiを多
量に含有するものであるため、アトマイズ法等に
より噴霧化し急速冷却させても棒状に成長した
Mn、Fe、Niを含む金属間化合物が多量に析出し
た組織を有し、熱間押出しには大型押出装置を必
要とし、また押出ダイスの寿命を短くするが、本
発明においてはこの合金粉末を硬度が低く、従つ
て成形性の良好な鋳造用または展伸用アルミニウ
ム合金製円筒体の中に保持して複合ビレツトを作
成し、これを熱間押出しすることにより容易に中
空体として成形することができる。また外層材の
外周に必要な機械加工を施すことが容易であり、
また外層材は合金元素の含有量が少なく内層に比
べ熱伝導率および熱膨脹係数が大であり、内層か
らの熱吸収効率が良好で、内層の内壁摺動面の温
度を低温に維持し、低粘度の潤滑油の使用を可能
にするとともに鋳ぐるみ材であるシリンダブロツ
ク本体との密着結合が良好になる。
また外層材が軟質材料であるため複層構造中空
体の熱間押出し工程と同時に、あるいは熱間押出
工程後に中空部材の外周に第4〜5図に示すよう
な縦溝(セレーシヨン)4を成形することが容易
であり、鋳ぐるみ用シリンダライナとしてシリン
ダブロツク本体に鋳ぐるんで使用する場合の密着
性の向上、あるいは回り止めのための手段とする
ことができる。
本発明の複層構造中空部材はその内層が基地中
にSi初晶粒子と金属間化合物粒子とを微細に分散
させ、特に耐熱性を改善した耐熱耐摩耗性高力ア
ルミニウム合金からなり、一方外層は該内層より
軟質の鋳造用或いは展伸用アルミニウム合金を内
層に被覆してダイスを通して押出して形成して熱
伝導度を大きくしてあるので、熱負荷が作用し、
かつ高度な耐摩耗性と耐焼着性が要求される用途
に好適なものである。
なお中空部材の製造過程で前記アルミニウム合
金粉末に、更に黒鉛、二硫化モリブデン、ボロン
ナイトライド、弗化カルシウム等の固体潤滑剤粉
末を0.2〜20%混合して内層を形成することによ
り、内層の潤滑特性を更に向上させることもでき
る。[Table] The durability test was conducted at a rotation speed of 5500r.pm, an oil temperature of 95℃, and a water temperature of 100℃.
The outer circumferential surfaces of the pressure ring and oil ring were each plated with iron in which SiC was dispersed in an iron matrix with an area ratio of 15 to 20%. Note that a cast iron ring without surface treatment was used as the second pressure ring. In addition, in engines using comparative cast iron liners, the first liner with chrome plating on the outer circumferential surface
Used pressure ring and oil ring. As is clear from Table 2, the cylinder liner made of the multilayer hollow member of the present invention shows wear resistance comparable to that of the conventional liner made of flaky graphite cast iron, even if it does not contain Cu or Mg. , Mg-containing and age-hardened materials have rather less wear and are sufficiently durable for practical use. As explained above, since the molten aluminum alloy having the chemical composition according to the present invention contains a large amount of Mn, Fe, or Ni, it does not grow into a rod shape even if it is atomized by the atomization method and rapidly cooled.
It has a structure in which a large amount of intermetallic compounds containing Mn, Fe, and Ni are precipitated, and hot extrusion requires large extrusion equipment and shortens the life of the extrusion die. However, in the present invention, this alloy powder is To create a composite billet by holding it in a cylindrical body made of aluminum alloy for casting or drawing, which has low hardness and therefore good formability, and to easily form it into a hollow body by hot extrusion. Can be done. In addition, it is easy to perform the necessary machining on the outer periphery of the outer layer material,
In addition, the outer layer material has a low content of alloying elements and has a higher thermal conductivity and coefficient of thermal expansion than the inner layer, so it has good heat absorption efficiency from the inner layer and maintains the temperature of the inner wall sliding surface of the inner layer at a low temperature. This makes it possible to use viscous lubricating oil and also improves the close connection with the cylinder block body, which is a cast material. In addition, since the outer layer material is a soft material, vertical grooves (serrations) 4 as shown in Figures 4 and 5 are formed on the outer periphery of the hollow member at the same time as the hot extrusion process of the multilayer structure hollow body or after the hot extrusion process. It is easy to do so, and can be used as a means for improving adhesion or preventing rotation when used as a cast-in cylinder liner in a cylinder block body. The multilayer structure hollow member of the present invention has an inner layer made of a heat-resistant, wear-resistant, high-strength aluminum alloy with particularly improved heat resistance by finely dispersing Si primary crystal particles and intermetallic compound particles in the matrix, and an outer layer made of a high-strength aluminum alloy with particularly improved heat resistance. The inner layer is coated with a cast or wrought aluminum alloy that is softer than the inner layer and extruded through a die to increase thermal conductivity, so a heat load acts on it.
