JP3626378B2 - TiB2-Ti (CN) -based composite and production method thereof - Google Patents

TiB2-Ti (CN) -based composite and production method thereof Download PDF

Info

Publication number
JP3626378B2
JP3626378B2 JP31719999A JP31719999A JP3626378B2 JP 3626378 B2 JP3626378 B2 JP 3626378B2 JP 31719999 A JP31719999 A JP 31719999A JP 31719999 A JP31719999 A JP 31719999A JP 3626378 B2 JP3626378 B2 JP 3626378B2
Authority
JP
Japan
Prior art keywords
tib
powder
sintering
based composite
fracture toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31719999A
Other languages
Japanese (ja)
Other versions
JP2001139375A (en
Inventor
斉 泰松
孝一 浅利
重彰 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akita Prefecture
Original Assignee
Akita Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akita Prefecture filed Critical Akita Prefecture
Priority to JP31719999A priority Critical patent/JP3626378B2/en
Publication of JP2001139375A publication Critical patent/JP2001139375A/en
Application granted granted Critical
Publication of JP3626378B2 publication Critical patent/JP3626378B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は高密度及び高硬度であり、かつ破壊靭性値に優れたTiB−Ti(CN)系複合体及びその製造方法に関する。
【0002】
【従来の技術】
チタンの炭化物、ホウ化物、窒化物およびこれらの複合体は、比較的軽量で優れた機械的性質を有するため構造材料として有望であり、多くの合成の研究がなされてきた。これらは、切削工具、ターゲット材、引き抜き用ダイス、ノズル、電極、自動車用部品、モールドなどに使用することができる。
このような中で、TiB−Ti(CN)系複合体は硬度が高くまた破壊靭性値等が優れているので、特に注目されている。(なお、Ti(CN)におけるCとNの比は広い範囲に亘って変化し、必ずしも1:1に対応するものばかりではない。したがって、本明細書中では特に記載しない限り、それらの変化する比の範囲の全てを含むものとする。また、TiBとTi(CN)の配合比は種々変えられるものであり、必ずしも1:1に対応するものばかりではなく、本明細書中特に記載しない限り、これらの配合比を適宜変えたものを全て含むものとする。)
しかし、上記の材料は一般に焼結助剤の添加なしで普通焼結することは困難であり、ホットプレスあるいはHIPによる焼結が行われている。このような加圧と加熱を行う焼結法以外に、合成と焼結を同時に行う方法、例えば加圧しながら焼結合成させることによって固化させる加圧自己燃焼焼結やホットプレスしながら固相置換反応を起こさせる反応性ホットプレスもこれら化合物の固化に応用されてきている。
【0003】
これらの方法は、化学反応による物質移動を起こさせながら固化させるため、単純に混合しただけでは生成しない組織が得られるという特徴があり、興味が持たれる。近年、難焼結材料の緻密化に、通電加圧焼結法の一種である放電プラズマ焼結が適用され始めている。
これは、粉末を加圧しながらパルス状の電流を流して試料と型を直接加熱するため、急速昇温が可能で、省エネルギーの魅力ある方法である。この放電プラズマ焼結に反応性ホットプレスの手法が応用できるならば、この方法は難焼結材料の緻密化に広く応用できる可能性がある。
【0004】
一方、従来上記TiB−Ti(CN)系複合体は、TiB粉末、TiC粉末、TiN粉末又はTi(CN)粉末を混合し、これを高温で焼結(常圧焼結、ホットプレス、HIP法等を使用)して焼結体とすることが行われてきた。
しかし、このような粉末を使用する場合には、数μmオーダーあるいはそれ以下にコントロールされた微細な原料粉末を使用し、均一に混合しなければ目標とする硬度、密度、破壊靭性値が達成できないという問題があり、コスト高となる欠点があった。
【0005】
また、TiBに混合されるTiCやTiNは不定比性が強く、これが焼結体の強度に大きく影響する。このため、上記のようにTiB粉末にTiC粉末、TiN粉末又はTi(CN)粉末を混合して直接焼結する場合には、焼結プロセスでは不定比性の制御ができないため、これらの不定比性が製品の性質に大きく影響するという問題があった。
安定した品質のTiB−Ti(CN)系複合体を製造するためには、原料そのものが焼結性に優れていることが必要であり、また同時に不定比性が少ない、すなわちx=1であるか又はこれに非常に近い原料粉末でなければならない。
しかし、一般には不定比性が少ない条件であるx=1に近づくほど焼結性が悪くなるという矛盾した関係にあり、製造が難しくなるという問題があった。
以上から、TiB−Ti(CN)系焼結複合体そのものは、高密度及び高硬度であり、破壊靭性値等の特性に優れた材料と考えられていたが、その製造は必ずしも容易ではなく、満足できる焼結体が得られているとは言えなかった。
【0006】
【発明が解決しょうとする課題】
以上から、焼結用粉末として、数μmオーダーあるいはそれ以下にコントロールされた微細な原料粉末を使用する必要がなく、また原料粉に不定比性があっても、粉末の混合比を変えて不定比性を容易に制御することができ、しかも短時間で高密度、高硬度、かつ破壊靭性値に優れたTiB−Ti(CN)系複合体を得ることができる製造方法と焼結複合体を課題とする。
【0007】
【課題を解決するための手段】
以上から、本発明は
1)チタン粉末(Ti)、炭化ホウ素(BC)粉末及び窒化ホウ素(BN)粉末を主成分とする混合粉を、固相置換反応を伴う焼結により焼結することを特徴とするTiB−Ti(CN)系複合体の製造方法
2)99%以上の相対密度を有することを特徴とする1)記載のTiB−Ti(CN)系複合体の製造方法
3)V、Cr、Mn、Fe、Co、Ni、Cu、Zr、Nb、Mo、Ta、Wから選択した1種以上の元素を0.001〜20重量%含有することを特徴とする1)又は2)記載のTiB−Ti(CN)系複合体の製造方法
4)パルス通電加圧焼結により焼結することを特徴とする1)〜3)のいずれかに記載のTiB−Ti(CN)系複合体の製造方法
5)TiB−Ti(Cx−1(但し、0<x<1、0.7≦y≦1.0)系複合体であることを特徴とする1)〜4)のいずれかに記載のTiB−Ti(CN)系複合体の製造方法
6)平均粒径20μm以下のTiB粒子と平均粒径20μm以下のTi(Cx−1)粒子(但し、0<x<1)の混合組織を備えていることを特徴とする1)〜5)のいずれかに記載のTiB−Ti(CN)系複合体の製造方法
、を提供する。
【0009】
【発明の実施の形態】
焼結用混合粉として、チタン粉末(Ti)、炭化ホウ素(BC)粉末及び窒化ホウ素(BN)粉末を用いる。BCに不定比性があるが、BNにはない。したがって、分析値が分かっていれば、これらの混合比を変えて不定比性を容易に制御することができ、原料の不定比性が製品に影響することはない。
焼結方法としてホットプレス法を使用できるが、パルス通電加圧焼結法(放電プラズマ焼結法)を使用すると短時間に高温を得ることができ、製品を得るまでの時間を大幅に短縮できる特徴を有する。
【0010】
パルス通電加圧焼結はグラファイト型に焼結材料を入れ、これを加圧しながら直接パルス状の大電流を流して加熱する方法で、パルス電流が印加される際に、材料粒子間隙に電流が流れ、局部的に高温になる。この局部的高温により原子の拡散が促進し、効率よく固相反応が生じると考えられる。
チタンの炭化物、ホウ化物、窒化物は、難焼結材料であり、焼結助剤の添加なしでは本来緻密化が困難であったが、本方法ではTi、BC、BNの固相置換反応を生じさせながら短時間で固化し、緻密なTiB−Ti(CN)系焼結複合体を得ることができる。
【0011】
焼結温度は1600°C以上、加圧力は20MPa以上が必要となるが、特に1800°C以上、加圧力は30MPa以上であることが望ましい。(なお、この際の焼結温度は、ホットプレス、パルス通電加圧焼結で使用するグラファイト型の表面(焼結材料が充填されている部分の横)の温度を意味する。)これらの温度、加圧力は焼結材料の種類等に応じて適宜決めることができる。
【0012】
固相置換反応による物質の移動距離は、数十μm〜100μmに達するものと推定される。Ti、BC、BN粉末焼結材料は、それぞれ純度99%以上のものを使用し、Ti粉末の粒度30μm以下(好ましくは10〜30μm)、BCの粒度10μm以下、BN粉末の粒度10μm以下の粉末を使用することが望ましいが、純度95%以上のものでTi粉末の粒度100μm以下、BCの粒度20μm以下、BN粉末の粒度10μm以下の粉末を使用することもできる。このように比較的大きな原料粉末を使用しても、組織が再配列し、微細なTiB−Ti(CN)系焼結複合体が得られる特徴を有している。なお、BC粉末及びBN粉末の粒度よりもTi粉末の粒度の大きい方が望ましい。
このように、数μmオーダーあるいはそれ以下にコントロールされた微細な原料粉末を使用し、均一に混合しなければ目標とする硬度、密度、破壊靭性値が達成できないという厳密な原料粉末の管理を必要とし、かつ製造コストが高くなる従来の方法に比べて、本発明の方法は、はるかに製造コストを軽減できる大きな利点を有する。
【0013】
得られたTiB−Ti(CN)系焼結複合体の組織は平均粒径20μm以下のTiB粒子と平均粒径20μm以下のTi(Cx−1)粒子(但し、0<x<1)の混合組織を備えている。図1に、その組織の顕微鏡写真を示す。
なお、これはTi、BC、BNの粉末を焼結温度2000°C、保持時間20分、加圧力50MPaで、2BC+2BN+9Ti→5TiB+4Ti(C0.50.5)の反応により焼結したTiB−Ti(CN)系複合体の焼結体組織を示す。
図1で、白色部分はTi(Cx−1)粒子であり、黒色部分はTiB粒子である。この組織は、網目状のTiB組織にTi(Cx−1)粒子が均一に混合していると表現することもできる。このような緻密な組織は、高硬度でありかつ高靭性を備えており、特に高靭性を発現している理由は反応により生じた網目状の組織である。
