JPH08225879A - Titanium nitrode sintered compact using aluminum as auxiliary and its production - Google Patents

Titanium nitrode sintered compact using aluminum as auxiliary and its production

Info

Publication number
JPH08225879A
JPH08225879A JP7051763A JP5176395A JPH08225879A JP H08225879 A JPH08225879 A JP H08225879A JP 7051763 A JP7051763 A JP 7051763A JP 5176395 A JP5176395 A JP 5176395A JP H08225879 A JPH08225879 A JP H08225879A
Authority
JP
Japan
Prior art keywords
tin
sintered compact
powder
aluminum
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7051763A
Other languages
Japanese (ja)
Other versions
JP2735152B2 (en
Inventor
Kikuo Nakano
喜久男 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP7051763A priority Critical patent/JP2735152B2/en
Publication of JPH08225879A publication Critical patent/JPH08225879A/en
Application granted granted Critical
Publication of JP2735152B2 publication Critical patent/JP2735152B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE: To attain the sintering of TiN at a low temp. by adding Al and to ensure high performance of the resultant sintered compact because the added Al is converted into TiAl3 and AlN excellent in heat resistance and mechanical characteristics by a reaction with the TiN. CONSTITUTION: Aluminum is added to TiN powder by 3-20wt.% and they are hot-pressed in vacuum or in a nonoxidizing atmosphere of Ar, N2 , etc., under the conditions of >=1,300 deg.C temp. and >=150kg/cm<2> pressure to obtain the objective sintered compact having high strength, high hardness, a high m.p. and high electric conductivity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高硬度、高強度かつ、
高融点、高電気伝導性のTiN焼結体及びその製造方法
に関する。
FIELD OF THE INVENTION The present invention has high hardness, high strength and
The present invention relates to a high melting point, high electrical conductivity TiN sintered body and a method for producing the same.

【0002】[0002]

【従来の技術】TiNは、高硬度、高融点から期待され
る耐熱性、高電気伝導性等の特徴を有するセラミックス
である。さらに、TiNは美麗な黄金色を有することか
ら、従来、工具材の他に装飾合金として高級腕時計等へ
の利用も行われてきた。しかし、TiNは難焼結性であ
るため、これらはスパッタリング技術を利用した表面コ
ーティングによるものが主であった。
2. Description of the Related Art TiN is a ceramic having characteristics such as high hardness, high heat resistance expected from a high melting point, and high electric conductivity. Further, since TiN has a beautiful golden color, it has been conventionally used as a decorative alloy in addition to tool materials for high-grade wristwatches and the like. However, since TiN is difficult to sinter, these are mainly by surface coating using a sputtering technique.

【0003】このTiNの難焼結性を解決して、緻密な
焼結体を得られるようにすれば多くの産業分野への利用
が可能となる。これまで、TiNの焼結性を改善するた
めに、ニッケルやコバルト等の金属を添加する方法(三
谷裕康、永井宏、福原幹夫、日本金属学会誌、42,5
82−88(1978)、及び、A.Tsuge,H.
Inoue and K.Komeya,Yogyo−
Kyokai−Shi,82,587−96(197
4).)、各種セラミックスを添加する方法(森山実、
青木博夫、小林義一、鎌田喜一郎、日本セラミックス協
会学術論文誌、101,279−84(1993).)
が研究されてきたが、未だ十分な成果を得るに至っては
いない。
By solving the difficulty of sintering of TiN so that a dense sintered body can be obtained, it can be used in many industrial fields. Up to now, a method of adding a metal such as nickel or cobalt in order to improve the sinterability of TiN (Yasuyasu Mitani, Hiroshi Nagai, Mikio Fukuhara, The Japan Institute of Metals, 42 , 5).
82-88 (1978), and A. Tsuge, H .;
Inoue and K.K. Komeya, Yogyo-
Kyokai-Shi, 82 , 587-96 (197).
4). ), The method of adding various ceramics (Moriyama Minoru,
Hiroo Aoki, Yoshikazu Kobayashi, Kiichiro Kamada, Journal of the Ceramic Society of Japan, 101 , 279-84 (1993). )
Has been studied, but has not yet achieved sufficient results.