Moreover, it is suitable for applications requiring high levels of wear resistance and seizure resistance. In addition, in the manufacturing process of the hollow member, the inner layer is formed by mixing 0.2 to 20% of solid lubricant powder such as graphite, molybdenum disulfide, boron nitride, calcium fluoride, etc. to the aluminum alloy powder. It is also possible to further improve the lubrication properties.
第1図は本発明の複層中空部材押出材(中間工
程)の実施例を示す断面図、第2図は同じく内層
を形成するのに用いたアルミニウム合金粉粒子の
顕微鏡組織の一例を示す写真(740倍)、第3図は
同じく押出成形中空部材内層の顕微鏡組織の一例
を示す写真(740倍)、第4図は本発明の実施例を
示す縦断面図、第5図は同じく横断面図である。
1……押出材(中間工程)、1′……複層構造中
空部材、2……内層、3……外層、4……セレー
シヨン。
Fig. 1 is a cross-sectional view showing an example of the extruded multilayer hollow member material (intermediate process) of the present invention, and Fig. 2 is a photograph showing an example of the microscopic structure of aluminum alloy powder particles used to form the inner layer. (740x), Figure 3 is a photograph (740x) showing an example of the microscopic structure of the inner layer of the extruded hollow member, Figure 4 is a vertical cross-sectional view showing an example of the present invention, and Figure 5 is a cross-sectional view. It is a diagram. 1...Extruded material (intermediate process), 1'...Multilayer structure hollow member, 2...Inner layer, 3...Outer layer, 4...Serration.
Claims (1)
比でSi10〜30%、Mn、Fe、Niのうち1種または
2種以上3〜15%、残余は実質的にAlからなり、
大きさ15μm以下のSi結晶粒と、前記のMn、Fe、
Niのうち1種または2種以上を含む大きさ20μm
以下の金属間化合物とが微細に分散している金属
組織を有する耐熱耐摩耗性高力アルミニウム合金
製の内層と該内層より軟質のアルミニウム合金の
外層とよりなる押出し法によつて形成された複層
構造を有することを特徴とするアルミニウム合金
製中空部材。 2 内層がMn、Fe、NiのうちNi5〜15%を含有
する特許請求の範囲第1項記載のアルミニウム合
金製構造中空部材。 3 内層がMn、Fe、NiのうちFe3〜15%とMn5
〜15%の1種または2種を3〜15%含有する特許
請求の範囲第1項記載のアルミニウム合金製中空
部材。 4 内層がMn、Fe、NiのうちFe3〜12%とMn5
〜12%の1種または2種とNi3〜10%を合計で3
〜15%含有する特許請求の範囲第1項記載のアル
ミニウム合金製中空部材。 5 アルミニウム合金製中空部材において、重量
比でSi10〜30%、Mn、Fe、Niのうち1種または
2種以上を3〜15%、Cu0.5〜5%、Mg0.2〜3
%、残部は実質的にAlからなり、大きさ15μm以
下のSi結晶粒と、Mn、Fe、Niのうち1種または
2種以上を含む大きさ20μm以下の金属間化合物
とが微細に分散している金属組織を有する耐熱耐
摩耗性高力アルミニウム合金製の内層と該内層よ
り軟質のアルミニウム合金の外層とよりなる押出
し法によつて形成された複層構造を有することを
特徴とするアルミニウム合金製中空部材。[Claims] 1. A hollow member made of aluminum alloy, in terms of weight ratio, Si is 10 to 30%, one or more of Mn, Fe, and Ni is 3 to 15%, and the remainder is substantially Al,
Si crystal grains with a size of 15 μm or less and the above-mentioned Mn, Fe,
Size 20μm containing one or more types of Ni
A composite material formed by an extrusion method consisting of an inner layer made of a heat-resistant, wear-resistant, high-strength aluminum alloy having a metal structure in which the following intermetallic compounds are finely dispersed, and an outer layer made of an aluminum alloy that is softer than the inner layer. An aluminum alloy hollow member characterized by having a layered structure. 2. The aluminum alloy structural hollow member according to claim 1, wherein the inner layer contains 5 to 15% of Ni among Mn, Fe, and Ni. 3 The inner layer is Fe3~15% and Mn5 among Mn, Fe, and Ni.