このように本発明の焼結複合体は、99%以上の相対密度を有し、破壊靭性値4.0MPam1/2超、ビッカース硬度2120に達するTiB−Ti(CN)系複合体を得ることができる。
【0014】
本発明のTiB−Ti(CN)系複合体は、さらにV、Cr、Mn、Fe、Co、Ni、Cu、Zr、Nb、Mo、Ta、Wから選択した1種以上の元素を0.001〜20重量%含有することができる。これによって、破壊靭性値をさらに向上させ10〜15MPam1/2に達する焼結複合体を得ることができる。
なお、添加量の下限を0.001重量%としたのは、0.001重量%未満では添加の効果がないからであり、また上限を20重量%としたのは、これを超えると硬度が低下し、好ましくないからである。
【0015】
また本発明は、チタン粉末(Ti)、炭化ホウ素(BC)粉末及び窒化ホウ素(BN)粉末の配合比を変えることにより、TiB−Ti(Cx−1(但し、0<x<1、0.7≦y≦1.0)系焼結組織を備えた種々の組成のTiB−Ti(CN)系複合体を得ることができる。
後述の実施例に示すように、xの増加とともにかさ密度は低下するが相対密度は高くなり、ヤング率も上昇し(ポアソン比は逆に減少する)、さらに破壊靭性値及びビッカース硬度も上昇する。
【0016】
また、0.7≦y≦1.0の範囲でyが増加するとかさ密度は高くなるが相対密度は低下し、さらにポアソン比はやや減少するが、ヤング率は大きくなり、破壊靭性値及びビッカース硬度が上昇する傾向がある。
すなわち、Ti(Cx−1におけるyの値が減少するほど緻密になり、焼結が容易となる。
以上に示す通り、本発明においてはTi(Cx−1における不定比性の制御が、単に原料粉末の配合比を変えることにより容易に達成可能である。適度な不定比の原料を予め合成しなければならないという従来の焼結方法に比べ、はるかに容易に制御可能であるという大きな特徴を有する。
【0017】
【実施例】
以下、実施例に基づいて説明する。なお、本実施例は好適な1例を示すもので、本発明はこれらの実施例に限定されるものではない。したがって、本発明の技術思想の範囲における変形や他の実施例及び態様等は、本発明に含むものである。
【0018】
(実施例1)
焼結用粉末として、BC粉末(平均粒径1.5μm、純度99%)とBN粉末(平均粒径24.5μm、純度99.5%)、及びTi粉末(平均粒径6.0μm、純度99.5%)を使用した。
これらの粉末は、反応式2xBC+2(1−x)BN+3(x+1)Ti→(3x+1)TiB+2Ti(C1−x)を想定してxを種々変えて秤量し混合した。
この混合粉末を内径20mm、外径50mmのグラファイト型に充填し、圧力50MPa、昇温速度50°Cmin−1、焼結温度2000°C、保持時間20minの条件で放電プラズマ焼結装置を用いて真空中で焼結した。
得られた焼結体について、密度、ヤング率、ポアソン比、ビッカース硬さ、破壊靭性値の測定を行い、X線回折、EPMAによって分析した。
【0019】
x=0〜1(テスト用試料としては、x=0及びx=1のものも使用した。)の粉末を用いて反応性放電プラズマ焼結を行った試料のxと相対密度及びかさ密度の関係を図2に示す。かさ密度は徐々に低下するが、相対密度はxが0から0.1に増えると急激に増加し、その後徐々に増加した。
x=0の時は、焼結性の悪い定比のTiN1.0が緻密化に悪影響を与えており、xの増加に伴ってTiNの不定比性が増すことにより焼結性が向上したものと推察される。
ヤング率およびポアソン比とxの関係を図3に示す。相対密度と同様にx=0の焼結体は相対密度が低いためにヤング率も低く、xが0.1になると急激に増加し、その後は緩やかに増加した。ポアソン比は、0.16〜0.19でほぼ一定であった。
【0020】
ビッカース硬度とxの関係を図4に示す。x=0の焼結体の硬度が低いが、xが増加するにつれ増加し、x=0.5に最大となり、その時のビッカース硬度は2120であった。
破壊靭性値とxの関係を図5に示す。x=0の焼結体の破壊靭性値は低いが、xが増加するにつれ増加し、x=0.5に最大となり、その時の破壊靭性値は4.0MPam であった。またx=0.7で一旦低下する傾向を示したが、x=1で同等の破壊靭性値は4.0MPam を示した。
以上のヤング率、硬度及び破壊靭性値からみて、上記反応式におけるxの値は0.3〜1、特に0.5近傍が良好であることが分かる。
特に、図示しないが、さらにV、Cr、Mn、Fe、Co、Ni、Cu、ZrNb、Mo、Ta、Wから選択した1種以上の元素を0.001〜20重量%添加することにより、破壊靭性値をより向上させることができ、その破壊靭性値10〜15MPam1/2に達する焼結複合体を得ることができた。
【0021】
(実施例2)
実施例1と同様の粉末を使用し、上記ヤング率、硬度及び破壊靭性値の良好な値をとるx=0.5を固定し、反応式BC+BN+(5/2+2/y)Ti→(5/2)TiB+2/yTi(C0.50.5を想定してyを種々変えて秤量し混合した。
さらに、この混合粉末を実施例と同様に内径20mm、外径50mmのグラファイト型に充填し、圧力50MPa、昇温速度50°Cmin−1、焼結温度2000°C、保持時間20minの条件で放電プラズマ焼結装置を用いて真空中で焼結した。
得られた焼結体について、密度、ヤング率、ポアソン比、ビッカース硬さ、破壊靭性値の測定を行い、X線回折、EPMAによって分析した。
【0022】
0.7≦y≦1.0の範囲でyを変化させた場合の、yと相対密度及びバルク密度の関係を図6に示す。yが増加するにつれかさ密度は次第に増加するが、相対密度は逆にy=0.7で最大となり、すでに99.8%に達する。しかしその後、yが増加するにしたがって相対密度は低下し、y=1で99.1に低下する。yの量の減少は密度の向上に効果的であることが分かる。
同様に、yとヤング率およびポアソン比の関係を図7に示す。相対密度と同様にy=0.7〜1.0にかけてyの比率が低下するとヤング率が低下する傾向がある。ポアソン比はほぼ一定であった。
【0023】
ビッカース硬度とyの関係を図8に示す。y=0.7の焼結体の硬度が低いが、yが増加するにつれ増加し、y=1で最大となり、その時のビッカース硬度は2120であった。しかし、y=0.7でもビッカース硬度2000を超えていることが分かる。
破壊靭性値とyの関係を図9に示す。y=0.7の焼結体の破壊靭性値は低いが、yが増えるにしたがって増加し、y=1.0で最大となり、その時の破壊靭性値は4.0MPam を超えていた。
以上の相対密度、ヤング率、硬度及び破壊靭性値からみて、上記反応式におけるyの値は0.7〜1.0の範囲が有効であることが分かる。
【0024】
【発明の効果】
チタン粉末(Ti)、炭化ホウ素(BC)粉末及び窒化ホウ素(BN)粉末を主成分とする混合粉を使用し、パルス通電加圧焼結などを用いて固相置換反応を伴う焼結を行うことにより、数μmオーダーあるいはそれ以下にコントロールされた微細な原料粉末を使用する必要がないという利点があり、作業性に富み、低コストでTiB−Ti(CN)系複合体を得ることができるという大きな特徴を有する。
また、原料粉に不定比性があっても、粉末の混合比を変えて不定比性を容易に制御することができ、しかも短時間で高密度、高硬度、かつ破壊靭性値に優れたTiB−Ti(CN)系複合体を得ることができる優れた効果を有する。
また、上記製造のコントロール性または作業の容易性から、さらにV、Cr、Mn、Fe、Co、Ni、Cu、Zr、Nb、Mo、Ta、Wから選択した1種以上の元素を0.001〜20重量%添加してTiB−Ti(CN)系複合体の性質を改善することが可能となり、破壊靭性値等をより向上させることができる特徴を有する。
【図面の簡単な説明】
【図1】TiB−Ti(CN)系複合体の焼結体組織の顕微鏡写真である。
【図2】反応式2xBC+2(1−x)BN+3(x+1)Ti→(3x+1)TiB+2Ti(C1−x)を想定してxを種々変え、反応性放電プラズマ焼結を行った試料のxと相対密度及びかさ密度の関係を示す図である。
【図3】同、ヤング率およびポアソン比とxの関係を示す図である。
【図4】同、ビッカース硬度とxの関係を示す図である。
【図5】同、破壊靭性値とxの関係を示す図である。
【図6】反応式BC+BN+(5/2+2/y)Ti→(5/2)TiB+2/yTi(C0.50.5を想定してyを種々変え、反応性放電プラズマ焼結を行った試料のyと相対密度及びかさ密度の関係を示す図である。
【図7】同、ヤング率およびポアソン比とyの関係を示す図である。
【図8】同、ビッカース硬度とyの関係を示す図である。
【図9】同、破壊靭性値とxの関係を示す図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a TiB 2 —Ti (CN) composite having high density and high hardness and excellent fracture toughness, and a method for producing the same.
[0002]
[Prior art]
Titanium carbides, borides, nitrides, and their composites are promising as structural materials because of their relatively light weight and excellent mechanical properties, and many synthetic studies have been conducted. These can be used for cutting tools, target materials, drawing dies, nozzles, electrodes, automotive parts, molds, and the like.
In such circumstances, TiB 2 —Ti (CN) -based composites are attracting particular attention because of their high hardness and excellent fracture toughness values. (Note that the ratio of C to N in Ti (CN) varies over a wide range and does not necessarily correspond to 1: 1. Therefore, unless otherwise stated in the present specification, these ratios vary. The ratio of TiB 2 and Ti (CN) can be variously changed and does not necessarily correspond to 1: 1, and unless otherwise specified in this specification, the entire ratio range is included. (All of these blending ratios are appropriately changed.)