【0004】[0004]

【発明が解決しようとする課題】TiNは難焼結性のセ
ラミックスであり、何らかの焼結助剤を添加することに
よって焼結性を向上させることが求められている。その
際に、TiNの有する特徴である高硬度、高電気伝導
性、また高融点から期待される耐熱性等を損なわないこ
とが求められる。本発明は、上記の観点からTiNの焼
結助剤について、多角的に探索を重ねた結果得られたも
ので、Alを添加することによって、焼結性を向上さ
せ、さらに、焼結時にAlとTiNの間で起きる化学反
応を利用して、Alを耐熱性及び機械的特性の優れたT
iAl3 とAlNに変換することによって、優れたTi
N焼結体及びその製造方法を提供する。
TiN is a ceramic which is difficult to sinter, and it is required to improve the sinterability by adding some sintering aid. At that time, it is required that the characteristics of TiN, such as high hardness, high electrical conductivity, and heat resistance expected from a high melting point, are not impaired. The present invention has been obtained as a result of multi-faceted search for a sintering aid of TiN from the above viewpoint, and improves the sinterability by adding Al. By utilizing the chemical reaction that occurs between Ti and TiN, Al has excellent heat resistance and mechanical properties.
Excellent Ti by converting to iAl 3 and AlN
An N sintered body and a method for manufacturing the same are provided.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
の本発明によるTiN焼結体は、TiN及び焼結時の化
学反応によって生成したTiAl3 及びAlNより構成
された緻密な高硬度、高強度焼結体であり、その作製法
は、TiN粉末に対し3〜20重量%のAl粉末を添加
した混合粉体を調整し、これを予備成形するか、または
直接、黒鉛、窒化ホウ素等のモールドに充填したのち、
真空またはアルゴン、窒素等の非酸化性雰囲気中で、温
度1300℃以上、圧力150kg/cm2 以上の条件
によりホットプレスすることを構成上の特徴とする。
To achieve the above object, a TiN sintered body according to the present invention is a dense, high hardness, high hardness composed of TiN and TiAl 3 and AlN produced by a chemical reaction during sintering. It is a high-strength sintered body, and its manufacturing method is to prepare a mixed powder in which 3 to 20% by weight of Al powder is added to TiN powder, and preform this, or directly form graphite, boron nitride or the like. After filling the mold,
The structural feature is that hot pressing is performed under the conditions of a temperature of 1300 ° C. or more and a pressure of 150 kg / cm 2 or more in a vacuum or a non-oxidizing atmosphere such as argon or nitrogen.

【0006】[0006]

【作用】TiNの原料粉末には、微細な粒径のものが適
用され、平均粒径として50μmを超えるものでは焼結
体の組織が不均質となって十分な強度特性は得られな
い。平均粒径は10μm以下とすることが好ましい。A
lは、メッシュグレードの粒径のものでも適用されうる
が、焼結助剤としての働きが好適に起こるためには、T
iNとの混合の段階で十分に分散していることが必要と
なる。従って粒径はTiNのそれ以下であることが望ま
しい。また、添加量については、TiN粉末に対し、3
重量%を下まわると十分に助剤効果が得られず、また2
0重量%を上まわる添加は、未反応のAlが大量に残存
する。従って用いるTiN粉末の粒径に応じて、Al添
加量を3〜20重量%の間で調整する。
The TiN raw material powder having a fine grain size is applied. If the average grain size exceeds 50 μm, the structure of the sintered body becomes inhomogeneous and sufficient strength characteristics cannot be obtained. The average particle size is preferably 10 μm or less. A
l can be applied with a particle size of mesh grade, but in order to function appropriately as a sintering aid, T
It needs to be sufficiently dispersed at the stage of mixing with iN. Therefore, the particle size is preferably smaller than that of TiN. The amount of addition is 3 for TiN powder.
If the amount is less than wt%, the auxiliary effect cannot be obtained sufficiently, and 2
Addition of more than 0 wt% leaves a large amount of unreacted Al. Therefore, the amount of Al added is adjusted in the range of 3 to 20% by weight according to the particle size of the TiN powder used.

【0007】これらTiN粉末及びAl粉末は、有機溶
媒を用いた湿式ボールミル法によって十分に分散混合
し、原料粉体とする。これを真空または、アルゴンある
いは窒素等の非酸化性雰囲気中で、温度1300℃以
上、圧力150kg/cm2 以上の条件によりホットプ
レスする。温度が1300℃未満、また圧力が150k
g/cm2未満では十分な緻密化が達成されない。本発
明のTiN焼結体は、上記の方法によって製造される。
These TiN powder and Al powder are sufficiently dispersed and mixed by a wet ball mill method using an organic solvent to obtain a raw material powder. This is hot-pressed under vacuum or in a non-oxidizing atmosphere such as argon or nitrogen under the conditions of a temperature of 1300 ° C. or higher and a pressure of 150 kg / cm 2 or higher. Temperature less than 1300 ° C, pressure 150k
If it is less than g / cm 2 , sufficient densification cannot be achieved. The TiN sintered body of the present invention is manufactured by the above method.