The aluminum alloy hollow member according to claim 1, which contains 3 to 15% of one or both of the following. 4 Inner layer contains Fe3~12% and Mn5 among Mn, Fe, and Ni
~12% of one or two types and Ni3~10% for a total of 3
The aluminum alloy hollow member according to claim 1, containing ~15%. 5 In a hollow member made of aluminum alloy, the weight ratio is 10 to 30% Si, 3 to 15% of one or more of Mn, Fe, and Ni, 0.5 to 5% Cu, and 0.2 to 3 Mg.
%, the remainder essentially consists of Al, and Si crystal grains with a size of 15 μm or less and intermetallic compounds with a size of 20 μm or less containing one or more of Mn, Fe, and Ni are finely dispersed. An aluminum alloy characterized by having a multilayer structure formed by an extrusion method, consisting of an inner layer made of a heat-resistant, wear-resistant, high-strength aluminum alloy having a metal structure that is soft, and an outer layer made of an aluminum alloy that is softer than the inner layer. Made of hollow parts.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17763682A JPS5966918A (en) | 1982-10-12 | 1982-10-12 | Double layer structure hollow member made of aluminum alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17763682A JPS5966918A (en) | 1982-10-12 | 1982-10-12 | Double layer structure hollow member made of aluminum alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5966918A JPS5966918A (en) | 1984-04-16 |
JPH0120218B2 true JPH0120218B2 (en) | 1989-04-14 |
Family
ID=16034456
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17763682A Granted JPS5966918A (en) | 1982-10-12 | 1982-10-12 | Double layer structure hollow member made of aluminum alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5966918A (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61137624A (en) * | 1984-12-07 | 1986-06-25 | Nippon Light Metal Co Ltd | Composite material billet for extrusion working |
JPS6210237A (en) * | 1985-07-09 | 1987-01-19 | Showa Denko Kk | Aluminum alloy for hot forging |
DE3809345A1 (en) * | 1988-03-19 | 1989-10-05 | Bayerische Motoren Werke Ag | METHOD FOR PRODUCING POROUS COMPONENTS |
JPH02163570A (en) * | 1988-12-15 | 1990-06-22 | Mitsubishi Alum Co Ltd | Cylinder tube material |
IT1319899B1 (en) | 2000-02-10 | 2003-11-12 | Fiat Ricerche | PROCEDURE FOR THE PRODUCTION OF A CYLINDER BLOCK FOR AN INTERNAL COMBUSTION ENGINE. |
JP4668855B2 (en) * | 2006-06-23 | 2011-04-13 | 昭和電工株式会社 | Method for producing aluminum alloy plate |
KR100874614B1 (en) | 2007-04-30 | 2008-12-17 | 황호진 | Automobile axle shaft and manufacturing method |
-
1982
- 1982-10-12 JP JP17763682A patent/JPS5966918A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5966918A (en) | 1984-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4938810A (en) | Heat-resistant, wear-resistant, and high-strength aluminum alloy powder and body shaped therefrom | |
US4959276A (en) | Heat-resistant, wear-resistant and high-strength Al-Si alloy, and cylinder liner employing same | |
US5976214A (en) | Slide member of sintered aluminum alloy and method of manufacturing the same | |
EP0577062B1 (en) | Oil pump made of aluminum alloys | |
CN101627138A (en) | The wear-resistant aluminum alloy of power pack with liner-less cylinder is used to cast | |
US20080219882A1 (en) | Method for Producing a Wear-Resistant Aluminum Alloy,An Aluminum Alloy Obtained According to the Method, and Ues Thereof | |
US4537167A (en) | Engine cylinder liners based on aluminum alloys and intermetallic compounds, and methods of obtaining them | |
JPH0118982B2 (en) | ||
JPH0120218B2 (en) | ||
JP4590784B2 (en) | Sliding member and valve opening / closing timing control device | |
JPS6050137A (en) | Heat- and wear-resistant high-strength aluminum alloy member of hard particle dispersion type and its production | |
JPH0118981B2 (en) | ||
JP3897416B2 (en) | Powder aluminum alloy cylinder liner | |
JPH0118983B2 (en) | ||
JPS58122167A (en) | Cylinder liner for insert casting and its production | |
JPS63266004A (en) | High strength aluminum alloy powder having heat and wear resistances | |
JPH0118984B2 (en) | ||
JPH0539507A (en) | Rotor for oil pump made of aluminum alloy and production thereof | |
KR20070018153A (en) | Cylinder-liner composite and method for preparing the same | |
JPH0121164Y2 (en) | ||
JP2574274B2 (en) | Aluminum bearing alloy | |
JPH0121163Y2 (en) | ||
JPS63266005A (en) | High strength aluminum alloy powder having heat and wear resistances | |
JP2000018089A (en) | Combination between cylinder liner and piston for internal combustion engine | |
JPH01132736A (en) | High-strength aluminum alloy powder compact excellent in lubricity and having heat resistance and wear resistance and its production |