However, it is generally difficult to normally sinter the above materials without adding a sintering aid, and sintering is performed by hot pressing or HIP. In addition to the sintering method in which pressurization and heating are performed, a method in which synthesis and sintering are performed simultaneously, for example, pressure self-combustion sintering that is solidified by sintering synthesis while applying pressure or solid phase substitution while hot pressing is performed. Reactive hot presses that cause reactions have also been applied to solidify these compounds.
[0003]
Since these methods are solidified while causing mass transfer due to a chemical reaction, there is a feature that a structure that cannot be generated simply by mixing is obtained, which is of interest. In recent years, discharge plasma sintering, which is a kind of energizing pressure sintering method, has begun to be applied to densification of difficult-to-sinter materials.
This is an attractive method of energy saving because rapid heating can be performed because the sample and the mold are directly heated by applying a pulsed current while pressing the powder. If a method of reactive hot pressing can be applied to this discharge plasma sintering, this method may be widely applicable to densification of difficult-to-sinter materials.
[0004]
On the other hand, the TiB 2 -Ti (CN) -based composite is conventionally mixed with TiB 2 powder, TiC powder, TiN powder or Ti (CN) powder and sintered at high temperature (atmospheric pressure sintering, hot pressing, It has been performed to use a HIP method or the like to obtain a sintered body.
However, when such powders are used, the target hardness, density and fracture toughness values cannot be achieved unless fine raw material powders controlled to the order of several μm or less are used and mixed uniformly. There is a problem that the cost is high.
[0005]
Further, TiC and TiN mixed with TiB 2 have strong non-stoichiometry, which greatly affects the strength of the sintered body. For this reason, when mixing TiC powder, TiN powder, or Ti (CN) powder with TiB 2 powder as described above and directly sintering, the non-stoichiometry cannot be controlled by the sintering process. There was a problem that the ratio greatly affected the properties of the product.
In order to produce a TiB 2 —Ti (CN) -based composite having a stable quality, the raw material itself needs to be excellent in sinterability, and at the same time, the non-stoichiometry is low, that is, x = 1. The raw powder must be or very close to this.
However, in general, there is a contradictory relationship that the sinterability deteriorates as x = 1, which is a condition with less non-stoichiometry, and there is a problem that manufacturing becomes difficult.
From the above, the TiB 2 -Ti (CN) -based sintered composite itself was considered to be a material having high density and high hardness and excellent properties such as fracture toughness value, but its production is not always easy. It could not be said that a satisfactory sintered body was obtained.
[0006]
[Problems to be solved by the invention]
From the above, it is not necessary to use a fine raw material powder controlled to the order of several μm or less as a sintering powder, and even if the raw material powder has non-stoichiometry, it is undefined by changing the mixing ratio of the powder. Manufacturing method and sintered composite capable of easily obtaining a TiB 2 -Ti (CN) composite having high density, high hardness and excellent fracture toughness in which the specificity can be easily controlled Is an issue.
[0007]
[Means for Solving the Problems]
As described above, the present invention 1) sinters mixed powder mainly composed of titanium powder (Ti), boron carbide (B 4 C) powder and boron nitride (BN) by sintering accompanied by solid phase substitution reaction. A method for producing a TiB 2 -Ti (CN) -based composite 2) A method for producing a TiB 2 -Ti (CN) -based composite as described in 1), which has a relative density of 99% or more 3) One or more elements selected from V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Ta, and W are contained in an amount of 0.001 to 20% by weight 1) Or 2) The TiB 2 -Ti (CN) -based composite production method described in 2) 4) The TiB 2 -Ti according to any one of 1) to 3), wherein the sintering is performed by pulsed current pressure sintering. production method 5 (CN) composites) TiB 2 -Ti (C x N x 1) y (where, 0 <x <1,0.7 ≦ y ≦ 1.0) based TiB 2 -Ti according to any one of 1) to 4), which is a complex (CN) 6) A composite structure of TiB 2 particles having an average particle diameter of 20 μm or less and Ti (C x N x-1 ) particles (however, 0 <x <1) having an average particle diameter of 20 μm or less is provided. to provide a manufacturing method, the TiB 2 -Ti (CN) based composite according to any one of 1) to 5), wherein.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Titanium powder (Ti), boron carbide (B 4 C) powder, and boron nitride (BN) powder are used as the mixed powder for sintering. B 4 C has nonstoichiometry, but BN does not. Therefore, if the analytical value is known, the non-stoichiometry can be easily controlled by changing these mixing ratios, and the non-stoichiometry of the raw material does not affect the product.