【0008】[0008]

【実施例及び比較例】[Examples and Comparative Examples]

実施例1 粒径75μm以下のTiN粉末に、粒径325メッシュ
以下のAl粉末を、20重量%添加し、エタノール中で
24時間ボールミル混合したのち、真空中150℃で乾
燥して得た混合粉体を、窒素中1400℃で1時間、プ
レス圧360kg/cm2でホットプレスした。 実施例2 実施例1と同じ原料を使い、Alが10重量%になるよ
うに調整して、実施例1と同一条件でホットプレスし
た。 実施例3 平均粒径1.3μmのTiN粉末に、粒径325メッシ
ュ以下のAl粉末を、5重量%添加し、エタノール中で
24時間ボールミル混合したのち、真空中150℃で乾
燥して得た混合粉体を、真空中(1×10-3Torr以
下)1400℃で1時間、プレス圧360kg/cm2
でホットプレスした。 実施例4 実施例3と同じ原料で、真空中(1×10-3Torr以
下)1300℃で1時間、プレス圧360kg/cm2
でホットプレスした。 実施例5 実施例3と同じ原料を使い、Alが10重量%になるよ
うに調整して、実施例3と同一条件でホットプレスし
た。 実施例6 実施例5と同じ原料で、真空中(1×10-3Torr以
下)1300℃で1時間、プレス圧360kg/cm2
でホットプレスした。
Example 1 A mixed powder obtained by adding 20 wt% of Al powder having a particle size of 325 mesh or less to TiN powder having a particle size of 75 μm or less, ball-mixing in ethanol for 24 hours, and then drying in vacuum at 150 ° C. The body was hot pressed in nitrogen at 1400 ° C. for 1 hour at a pressing pressure of 360 kg / cm 2 . Example 2 The same raw material as in Example 1 was used, the Al content was adjusted to 10% by weight, and hot pressing was performed under the same conditions as in Example 1. Example 3 5% by weight of Al powder having a particle size of 325 mesh or less was added to TiN powder having an average particle size of 1.3 μm, and the mixture was ball-milled in ethanol for 24 hours, and then dried at 150 ° C. in vacuum to obtain the powder. The mixed powder is vacuumed (1 × 10 −3 Torr or less) at 1400 ° C. for 1 hour, and the pressing pressure is 360 kg / cm 2.
Hot-pressed at. Example 4 The same raw material as in Example 3 was used, in vacuum (1 × 10 −3 Torr or less) at 1300 ° C. for 1 hour, and the pressing pressure was 360 kg / cm 2.
Hot-pressed at. Example 5 The same raw material as in Example 3 was used, the Al content was adjusted to 10% by weight, and hot pressing was performed under the same conditions as in Example 3. Example 6 The same raw material as in Example 5 was used, in vacuum (1 × 10 −3 Torr or less) at 1300 ° C. for 1 hour, and the pressing pressure was 360 kg / cm 2.
Hot-pressed at.

【0009】比較例1 実施例1と同じ原料で、窒素中1200℃で1時間、プ
レス圧360kg/cm2でホットプレスした。 比較例2 実施例5と同じ原料で、真空中(1×10-3Torr以
下)1200℃で1時間、プレス圧360kg/cm2
でホットプレスした。 比較例3 平均粒径1.3μmのTiN粉末を、真空中(1×10
-3Torr以下)1400℃で1時間、プレス圧360
kg/cm2 でホットプレスした。
Comparative Example 1 The same raw material as in Example 1 was hot pressed in nitrogen at 1200 ° C. for 1 hour at a pressing pressure of 360 kg / cm 2 . Comparative Example 2 The same raw material as in Example 5 was used, in vacuum (1 × 10 −3 Torr or less) at 1200 ° C. for 1 hour, and the pressing pressure was 360 kg / cm 2.
Hot-pressed at. Comparative Example 3 TiN powder having an average particle size of 1.3 μm was placed in a vacuum (1 × 10
-3 Torr or less) 1400 ° C for 1 hour, press pressure 360
It was hot pressed at kg / cm 2 .

【0010】以上の実施例及び比較例で得た各焼結体に
ついて、アルキメデス法によってかさ密度と見掛密度、
開気孔率を求め、室温における曲げ強度と破壊靱性値
(KIC)及びビッカース硬度を求めた。曲げ強度は、厚
さ3mm幅4mmの試験片をスパン30mmの三点曲げ
試験によって、KICは、厚さ4mm幅3mmの試験片に
深さ1mm幅0.1mmのノッチを入れ、下部スパン3
0mm上部スパン10mmの四点曲げ試験によって(S
ENB法)、またビッカース硬度は荷重100g保持時
間15秒の測定によって求めた。それらの結果を表1と
表2に示す。ただし、比較例においては、気孔率が高い
ため、硬度測定はできなかった。
The bulk density and the apparent density of each of the sintered bodies obtained in the above Examples and Comparative Examples were measured by the Archimedes method.
The open porosity was determined, and the bending strength at room temperature, fracture toughness value (K IC ) and Vickers hardness were determined. Flexural strength by three-point bending of a span 30mm test piece having a thickness of 3mm 4mm wide test, K IC is notched depth 1mm width 0.1mm in thick test piece 4mm width 3mm, the lower span 3
By 4-point bending test with 0 mm upper span 10 mm (S
ENB method), and Vickers hardness was determined by measurement under a load of 100 g and a holding time of 15 seconds. The results are shown in Tables 1 and 2. However, in the comparative example, hardness could not be measured because of high porosity.

【表1】各実施例における特性値 [Table 1] Characteristic values in each example

【表2】各比較例における特性値 [Table 2] Characteristic values in each comparative example

【0011】これらの表の数値にみられるように、Al
を焼結助剤として添加し、かつ1300℃以上でホット
プレスした場合は、TiN単味の場合や、1300℃未
満でホットプレスした場合と比較して、著しい緻密化
と、強度、KICの向上が認められた。また、硬度につい
ても十分な値が得られている。
As can be seen from the numerical values in these tables, Al
When added as a sintering aid and hot-pressed at 1300 ° C. or higher, compared with the case of TiN alone or hot-pressed at less than 1300 ° C., significant densification, strength, and K IC Improvement was recognized. In addition, a sufficient hardness is obtained.

【0012】実施例1と実施例5の粉末X線回折図を図
1に示す。図から明かなように、添加したAlがTiN
と反応してTiAl3 とAlNが生じたことがわかる。
Alの融点は660℃、TiAl3 とAlNの融点はお
のおの1340℃、2450℃とされている。従って、
焼結時にはAlからなる液相によって焼結が促進される
とともに、Alは高融点のTiAl3 とAlNに変化す
るため、得られた焼結体には耐熱性も期待できるものと
思われる。
The powder X-ray diffraction patterns of Example 1 and Example 5 are shown in FIG. As is clear from the figure, the added Al is TiN
It can be seen that TiAl 3 and AlN were produced by reacting with.
The melting point of Al is 660 ° C., and the melting points of TiAl 3 and AlN are 1340 ° C. and 2450 ° C., respectively. Therefore,
At the time of sintering, the liquid phase composed of Al promotes the sintering, and Al changes into high melting point TiAl 3 and AlN. Therefore, it is considered that the obtained sintered body can be expected to have heat resistance.

【0013】[0013]

【発明の効果】本発明によって、TiN焼結体を従来よ
りも低温で焼結できるようになった。さらに、得られた
焼結体は優れた機械的特性を有しており、このため、切
削工具材や装飾合金等への応用が可能となった。
According to the present invention, a TiN sintered body can be sintered at a lower temperature than before. Furthermore, the obtained sintered body has excellent mechanical properties, which makes it possible to apply it to cutting tool materials, decorative alloys, and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1(1)及び実施例5(2)の場合の粉
末X線回折図である。
FIG. 1 is a powder X-ray diffraction diagram in the case of Example 1 (1) and Example 5 (2).

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 窒化チタン(TiN)に対して、アルミ
ニウム(Al)を3〜20重量%添加した混合粉体より
製造した焼結体。
1. A sintered body produced from a mixed powder in which 3 to 20% by weight of aluminum (Al) is added to titanium nitride (TiN).
【請求項2】 TiNに対してAlを3〜20重量%添
加した混合粉体を非酸化性雰囲気中で温度1300℃以
上、圧力150kg/cm2 以上の条件によりホットプ
レスすることを特徴とする焼結体の製造方法。
2. A mixed powder obtained by adding 3 to 20% by weight of Al to TiN is hot-pressed in a non-oxidizing atmosphere at a temperature of 1300 ° C. or higher and a pressure of 150 kg / cm 2 or higher. Manufacturing method of sintered body.
JP7051763A 1995-02-15 1995-02-15 Titanium nitride sintered body using aluminum as assistant and method for producing the same Expired - Lifetime JP2735152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7051763A JP2735152B2 (en) 1995-02-15 1995-02-15 Titanium nitride sintered body using aluminum as assistant and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7051763A JP2735152B2 (en) 1995-02-15 1995-02-15 Titanium nitride sintered body using aluminum as assistant and method for producing the same