The hot press method can be used as the sintering method, but if the pulsed current pressure sintering method (discharge plasma sintering method) is used, a high temperature can be obtained in a short time, and the time to obtain the product can be greatly reduced. Has characteristics.
[0010]
Pulsed current pressure sintering is a method in which a sintered material is put into a graphite mold and heated by directly applying a large pulsed current while pressing it. When a pulse current is applied, the current flows between the material particle gaps. Flows and gets hot locally. It is considered that the diffusion of atoms is promoted by this local high temperature and a solid phase reaction is efficiently generated.
Titanium carbides, borides, and nitrides are difficult to sinter materials and were originally difficult to be densified without the addition of sintering aids. In this method, solid phase substitution of Ti, B 4 C, and BN It is possible to obtain a dense TiB 2 —Ti (CN) -based sintered composite by solidifying in a short time while causing a reaction.
[0011]
The sintering temperature is required to be 1600 ° C. or higher and the applied pressure is 20 MPa or higher. In particular, 1800 ° C. or higher and the applied pressure is preferably 30 MPa or higher. (The sintering temperature at this time means the temperature of the surface of the graphite mold (next to the portion filled with the sintered material) used in hot pressing and pulse current compression sintering.) These temperatures The pressing force can be appropriately determined according to the kind of the sintered material.
[0012]
The movement distance of the substance by the solid phase substitution reaction is estimated to reach several tens of μm to 100 μm. Ti, B 4 C, and BN powder sintered materials are those having a purity of 99% or more, Ti powder particle size of 30 μm or less (preferably 10 to 30 μm), B 4 C particle size of 10 μm or less, BN powder particle size It is desirable to use a powder of 10 μm or less, but it is also possible to use a powder having a purity of 95% or more, a Ti powder particle size of 100 μm or less, a B 4 C particle size of 20 μm or less, and a BN powder particle size of 10 μm or less. Thus, even when a relatively large raw material powder is used, the structure is rearranged and a fine TiB 2 —Ti (CN) -based sintered composite can be obtained. Incidentally, B 4 C powder and the larger the particle size of the Ti powder than the particle size of the BN powder is desired.
In this way, it is necessary to use a fine raw material powder controlled to the order of several μm or less, and strictly control the raw material powder so that the target hardness, density and fracture toughness values cannot be achieved unless they are mixed uniformly. In addition, the method of the present invention has a great advantage that the manufacturing cost can be greatly reduced as compared with the conventional method in which the manufacturing cost is high.
[0013]
The structure of the obtained TiB 2 -Ti (CN) -based sintered composite is TiB 2 particles having an average particle size of 20 μm or less and Ti (C x N x-1 ) particles having an average particle size of 20 μm or less (provided that 0 <x <1) The mixed structure is provided. FIG. 1 shows a micrograph of the structure.
Note that this Ti, B 4 C, the powder sintering temperature 2000 ° C of BN, retention time 20 minutes, at a pressure 50MPa, 2B 4 C + 2BN + 9Ti → 5TiB reaction 2 + 4Ti (C 0.5 N 0.5 ) showing a sintered body tissue TiB 2 -Ti (CN) based complexes sintered by.
In FIG. 1, the white portion is Ti (C x N x-1 ) particles, and the black portion is TiB 2 particles. This structure can also be expressed as Ti (C x N x-1 ) particles are uniformly mixed in a network-like TiB 2 structure. Such a dense structure has high hardness and high toughness, and the reason that the high toughness is expressed is the network structure generated by the reaction.
Thus, the sintered composite of the present invention provides a TiB 2 -Ti (CN) -based composite having a relative density of 99% or more, a fracture toughness value of more than 4.0 MPam 1/2 , and a Vickers hardness of 2120. be able to.
[0014]
The TiB 2 —Ti (CN) -based composite of the present invention further contains at least one element selected from V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Ta, and W in an amount of 0.00. 001 to 20% by weight can be contained. Thereby, the fracture toughness value can be further improved and a sintered composite reaching 10 to 15 MPam 1/2 can be obtained.