Publications (2)

Publication Number Publication Date
JPH08225879A true JPH08225879A (en) 1996-09-03
JP2735152B2 JP2735152B2 (en) 1998-04-02

Family

ID=12895999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7051763A Expired - Lifetime JP2735152B2 (en) 1995-02-15 1995-02-15 Titanium nitride sintered body using aluminum as assistant and method for producing the same

Country Status (1)

Country Link
JP (1) JP2735152B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014032418A1 (en) * 2012-08-29 2014-03-06 成都美奢锐新材料有限公司 Cermet and method for preparing cermet
WO2014104461A1 (en) * 2012-12-31 2014-07-03 부산대학교 산학협력단 Method for preparing ti2aln bulk material and micro electrical discharge machining method
CN108179296A (en) * 2017-12-29 2018-06-19 山东大学 A kind of high heat-resistant aluminium alloy material and preparation method thereof
JP2020152945A (en) * 2019-03-19 2020-09-24 国立大学法人島根大学 Manufacturing method of heat-resistant lightweight high strength sintered body

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5519971A (en) * 1978-07-31 1980-02-13 Toyota Motor Corp Device for recycling exhaust gas

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5519971A (en) * 1978-07-31 1980-02-13 Toyota Motor Corp Device for recycling exhaust gas

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014032418A1 (en) * 2012-08-29 2014-03-06 成都美奢锐新材料有限公司 Cermet and method for preparing cermet
WO2014104461A1 (en) * 2012-12-31 2014-07-03 부산대학교 산학협력단 Method for preparing ti2aln bulk material and micro electrical discharge machining method
CN108179296A (en) * 2017-12-29 2018-06-19 山东大学 A kind of high heat-resistant aluminium alloy material and preparation method thereof
JP2020152945A (en) * 2019-03-19 2020-09-24 国立大学法人島根大学 Manufacturing method of heat-resistant lightweight high strength sintered body

Also Published As

Publication number Publication date
JP2735152B2 (en) 1998-04-02

Similar Documents

Publication Publication Date Title
US5942455A (en) Synthesis of 312 phases and composites thereof
KR100882924B1 (en) Ti3alc2 composite materials with high strength and manufacturing process of the same
JPS61197464A (en) Manufacture of sintered formed body
Shon et al. Simultaneous synthesis and densification of Ti5Si3 and Ti5Si3–20 vol% ZrO2 composites by field-activated and pressure-assisted combustion
WO1998022244A1 (en) Process for making a dense ceramic workpiece
US10920302B2 (en) Cermet materials and method for making such materials
Itoh et al. Preparation of TiB 2 sintered compacts by hot pressing
Bhaumik et al. Reaction sintering of NiAl and TiB2–NiAl composites under pressure
JPS6152111B2 (en)
US5023214A (en) Silicon nitride ceramics containing a metal silicide phase
JP2005281084A (en) Sintered compact and manufacturing method therefor
JP4809096B2 (en) TiB2-based Ti-Si-C composite ceramics and method for producing sintered body thereof
JP2735152B2 (en) Titanium nitride sintered body using aluminum as assistant and method for producing the same
JP4362582B2 (en) Method for producing sintered metal ceramic titanium silicon carbide
CN113416078B (en) Non-stoichiometric titanium boride and high-entropy boride ceramic prepared from same
WO2020202878A1 (en) Zirconium boride/boron carbide composite and method for manufacturing same
JPH01115871A (en) Titanium carbo-nitride sintered form and production thereof
JP3626378B2 (en) TiB2-Ti (CN) -based composite and production method thereof
JPH0797256A (en) Sintered body of aluminum oxide base and its production
JPH05279121A (en) Sintered compact of tungsten carbide-alumina and its production
JP3051603B2 (en) Titanium compound sintered body
JPH08176696A (en) Production of diamond dispersed ceramic composite sintered compact
KR20000023762A (en) Method for producing moulded bodies from a composite ceramic material structure
JP3735397B2 (en) Titanium nitride sintered body and method for producing the same
KR100503351B1 (en) A method for preparing dense silicon carbide/titanium diboride composite

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term