The reason why the lower limit of the amount added is 0.001% by weight is that if the amount is less than 0.001% by weight, there is no effect of addition, and the upper limit is 20% by weight. This is because it decreases and is not preferable.
[0015]
In addition, the present invention changes the compounding ratio of titanium powder (Ti), boron carbide (B 4 C) powder, and boron nitride (BN) powder to obtain TiB 2 —Ti (C x N x−1 ) y (where, TiB 2 —Ti (CN) composites having various compositions having a 0 <x <1, 0.7 ≦ y ≦ 1.0) sintered structure can be obtained.
As shown in the examples described later, as x increases, the bulk density decreases but the relative density increases, the Young's modulus increases (Poisson's ratio decreases conversely), and the fracture toughness value and Vickers hardness also increase. .
[0016]
Moreover, when y increases in the range of 0.7 ≦ y ≦ 1.0, the bulk density increases but the relative density decreases, and the Poisson's ratio decreases slightly, but the Young's modulus increases, and the fracture toughness value and Vickers Hardness tends to increase.
That is, as the value of y in Ti (C x N x-1 ) y decreases, it becomes denser and sintering becomes easier.
As described above, in the present invention, control of the non-stoichiometry in Ti (C x N x-1 ) y can be easily achieved by simply changing the blending ratio of the raw material powder. Compared to a conventional sintering method in which a raw material having an appropriate non-stoichiometric ratio must be synthesized in advance, it has a great feature that it can be controlled much more easily.
[0017]
【Example】
Hereinafter, a description will be given based on examples. In addition, a present Example shows a suitable example, This invention is not limited to these Examples. Accordingly, modifications and other examples and aspects within the scope of the technical idea of the present invention are included in the present invention.
[0018]
(Example 1)
B 4 C powder (average particle size 1.5 μm, purity 99%), BN powder (average particle size 24.5 μm, purity 99.5%), and Ti powder (average particle size 6.0 μm) were used as sintering powders. , Purity 99.5%) was used.
These powders Scheme 2xB 4 C + 2 (1- x) BN + 3 (x + 1) Ti → (3x + 1) TiB 2 + 2Ti (C x N 1-x) were mixed variously varied weighed x assumes.
This mixed powder is filled into a graphite mold having an inner diameter of 20 mm and an outer diameter of 50 mm, and using a discharge plasma sintering apparatus under the conditions of a pressure of 50 MPa, a heating rate of 50 ° Cmin −1 , a sintering temperature of 2000 ° C., and a holding time of 20 min. Sintered in vacuum.
The obtained sintered body was measured for density, Young's modulus, Poisson's ratio, Vickers hardness, fracture toughness value, and analyzed by X-ray diffraction and EPMA.
[0019]
x = 0 to 1 (samples for x = 0 and x = 1 were also used as test samples.) x, relative density, and bulk density of samples subjected to reactive discharge plasma sintering using powder The relationship is shown in FIG. The bulk density gradually decreased, but the relative density increased rapidly when x increased from 0 to 0.1, and then gradually increased.
When x = 0, TiN 1.0 having a poor sinterability has a bad influence on densification, and the sinterability is improved by increasing the non-stoichiometry of TiN as x increases. Inferred.
The relationship between the Young's modulus and Poisson's ratio and x is shown in FIG. Similar to the relative density, the sintered body with x = 0 had a low Young's modulus because of the low relative density, and increased rapidly when x was 0.1, and then increased gradually. The Poisson's ratio was almost constant from 0.16 to 0.19.
[0020]
The relationship between Vickers hardness and x is shown in FIG. The hardness of the sintered body at x = 0 was low, but increased as x increased, and reached a maximum at x = 0.5. The Vickers hardness at that time was 2120.
The relationship between the fracture toughness value and x is shown in FIG. While fracture toughness of the sintered body of x = 0 is low, and increases as x increases, becomes maximum in x = 0.5, fracture toughness value at that time was 4.0MPam 1/2. Also showed a tendency to decrease once at x = 0.7, but equivalent fracture toughness value at x = 1 showed 4.0MPam 1/2.
From the above Young's modulus, hardness, and fracture toughness values, it can be seen that the value of x in the above reaction formula is 0.3 to 1, particularly around 0.5.
In particular, although not shown in the figure, destruction is further caused by adding 0.001 to 20% by weight of one or more elements selected from V, Cr, Mn, Fe, Co, Ni, Cu, ZrNb, Mo, Ta, and W. The toughness value could be further improved, and a sintered composite reaching its fracture toughness value of 10 to 15 MPam 1/2 could be obtained.
[0021]
(Example 2)
Using the same powder as in Example 1, fixing x = 0.5, which has good values of the Young's modulus, hardness, and fracture toughness value, the reaction formula B 4 C + BN + (5/2 + 2 / y) Ti → ( 5/2) TiB 2 + 2 / yTi (C 0.5 N 0.5) assumes the y were mixed variously varied weighed y.
Further, this mixed powder was filled in a graphite mold having an inner diameter of 20 mm and an outer diameter of 50 mm in the same manner as in the Examples, and discharged under the conditions of a pressure of 50 MPa, a heating rate of 50 ° Cmin −1 , a sintering temperature of 2000 ° C., and a holding time of 20 min. Sintering was performed in a vacuum using a plasma sintering apparatus.
The obtained sintered body was measured for density, Young's modulus, Poisson's ratio, Vickers hardness, fracture toughness value, and analyzed by X-ray diffraction and EPMA.
[0022]
FIG. 6 shows the relationship between y, relative density, and bulk density when y is changed in the range of 0.7 ≦ y ≦ 1.0. As y increases, the bulk density gradually increases, but the relative density, on the other hand, reaches a maximum at y = 0.7, reaching 99.8%. However, after that, as y increases, the relative density decreases and decreases to 99.1 when y = 1. It can be seen that a decrease in the amount of y is effective in improving the density.
Similarly, FIG. 7 shows the relationship between y, Young's modulus, and Poisson's ratio. Similar to the relative density, when the ratio of y decreases from y = 0.7 to 1.0, the Young's modulus tends to decrease. The Poisson's ratio was almost constant.
[0023]
FIG. 8 shows the relationship between Vickers hardness and y. The hardness of the sintered body with y = 0.7 was low, but increased as y increased, and reached the maximum when y = 1. The Vickers hardness at that time was 2120. However, it can be seen that the Vickers hardness exceeds 2000 even when y = 0.7.
FIG. 9 shows the relationship between the fracture toughness value and y. While fracture toughness of the sintered body of y = 0.7 is low, and increases as y increases, becomes maximum at y = 1.0, fracture toughness value at that time was more than 4.0MPam 1/2 .
From the above relative density, Young's modulus, hardness, and fracture toughness values, it can be seen that the value of y in the above reaction formula is effective in the range of 0.7 to 1.0.
[0024]
【The invention's effect】
Sintering with solid phase substitution reaction using pulsed current pressure sintering etc., using mixed powder mainly composed of titanium powder (Ti), boron carbide (B 4 C) powder and boron nitride (BN) powder Is advantageous in that it is not necessary to use a fine raw material powder controlled to the order of several μm or less, and a TiB 2 -Ti (CN) -based composite is obtained with high workability and low cost. It has a great feature that it can.
In addition, even if the raw powder has non-stoichiometry, it is possible to easily control the non-stoichiometry by changing the mixing ratio of the powder. Moreover, TiB has high density, high hardness, and excellent fracture toughness in a short time. It has an excellent effect that a 2- Ti (CN) -based composite can be obtained.
In addition, from the controllability of the production or the ease of work, 0.001 or more elements selected from V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Ta, and W are added. Addition of ˜20% by weight makes it possible to improve the properties of the TiB 2 —Ti (CN) -based composite and to further improve the fracture toughness value and the like.
[Brief description of the drawings]
FIG. 1 is a photomicrograph of a sintered body structure of a TiB 2 —Ti (CN) -based composite.
FIG. 2 shows the reaction formula 2xB 4 C + 2 (1-x) BN + 3 (x + 1) Ti → (3x + 1) TiB 2 + 2Ti (C x N 1-x ), and variously changes x to perform reactive discharge plasma sintering. It is a figure which shows the relationship of x of the performed sample, relative density, and bulk density.
FIG. 3 is a graph showing the relationship between Young's modulus and Poisson's ratio and x.
FIG. 4 is a graph showing the relationship between Vickers hardness and x.
FIG. 5 is a diagram showing the relationship between the fracture toughness value and x.
[6] Scheme B 4 C + BN + (5 /2 + 2 / y) Ti → (5/2) TiB 2 + 2 / yTi (C 0.5 N 0.5) variously changed the y assuming y, reactive It is a figure which shows the relationship between y of the sample which performed discharge plasma sintering, a relative density, and a bulk density.
FIG. 7 is a graph showing the relationship between Young's modulus and Poisson's ratio and y.
FIG. 8 is a diagram showing the relationship between Vickers hardness and y.
FIG. 9 is a diagram showing the relationship between the fracture toughness value and x.

Claims (6)

チタン粉末(Ti)、炭化ホウ素(BC)粉末及び窒化ホウ素(BN)粉末を主成分とする混合粉を、固相置換反応を伴う焼結により焼結することを特徴とするTiB−Ti(CN)系複合体の製造方法。TiB 2 − characterized in that a mixed powder mainly composed of titanium powder (Ti), boron carbide (B 4 C) powder and boron nitride (BN) powder is sintered by sintering accompanied by a solid phase substitution reaction. A method for producing a Ti (CN) -based composite. 99%以上の相対密度を有することを特徴とする請求項1記載のTiB−Ti(CN)系複合体の製造方法。The process according to claim 1 TiB 2 -Ti (CN) based composite according to characterized in that it has 99% or more of relative density. V、Cr、Mn、Fe、Co、Ni、Cu、Zr、Nb、Mo、Ta、Wから選択した1種以上の元素を0.001〜20重量%含有することを特徴とする請求項1又は2記載のTiB−Ti(CN)系複合体の製造方法。2. One or more elements selected from V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Ta, and W are contained in an amount of 0.001 to 20% by weight. 2. A method for producing a TiB 2 -Ti (CN) -based composite according to 2 . パルス通電加圧焼結により焼結することを特徴とする請求項1〜3のいずれかに記載のTiB−Ti(CN)系複合体の製造方法。Method for producing a TiB 2 -Ti (CN) based composite according to claim 1, characterized in that the sintering by the pulse current pressure sintering. TiB−Ti(Cx−1(但し、0<x<1、0.7≦y≦1.0)系複合体であることを特徴とする請求項1〜4のいずれかに記載のTiB−Ti(CN)系複合体の製造方法。The TiB 2 -Ti (C x N x-1 ) y (where 0 <x <1, 0.7 ≦ y ≦ 1.0) -based complex is provided. method for producing a TiB 2 -Ti (CN) based composite according to. 平均粒径20μm以下のTiB粒子と平均粒径20μm以下のTi(Cx−1)粒子(但し、0<x<1)の混合組織を備えていることを特徴とする請求項1〜5のいずれかに記載のTiB−Ti(CN)系複合体の製造方法。 2. A mixed structure of TiB 2 particles having an average particle diameter of 20 μm or less and Ti (C x N x-1 ) particles having an average particle diameter of 20 μm or less (where 0 <x <1) is provided. method for producing a TiB 2 -Ti (CN) based composite according to 5 any one of.
JP31719999A 1999-11-08 1999-11-08 TiB2-Ti (CN) -based composite and production method thereof Expired - Fee Related JP3626378B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31719999A JP3626378B2 (en) 1999-11-08 1999-11-08 TiB2-Ti (CN) -based composite and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31719999A JP3626378B2 (en) 1999-11-08 1999-11-08 TiB2-Ti (CN) -based composite and production method thereof

Publications (2)

Publication Number Publication Date
JP2001139375A JP2001139375A (en) 2001-05-22
JP3626378B2 true JP3626378B2 (en) 2005-03-09

Family

ID=18085578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31719999A Expired - Fee Related JP3626378B2 (en) 1999-11-08 1999-11-08 TiB2-Ti (CN) -based composite and production method thereof

Country Status (1)

Country Link
JP (1) JP3626378B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106498232A (en) * 2016-09-30 2017-03-15 武汉船用电力推进装置研究所(中国船舶重工集团公司第七二研究所) A kind of New Nickel aluminium base Self-repair Composites and preparation method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4780575B2 (en) * 2002-03-18 2011-09-28 独立行政法人産業技術総合研究所 Cemented carbide sheet manufacturing method
JP4809096B2 (en) * 2006-03-29 2011-11-02 秋田県 TiB2-based Ti-Si-C composite ceramics and method for producing sintered body thereof
CN107287461B (en) * 2017-07-10 2018-10-16 台州学院 A kind of Ultra-fine Grained high performance Ti (C, N)-TiB2- WC-TaC composite cermets cutter and preparation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106498232A (en) * 2016-09-30 2017-03-15 武汉船用电力推进装置研究所(中国船舶重工集团公司第七二研究所) A kind of New Nickel aluminium base Self-repair Composites and preparation method thereof
CN106498232B (en) * 2016-09-30 2018-01-09 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) A kind of preparation method of nickel aluminium base Self-repair Composites

Also Published As

Publication number Publication date
JP2001139375A (en) 2001-05-22

Similar Documents

Publication Publication Date Title
WO2010008004A1 (en) Hard powder, method for producing hard powder and sintered hard alloy
Zhang et al. Microstructure and mechanical properties of TiC-Ni functionally graded materials by simultaneous combustion synthesis and compaction
US5794113A (en) Simultaneous synthesis and densification by field-activated combustion
JP3626378B2 (en) TiB2-Ti (CN) -based composite and production method thereof
JP2000503344A (en) Composite material and method for producing the same
JP4809096B2 (en) TiB2-based Ti-Si-C composite ceramics and method for producing sintered body thereof
Lee et al. Processing of net‐shaped nanocrystalline Fe‐Ni material
JP4362582B2 (en) Method for producing sintered metal ceramic titanium silicon carbide
Jiang et al. Parameters investigation during simultaneous synthesis and densification WC–Ni composites by field-activated combustion
JP4227835B2 (en) W-Ti-C composite and method for producing the same
Sun et al. Synthesis and consolidation of ternary compound Ti3SiC2 from green compact of mixed powders
Hmelov Development of Dense Materials by Plasma-Spark Sintering of Oxide–Oxide-Free Components with Different Mixtures of Metal Powders
JP4809092B2 (en) TiC-based Ti-Si-C composite ceramics and method for producing the same
JP3793813B2 (en) High strength titanium alloy and method for producing the same
JP2735152B2 (en) Titanium nitride sintered body using aluminum as assistant and method for producing the same
Jiang et al. Combustion synthesis of tungsten carbides under electric fieldII. Field-activated pressure-assisted combustion synthesis
JP2852407B2 (en) High-strength diamond-metal composite sintered body and its manufacturing method
JP3032818B2 (en) Titanium boride dispersed hard material
JP4566296B2 (en) Method for producing titanium nitride sintered body
JPH08176696A (en) Production of diamond dispersed ceramic composite sintered compact
JP3628601B2 (en) WC-WB, WC-W2B or WC-WB-W2B composite having high hardness and high Young&#39;s modulus characteristics and method for producing the same
JP2000144301A (en) Tungsten carbide sintered body and its production
JP5771853B2 (en) WC-based W-Mo-Si-C composite ceramics and method for producing the same
Jiang et al. Field-activated pressure-assisted combustion synthesis tungsten carbide–cobalt composites
JPH0350808B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040616

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041019

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20041026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041202

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees