JP2001139375A - Tib2-ti(cn)-based composite and method for manufacturing the same - Google Patents

Tib2-ti(cn)-based composite and method for manufacturing the same

Info

Publication number
JP2001139375A
JP2001139375A JP31719999A JP31719999A JP2001139375A JP 2001139375 A JP2001139375 A JP 2001139375A JP 31719999 A JP31719999 A JP 31719999A JP 31719999 A JP31719999 A JP 31719999A JP 2001139375 A JP2001139375 A JP 2001139375A
Authority
JP
Japan
Prior art keywords
tib
powder
sintering
composite
based composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31719999A
Other languages
Japanese (ja)
Other versions
JP3626378B2 (en
Inventor
Hitoshi Yasumatsu
斉 泰松
Koichi Asari
孝一 浅利
Shigeaki Sugiyama
重彰 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akita Prefecture
Original Assignee
Akita Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akita Prefecture filed Critical Akita Prefecture
Priority to JP31719999A priority Critical patent/JP3626378B2/en
Publication of JP2001139375A publication Critical patent/JP2001139375A/en
Application granted granted Critical
Publication of JP3626378B2 publication Critical patent/JP3626378B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To rapidly obtain a TiB2-Ti(CN)-based composite which does not require the use of fine raw material powder controlled to several μm order or below as sintering powder, allows the easy control of a non-stoichimetric property by changing the mixing ratio of the powder in spite of the raw mate rial powder having the non-stoichiometric property and has a high density, high hardness and excellent fracture toughness value. SOLUTION: This TiB2-Ti(CN)-base composite is prepared by sintering the powder mixture essentially consisting of titanium powder (Ti), boron carbide (B4C) powder and boron nitride (BN) powder.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は高密度及び高硬度で
あり、かつ破壊靭性値に優れたTiB−Ti(CN)
系複合体及びその製造方法に関する。
The present invention relates is a high density and high hardness, and excellent fracture toughness TiB 2 -Ti (CN)
The present invention relates to a system composite and a method for producing the same.

【0002】[0002]

【従来の技術】チタンの炭化物、ホウ化物、窒化物およ
びこれらの複合体は、比較的軽量で優れた機械的性質を
有するため構造材料として有望であり、多くの合成の研
究がなされてきた。これらは、切削工具、ターゲット
材、引き抜き用ダイス、ノズル、電極、自動車用部品、
モールドなどに使用することができる。このような中
で、TiB−Ti(CN)系複合体は硬度が高くまた
破壊靭性値等が優れているので、特に注目されている。
(なお、Ti(CN)におけるCとNの比は広い範囲に
亘って変化し、必ずしも1:1に対応するものばかりで
はない。したがって、本明細書中では特に記載しない限
り、それらの変化する比の範囲の全てを含むものとす
る。また、TiBとTi(CN)の配合比は種々変え
られるものであり、必ずしも1:1に対応するものばか
りではなく、本明細書中特に記載しない限り、これらの
配合比を適宜変えたものを全て含むものとする。) しかし、上記の材料は一般に焼結助剤の添加なしで普通
焼結することは困難であり、ホットプレスあるいはHI
Pによる焼結が行われている。このような加圧と加熱を
行う焼結法以外に、合成と焼結を同時に行う方法、例え
ば加圧しながら焼結合成させることによって固化させる
加圧自己燃焼焼結やホットプレスしながら固相置換反応
を起こさせる反応性ホットプレスもこれら化合物の固化
に応用されてきている。
2. Description of the Related Art Titanium carbides, borides, nitrides, and composites thereof are promising as structural materials because of their relatively light weight and excellent mechanical properties, and many syntheses have been studied. These include cutting tools, target materials, drawing dies, nozzles, electrodes, automotive parts,
It can be used for molds and the like. Under such circumstances, the TiB 2 —Ti (CN) -based composite has attracted special attention because of its high hardness and excellent fracture toughness.
(Note that the ratio of C to N in Ti (CN) varies over a wide range, and does not always correspond to 1: 1. Therefore, unless otherwise specified in the present specification, those variables vary. The mixing ratio of TiB 2 and Ti (CN) can be variously changed and does not always correspond to 1: 1 and unless otherwise specified in this specification. However, it is generally assumed that the above-mentioned materials are all appropriately changed.) However, it is generally difficult to sinter the above materials without adding a sintering aid, and it is difficult to perform hot pressing or HI.
Sintering by P is performed. In addition to such a sintering method of applying pressure and heating, a method of simultaneously performing synthesis and sintering, for example, pressure self-combustion sintering in which solidification is performed by sintering synthesis while applying pressure or solid phase replacement while hot pressing Reactive hot pressing, which causes a reaction, has also been applied to solidification of these compounds.

【0003】これらの方法は、化学反応による物質移動
を起こさせながら固化させるため、単純に混合しただけ
では生成しない組織が得られるという特徴があり、興味
が持たれる。近年、難焼結材料の緻密化に、通電加圧焼
結法の一種である放電プラズマ焼結が適用され始めてい
る。これは、粉末を加圧しながらパルス状の電流を流し
て試料と型を直接加熱するため、急速昇温が可能で、省
エネルギーの魅力ある方法である。この放電プラズマ焼
結に反応性ホットプレスの手法が応用できるならば、こ
の方法は難焼結材料の緻密化に広く応用できる可能性が
ある。
[0003] These methods are of interest because they solidify while causing mass transfer by a chemical reaction, so that a tissue that cannot be formed by simple mixing can be obtained. In recent years, spark plasma sintering, which is a type of current pressure sintering, has begun to be applied to densification of difficult-to-sinter materials. This is an attractive method of energy saving because a pulsed current is applied while the powder is being pressed to directly heat the sample and the mold, enabling rapid temperature rise. If the technique of reactive hot pressing can be applied to this spark plasma sintering, there is a possibility that this method can be widely applied to densification of difficult-to-sinter materials.

【0004】一方、従来上記TiB−Ti(CN)系
複合体は、TiB粉末、TiC粉末、TiN粉末又は
Ti(CN)粉末を混合し、これを高温で焼結(常圧焼
結、ホットプレス、HIP法等を使用)して焼結体とす
ることが行われてきた。しかし、このような粉末を使用
する場合には、数μmオーダーあるいはそれ以下にコン
トロールされた微細な原料粉末を使用し、均一に混合し
なければ目標とする硬度、密度、破壊靭性値が達成でき
ないという問題があり、コスト高となる欠点があった。
On the other hand, in the conventional TiB 2 -Ti (CN) -based composite, a TiB 2 powder, a TiC powder, a TiN powder or a Ti (CN) powder is mixed and sintered at a high temperature (normal pressure sintering, Hot pressing, HIP, etc.) have been used to produce sintered bodies. However, when such a powder is used, the target hardness, density, and fracture toughness value cannot be achieved unless a fine raw material powder controlled to the order of several μm or less is used and uniformly mixed. There is a problem that the cost increases.

【0005】また、TiBに混合されるTiCやTi
Nは不定比性が強く、これが焼結体の強度に大きく影響
する。このため、上記のようにTiB粉末にTiC粉
末、TiN粉末又はTi(CN)粉末を混合して直接焼
結する場合には、焼結プロセスでは不定比性の制御がで
きないため、これらの不定比性が製品の性質に大きく影
響するという問題があった。安定した品質のTiB
Ti(CN)系複合体を製造するためには、原料そのも
のが焼結性に優れていることが必要であり、また同時に
不定比性が少ない、すなわちx=1であるか又はこれに
非常に近い原料粉末でなければならない。しかし、一般
には不定比性が少ない条件であるx=1に近づくほど焼
結性が悪くなるという矛盾した関係にあり、製造が難し
くなるという問題があった。以上から、TiB−Ti
(CN)系焼結複合体そのものは、高密度及び高硬度で
あり、破壊靭性値等の特性に優れた材料と考えられてい
たが、その製造は必ずしも容易ではなく、満足できる焼
結体が得られているとは言えなかった。
In addition, TiC or Ti mixed with TiB 2
N has a strong nonstoichiometric property, which greatly affects the strength of the sintered body. For this reason, when the TiB 2 powder is mixed with the TiC powder, TiN powder or Ti (CN) powder and directly sintered as described above, the sintering process cannot control the non-stoichiometric property. There is a problem that the specificity greatly affects the properties of the product. Of stable quality TiB 2 -
In order to produce a Ti (CN) -based composite, the raw material itself needs to have excellent sinterability, and at the same time, has a low non-stoichiometric ratio, that is, x = 1 or very low. It must be close raw material powder. However, in general, there is a contradictory relationship that the sinterability deteriorates as x = 1, which is a condition where the non-stoichiometric ratio is small, and there has been a problem that manufacturing becomes difficult. From the above, TiB 2 -Ti
The (CN) -based sintered composite itself was considered to be a material having high density and high hardness and excellent properties such as fracture toughness, but its production was not always easy, and a satisfactory sintered body was obtained. I could not say that it was obtained.

【0006】[0006]

【発明が解決しょうとする課題】以上から、焼結用粉末
として、数μmオーダーあるいはそれ以下にコントロー
ルされた微細な原料粉末を使用する必要がなく、また原
料粉に不定比性があっても、粉末の混合比を変えて不定
比性を容易に制御することができ、しかも短時間で高密
度、高硬度、かつ破壊靭性値に優れたTiB−Ti
(CN)系複合体を得ることができる製造方法と焼結複
合体を課題とする。
From the above, it is not necessary to use a fine raw material powder controlled to the order of several μm or less as the sintering powder, and even if the raw material powder has non-stoichiometric properties, TiB 2 -Ti which can easily control non-stoichiometric properties by changing the mixing ratio of powders, and has high density, high hardness and excellent fracture toughness in a short time.
It is an object of the present invention to provide a production method and a sintered composite capable of obtaining a (CN) -based composite.

【0007】[0007]

【課題を解決するための手段】以上から、本発明は 1)チタン粉末(Ti)、炭化ホウ素(BC)粉末及
び窒化ホウ素(BN)粉末を主成分とする混合粉を焼結
することを特徴とするTiB−Ti(CN)系複合体
の製造方法 2)99%以上の相対密度を有することを特徴とする
1)記載のTiB−Ti(CN)系複合体の製造方法 3)V、Cr、Mn、Fe、Co、Ni、Cu、Zr、
Nb、Mo、Ta、Wから選択した1種以上の元素を
0.001〜20重量%含有することを特徴とする1)
又は2)記載のTiB−Ti(CN)系複合体の製造
方法 4)固相置換反応を伴う焼結であることを特徴とする
1)〜3)のそれぞれに記載のTiB−Ti(CN)
系複合体の製造方法 5)パルス通電加圧焼結により焼結することを特徴とす
る1)〜4)のそれぞれに記載のTiB−Ti(C
N)系複合体の製造方法 6)TiB−Ti(Cx−1(但し、0<x<
1、0.7≦y≦1.0)系複合体であることを特徴と
する1)〜5)のそれぞれに記載のTiB−Ti(C
N)系複合体の製造方法 7)平均粒径20μm以下のTiB粒子と平均粒径2
0μm以下のTi(Cx−1)粒子(但し、0<x<
1)の混合組織を備えていることを特徴とする1)〜
6)のそれぞれに記載のTiB−Ti(CN)系複合
体の製造方法、を提供する。
As described above, the present invention provides: 1) sintering a mixed powder containing titanium powder (Ti), boron carbide (B 4 C) powder and boron nitride (BN) powder as main components. wherein the TiB 2 -Ti (CN) composites of the production method 2) 1, characterized in that 99% or more relative density) TiB 2 -Ti (CN) based composite production method 3 described ) V, Cr, Mn, Fe, Co, Ni, Cu, Zr,
It is characterized by containing 0.001 to 20% by weight of at least one element selected from Nb, Mo, Ta, and W 1).
Or 2), wherein the TiB 2 -Ti (CN) based TiB 2 -Ti according to each of 1) to 3), wherein the method for manufacturing a composite body 4) is a sintered with the solid phase substitution reaction ( CN)
5) TiB 2 —Ti (C) according to any one of 1) to 4), characterized in that sintering is performed by pulse current pressure sintering.
Preparation of N) Composites method 6) TiB 2 -Ti (C x N x-1) y ( where, 0 <x <
1, 0.7 ≦ y ≦ 1.0) TiB 2 —Ti (C) described in each of 1) to 5), which is a composite.
N) Method for producing a composite 7) TiB 2 particles having an average particle diameter of 20 μm or less and an average particle diameter of 2
0μm following Ti (C x N x-1 ) particles (where, 0 <x <
1) characterized in that it has the mixed structure of 1).
6) The method for producing a TiB 2 —Ti (CN) -based composite according to each of the items 6).

【0008】さらにまた、本発明は 8)TiB−Ti(Cx−1(但し、0<x<
1、0.7≦y≦1.0)系焼結組織を備えていること
を特徴とするTiB−Ti(CN)系複合体 9)チタン粉末(Ti)、炭化ホウ素(BC)粉末及
び窒化ホウ素(BN)粉末を主成分とする混合粉末を焼
結することによって得られた焼結複合体組織を備えてい
ることを特徴とする8)記載のTiB−Ti(CN)
系複合体 10)99%以上の相対密度を有することを特徴とする
8)又は9)記載のTiB−Ti(CN)系複合体 11)V、Cr、Mn、Fe、Co、Ni、Cu、Z
r、Nb、Mo、Ta、Wから選択した1種以上の元素
を0.001〜20重量%含有することを特徴とする
8)〜10)記載のTiB−Ti(CN)系複合体 12)固相置換反応を伴う焼結であることを特徴とする
8)〜11)のそれぞれに記載のTiB−Ti(C
N)系複合体 13)パルス通電加圧焼結であることを特徴とする8)
〜12)のそれぞれに記載のTiB−Ti(CN)系
複合体 14)TiB−Ti(Cx−1(但し、0<
x<1、0.7≦y≦1.0)系複合体であることを特
徴とする8)〜13)のそれぞれに記載のTiB−T
i(CN)系複合体 15)平均粒径20μm以下のTiB粒子と平均粒径
20μm以下のTi(C x−1)粒子(但し、0<
x<1)の混合組織を備えていることを特徴とする8)
〜14)のそれぞれに記載のTiB−Ti(CN)系
複合体、を提供する。
Furthermore, the present invention relates to 8) TiB2-Ti (CxNx-1)y(However, 0 <x <
1, 0.7 ≦ y ≦ 1.0) Sintered structure
TiB characterized by the following2—Ti (CN) -based composite 9) Titanium powder (Ti), boron carbide (B4C) Powder and
Powder mixed with boron nitride (BN) powder as the main component
With a sintered composite structure obtained by sintering.
8) The TiB as described in 8) above.2-Ti (CN)
10) characterized by having a relative density of 99% or more
TiB according to 8) or 9)2—Ti (CN) based composite 11) V, Cr, Mn, Fe, Co, Ni, Cu, Z
at least one element selected from r, Nb, Mo, Ta, and W
Characterized by containing 0.001 to 20% by weight of
8) TiB according to 10)2—Ti (CN) based composite 12) Sintering accompanied by a solid phase substitution reaction
8) to 11) each of TiB2-Ti (C
N) series composite 13) pulse current pressure sintering 8)
To 12).2-Ti (CN) -based
Composite 14) TiB2-Ti (CxNx-1)y(However, 0 <
x <1, 0.7 ≦ y ≦ 1.0).
TiB described in each of 8) to 13)2-T
i (CN) -based composite 15) TiB having an average particle size of 20 μm or less2Particles and average particle size
Ti (C xNx-1) Particles (however, 0 <
characterized by having a mixed structure of x <1) 8)
To 14).2-Ti (CN) -based
A complex.

【0009】[0009]

【発明の実施の形態】焼結用混合粉として、チタン粉末
(Ti)、炭化ホウ素(BC)粉末及び窒化ホウ素
(BN)粉末を用いる。BCに不定比性があるが、B
Nにはない。したがって、分析値が分かっていれば、こ
れらの混合比を変えて不定比性を容易に制御することが
でき、原料の不定比性が製品に影響することはない。焼
結方法としてホットプレス法を使用できるが、パルス通
電加圧焼結法(放電プラズマ焼結法)を使用すると短時
間に高温を得ることができ、製品を得るまでの時間を大
幅に短縮できる特徴を有する。
BEST MODE FOR CARRYING OUT THE INVENTION As a mixed powder for sintering, titanium powder (Ti), boron carbide (B 4 C) powder and boron nitride (BN) powder are used. Although B 4 C has non-stoichiometric properties,
Not in N. Therefore, if the analytical values are known, the nonstoichiometry can be easily controlled by changing these mixing ratios, and the nonstoichiometry of the raw material does not affect the product. A hot press method can be used as a sintering method. However, when a pulse current pressure sintering method (discharge plasma sintering method) is used, a high temperature can be obtained in a short time, and the time until a product is obtained can be greatly reduced. Has features.

【0010】パルス通電加圧焼結はグラファイト型に焼
結材料を入れ、これを加圧しながら直接パルス状の大電
流を流して加熱する方法で、パルス電流が印加される際
に、材料粒子間隙に電流が流れ、局部的に高温になる。
この局部的高温により原子の拡散が促進し、効率よく固
相反応が生じると考えられる。チタンの炭化物、ホウ化
物、窒化物は、難焼結材料であり、焼結助剤の添加なし
では本来緻密化が困難であったが、本方法ではTi、B
C、BNの固相置換反応を生じさせながら短時間で固
化し、緻密なTiB−Ti(CN)系焼結複合体を得
ることができる。
[0010] Pulse current pressure sintering is a method in which a sintering material is put into a graphite mold and heated by applying a large pulse-like current while pressurizing the sintering material. Current flows through the device and the temperature rises locally.
It is considered that the diffusion of atoms is promoted by the local high temperature, and a solid-phase reaction occurs efficiently. Titanium carbides, borides, and nitrides are difficult-to-sinter materials and originally difficult to densify without the addition of sintering aids.
4 C, can be solidified in a short period of time while causing solid phase substitution reaction of BN, obtain a dense TiB 2 -Ti (CN) based sintered complex.

【0011】焼結温度は1600°C以上、加圧力は2
0MPa以上が必要となるが、特に1800°C以上、
加圧力は30MPa以上であることが望ましい。(な
お、この際の焼結温度は、ホットプレス、パルス通電加
圧焼結で使用するグラファイト型の表面(焼結材料が充
填されている部分の横)の温度を意味する。)これらの
温度、加圧力は焼結材料の種類等に応じて適宜決めるこ
とができる。
[0011] The sintering temperature is 1600 ° C or more, and the pressing force is 2
Although 0 MPa or more is required, in particular, 1800 ° C. or more,
The pressure is desirably 30 MPa or more. (Note that the sintering temperature at this time means the temperature of the surface of the graphite mold (beside the portion filled with the sintering material) used in hot pressing and pulse current pressure sintering.) The pressing force can be appropriately determined according to the type of the sintering material and the like.

【0012】固相置換反応による物質の移動距離は、数
十μm〜100μmに達するものと推定される。Ti、
C、BN粉末焼結材料は、それぞれ純度99%以上
のものを使用し、Ti粉末の粒度30μm以下(好まし
くは10〜30μm)、BCの粒度10μm以下、B
N粉末の粒度10μm以下の粉末を使用することが望ま
しいが、純度95%以上のものでTi粉末の粒度100
μm以下、BCの粒度20μm以下、BN粉末の粒度
10μm以下の粉末を使用することもできる。このよう
に比較的大きな原料粉末を使用しても、組織が再配列
し、微細なTiB−Ti(CN)系焼結複合体が得ら
れる特徴を有している。なお、BC粉末及びBN粉末
の粒度よりもTi粉末の粒度の大きい方が望ましい。こ
のように、数μmオーダーあるいはそれ以下にコントロ
ールされた微細な原料粉末を使用し、均一に混合しなけ
れば目標とする硬度、密度、破壊靭性値が達成できない
という厳密な原料粉末の管理を必要とし、かつ製造コス
トが高くなる従来の方法に比べて、本発明の方法は、は
るかに製造コストを軽減できる大きな利点を有する。
The movement distance of the substance by the solid-phase displacement reaction is estimated to reach several tens μm to 100 μm. Ti,
B 4 C and BN powder sintering materials each having a purity of 99% or more are used. The particle size of Ti powder is 30 μm or less (preferably 10 to 30 μm), the particle size of B 4 C is 10 μm or less.
It is desirable to use a powder of N powder having a particle size of 10 μm or less.
A powder having a particle size of 20 μm or less, a particle size of B 4 C of 20 μm or less, and a particle size of BN powder of 10 μm or less can also be used. Even when a relatively large raw material powder is used, the structure is rearranged, and a fine TiB 2 —Ti (CN) -based sintered composite is obtained. It is preferable that the particle size of the Ti powder is larger than the particle sizes of the B 4 C powder and the BN powder. In this way, it is necessary to use strict raw material powders controlled to the order of several μm or less, and strict control of the raw material powders that the target hardness, density, and fracture toughness value cannot be achieved unless they are mixed uniformly. The method of the present invention has a great advantage in that the manufacturing cost can be significantly reduced as compared with the conventional method in which the manufacturing cost is high.

【0013】得られたTiB−Ti(CN)系焼結複
合体の組織は平均粒径20μm以下のTiB粒子と平
均粒径20μm以下のTi(Cx−1)粒子(但
し、0<x<1)の混合組織を備えている。図1に、その
組織の顕微鏡写真を示す。なお、これはTi、BC、
BNの粉末を焼結温度2000°C、保持時間20分、
加圧力50MPaで、2BC+2BN+9Ti→5T
iB+4Ti(C0.50.5)の反応により焼結
したTiB−Ti(CN)系複合体の焼結体組織を示
す。図1で、白色部分はTi(Cx−1)粒子であ
り、黒色部分はTiB粒子である。この組織は、網目
状のTiB組織にTi(Cx−1)粒子が均一に
混合していると表現することもできる。このような緻密
な組織は、高硬度でありかつ高靭性を備えており、特に
高靭性を発現している理由は反応により生じた網目状の
組織である。このように本発明の焼結複合体は、99%
以上の相対密度を有し、破壊靭性値4.0MPam
1/2超、ビッカース硬度2120に達するTiB
Ti(CN)系複合体を得ることができる。
The structure of the obtained TiB 2 —Ti (CN) -based sintered composite is composed of TiB 2 particles having an average particle diameter of 20 μm or less and Ti (C x N x−1 ) particles having an average particle diameter of 20 μm or less (however, 0 <x <1) is provided. FIG. 1 shows a micrograph of the structure. In addition, this is Ti, B 4 C,
The BN powder was sintered at a sintering temperature of 2000 ° C. for a holding time of 20 minutes.
At a pressure of 50 MPa, 2B 4 C + 2BN + 9Ti → 5T
1 shows a sintered structure of a TiB 2 —Ti (CN) -based composite sintered by the reaction of iB 2 + 4Ti (C 0.5 N 0.5 ). In Figure 1, the white portion is a Ti (C x N x-1 ) particles, the black portion is a TiB 2 particles. The tissue can also be expressed as a mesh-like TiB 2 tissue Ti (C x N x-1 ) particles are uniformly mixed. Such a dense structure has a high hardness and a high toughness, and the reason why the high toughness is particularly exhibited is a network-like structure generated by the reaction. Thus, the sintered composite of the present invention has a 99%
Having the above relative density and a fracture toughness value of 4.0 MPam
TiB 2 − exceeding 1/2 and reaching Vickers hardness 2120
A Ti (CN) -based composite can be obtained.

【0014】本発明のTiB−Ti(CN)系複合体
は、さらにV、Cr、Mn、Fe、Co、Ni、Cu、
Zr、Nb、Mo、Ta、Wから選択した1種以上の元
素を0.001〜20重量%含有することができる。こ
れによって、破壊靭性値をさらに向上させ10〜15M
Pam1/2に達する焼結複合体を得ることができる。
なお、添加量の下限を0.001重量%としたのは、
0.001重量%未満では添加の効果がないからであ
り、また上限を20重量%としたのは、これを超えると
硬度が低下し、好ましくないからである。
The TiB 2 —Ti (CN) based composite of the present invention further comprises V, Cr, Mn, Fe, Co, Ni, Cu,
One or more elements selected from Zr, Nb, Mo, Ta, and W can be contained in an amount of 0.001 to 20% by weight. Thereby, the fracture toughness value is further improved, and
A sintered composite reaching Pam 1/2 can be obtained.
The reason why the lower limit of the addition amount is set to 0.001% by weight is as follows.
If the amount is less than 0.001% by weight, there is no effect of the addition, and the upper limit is set to 20% by weight.

【0015】また本発明は、チタン粉末(Ti)、炭化
ホウ素(BC)粉末及び窒化ホウ素(BN)粉末の配
合比を変えることにより、TiB−Ti(C
x−1 (但し、0<x<1、0.7≦y≦1.0)系
焼結組織を備えた種々の組成のTiB−Ti(CN)
系複合体を得ることができる。後述の実施例に示すよう
に、xの増加とともにかさ密度は低下するが相対密度は
高くなり、ヤング率も上昇し(ポアソン比は逆に減少す
る)、さらに破壊靭性値及びビッカース硬度も上昇す
る。
Further, the present invention relates to a method for producing titanium powder (Ti),
Boron (B4C) Distribution of powder and boron nitride (BN) powder
By changing the ratio, TiB2-Ti (CxN
x-1) y(However, 0 <x <1, 0.7 ≦ y ≦ 1.0)
TiB of various compositions with sintered structure2-Ti (CN)
A system complex can be obtained. As shown in the examples below
In addition, the bulk density decreases as x increases, but the relative density becomes
And the Young's modulus increases (the Poisson's ratio decreases
And the fracture toughness and Vickers hardness also increase.
You.

【0016】また、0.7≦y≦1.0の範囲でyが増
加するとかさ密度は高くなるが相対密度は低下し、さら
にポアソン比はやや減少するが、ヤング率は大きくな
り、破壊靭性値及びビッカース硬度が上昇する傾向があ
る。すなわち、Ti(Cx−1におけるyの値
が減少するほど緻密になり、焼結が容易となる。以上に
示す通り、本発明においてはTi(Cx−1
おける不定比性の制御が、単に原料粉末の配合比を変え
ることにより容易に達成可能である。適度な不定比の原
料を予め合成しなければならないという従来の焼結方法
に比べ、はるかに容易に制御可能であるという大きな特
徴を有する。
When y increases in the range of 0.7 ≦ y ≦ 1.0, the bulk density increases, the relative density decreases, and the Poisson's ratio slightly decreases, but the Young's modulus increases, and the fracture toughness increases. Values and Vickers hardness tend to increase. In other words, becomes dense as the value of y is reduced in Ti (C x N x-1 ) y, becomes easy sintering. As shown above, in the present invention controls nonstoichiometric in Ti (C x N x-1 ) y is merely readily achievable by changing the compounding ratio of raw material powders. Compared to the conventional sintering method in which a raw material having an appropriate non-stoichiometric ratio must be synthesized in advance, it has a great feature that it can be controlled much more easily.

【0017】[0017]

【実施例】以下、実施例に基づいて説明する。なお、本
実施例は好適な1例を示すもので、本発明はこれらの実
施例に限定されるものではない。したがって、本発明の
技術思想の範囲における変形や他の実施例及び態様等
は、本発明に含むものである。
Embodiments will be described below with reference to embodiments. The present embodiment shows a preferred example, and the present invention is not limited to these embodiments. Therefore, modifications within the scope of the technical idea of the present invention, other embodiments and modes, etc. are included in the present invention.

【0018】(実施例1)焼結用粉末として、BC粉
末(平均粒径1.5μm、純度99%)とBN粉末(平
均粒径24.5μm、純度99.5%)、及びTi粉末
(平均粒径6.0μm、純度99.5%)を使用した。
これらの粉末は、反応式2xBC+2(1−x)BN
+3(x+1)Ti→(3x+1)TiB+2Ti
(C1−x)を想定してxを種々変えて秤量し混合
した。この混合粉末を内径20mm、外径50mmのグ
ラファイト型に充填し、圧力50MPa、昇温速度50
°Cmin−1、焼結温度2000°C、保持時間20
minの条件で放電プラズマ焼結装置を用いて真空中で
焼結した。得られた焼結体について、密度、ヤング率、
ポアソン比、ビッカース硬さ、破壊靭性値の測定を行
い、X線回折、EPMAによって分析した。
Example 1 As sintering powders, B 4 C powder (average particle size 1.5 μm, purity 99%), BN powder (average particle size 24.5 μm, purity 99.5%), Ti Powder (average particle size 6.0 μm, purity 99.5%) was used.
These powders Scheme 2xB 4 C + 2 (1- x) BN
+3 (x + 1) Ti → (3x + 1) TiB 2 + 2Ti
(C x N 1-x) were mixed variously varied weighed x assumes. This mixed powder was filled into a graphite mold having an inner diameter of 20 mm and an outer diameter of 50 mm, and a pressure of 50 MPa and a heating rate of 50 mm.
° Cmin -1 , sintering temperature 2000 ° C, holding time 20
Sintering was performed in vacuum using a discharge plasma sintering apparatus under the conditions of min. About the obtained sintered body, density, Young's modulus,
Poisson's ratio, Vickers hardness, and fracture toughness were measured and analyzed by X-ray diffraction and EPMA.

【0019】x=0〜1(テスト用試料としては、x=
0及びx=1のものも使用した。)の粉末を用いて反応
性放電プラズマ焼結を行った試料のxと相対密度及びか
さ密度の関係を図2に示す。かさ密度は徐々に低下する
が、相対密度はxが0から0.1に増えると急激に増加
し、その後徐々に増加した。x=0の時は、焼結性の悪
い定比のTiN1.0が緻密化に悪影響を与えており、
xの増加に伴ってTiNの不定比性が増すことにより焼
結性が向上したものと推察される。ヤング率およびポア
ソン比とxの関係を図3に示す。相対密度と同様にx=
0の焼結体は相対密度が低いためにヤング率も低く、x
が0.1になると急激に増加し、その後は緩やかに増加
した。ポアソン比は、0.16〜0.19でほぼ一定で
あった。
X = 0 to 1 (for a test sample, x =
Those with 0 and x = 1 were also used. FIG. 2 shows the relationship between x, the relative density and the bulk density of the sample subjected to the reactive discharge plasma sintering using the powder of (2). The bulk density gradually decreased, but the relative density increased rapidly when x increased from 0 to 0.1, and then gradually increased. When x = 0, a constant ratio of TiN 1.0 having poor sinterability adversely affects the densification,
It is presumed that the sinterability was improved by increasing the non-stoichiometric property of TiN with the increase of x. FIG. 3 shows the relationship between Young's modulus and Poisson's ratio and x. As with the relative density, x =
0 has a low Young's modulus due to a low relative density, and x
Increased to 0.1, and then increased gradually. The Poisson's ratio was almost constant between 0.16 and 0.19.

【0020】ビッカース硬度とxの関係を図4に示す。
x=0の焼結体の硬度が低いが、xが増加するにつれ増
加し、x=0.5に最大となり、その時のビッカース硬
度は2120であった。破壊靭性値とxの関係を図5に
示す。x=0の焼結体の破壊靭性値は低いが、xが増加
するにつれ増加し、x=0.5に最大となり、その時の
破壊靭性値は4.0MPam1/2であった。またx=
0.7で一旦低下する傾向を示したが、x=1で同等の
破壊靭性値は4.0MPam1/2を示した。以上のヤ
ング率、硬度及び破壊靭性値からみて、上記反応式にお
けるxの値は0.3〜1、特に0.5近傍が良好である
ことが分かる。特に、図示しないが、さらにV、Cr、
Mn、Fe、Co、Ni、Cu、ZrNb、Mo、T
a、Wから選択した1種以上の元素を0.001〜20
重量%添加することにより、破壊靭性値をより向上させ
ることができ、その破壊靭性値10〜15MPam
1/2に達する焼結複合体を得ることができた。
FIG. 4 shows the relationship between Vickers hardness and x.
The hardness of the sintered body at x = 0 was low, but increased as x increased, and reached a maximum at x = 0.5, and the Vickers hardness at that time was 2120. FIG. 5 shows the relationship between the fracture toughness value and x. The fracture toughness value of the sintered body at x = 0 was low, but increased as x increased, and reached a maximum at x = 0.5, at which time the fracture toughness value was 4.0 MPam 1/2 . X =
At 0.7, there was a tendency to temporarily decrease, but at x = 1, the equivalent fracture toughness value was 4.0 MPam 1/2 . From the above Young's modulus, hardness and fracture toughness values, it can be seen that the value of x in the above reaction formula is good in the range of 0.3 to 1, especially in the vicinity of 0.5. In particular, although not shown, V, Cr,
Mn, Fe, Co, Ni, Cu, ZrNb, Mo, T
a, one or more elements selected from W
By adding the weight%, the fracture toughness value can be further improved, and its fracture toughness value is 10 to 15 MPam.
It was possible to obtain a sintered composite reaching 1/2 .

【0021】(実施例2)実施例1と同様の粉末を使用
し、上記ヤング率、硬度及び破壊靭性値の良好な値をと
るx=0.5を固定し、反応式BC+BN+(5/2
+2/y)Ti→(5/2)TiB+2/yTi(C
0.50.5を想定してyを種々変えて秤量し混
合した。さらに、この混合粉末を実施例と同様に内径2
0mm、外径50mmのグラファイト型に充填し、圧力
50MPa、昇温速度50°Cmin−1、焼結温度2
000°C、保持時間20minの条件で放電プラズマ
焼結装置を用いて真空中で焼結した。得られた焼結体に
ついて、密度、ヤング率、ポアソン比、ビッカース硬
さ、破壊靭性値の測定を行い、X線回折、EPMAによ
って分析した。
(Example 2) The same powder as in Example 1 was used, and x = 0.5, which takes good values of the Young's modulus, hardness and fracture toughness, was fixed, and the reaction formula B 4 C + BN + (5 / 2
+ 2 / y) Ti → (5/2) TiB 2 + 2 / yTi (C
0.5 N 0.5) assumes the y were mixed variously varied weighed y. Further, this mixed powder was treated with an inner diameter of 2 as in the example.
Filled in a graphite mold having a diameter of 0 mm and an outer diameter of 50 mm, a pressure of 50 MPa, a heating rate of 50 ° Cmin −1 , and a sintering temperature of 2
Sintering was performed in vacuum using a discharge plasma sintering apparatus under the conditions of 000 ° C. and a holding time of 20 minutes. The obtained sintered body was measured for density, Young's modulus, Poisson's ratio, Vickers hardness, and fracture toughness, and analyzed by X-ray diffraction and EPMA.

【0022】0.7≦y≦1.0の範囲でyを変化させ
た場合の、yと相対密度及びバルク密度の関係を図6に
示す。yが増加するにつれかさ密度は次第に増加する
が、相対密度は逆にy=0.7で最大となり、すでに9
9.8%に達する。しかしその後、yが増加するにした
がって相対密度は低下し、y=1で99.1に低下す
る。yの量の減少は密度の向上に効果的であることが分
かる。同様に、yとヤング率およびポアソン比の関係を
図7に示す。相対密度と同様にy=0.7〜1.0にか
けてyの比率が低下するとヤング率が低下する傾向があ
る。ポアソン比はほぼ一定であった。
FIG. 6 shows the relationship between y and the relative density and bulk density when y is changed in the range of 0.7 ≦ y ≦ 1.0. As y increases, the bulk density gradually increases, but the relative density conversely reaches a maximum at y = 0.7 and is already 9
Reaches 9.8%. However, thereafter, as y increases, the relative density decreases, dropping to 99.1 at y = 1. It can be seen that reducing the amount of y is effective for increasing the density. Similarly, FIG. 7 shows the relationship between y and Young's modulus and Poisson's ratio. As in the case of the relative density, when the ratio of y decreases from y = 0.7 to 1.0, the Young's modulus tends to decrease. Poisson's ratio was almost constant.

【0023】ビッカース硬度とyの関係を図8に示す。
y=0.7の焼結体の硬度が低いが、yが増加するにつ
れ増加し、y=1で最大となり、その時のビッカース硬
度は2120であった。しかし、y=0.7でもビッカ
ース硬度2000を超えていることが分かる。破壊靭性
値とyの関係を図9に示す。y=0.7の焼結体の破壊
靭性値は低いが、yが増えるにしたがって増加し、y=
1.0で最大となり、その時の破壊靭性値は4.0MP
am1/2を超えていた。以上の相対密度、ヤング率、
硬度及び破壊靭性値からみて、上記反応式におけるyの
値は0.7〜1.0の範囲が有効であることが分かる。
FIG. 8 shows the relationship between Vickers hardness and y.
The hardness of the sintered body at y = 0.7 was low, but increased as y increased, and reached a maximum at y = 1, and the Vickers hardness at that time was 2120. However, it can be seen that the Vickers hardness exceeds 2,000 even at y = 0.7. FIG. 9 shows the relationship between the fracture toughness value and y. Although the fracture toughness value of the sintered body at y = 0.7 is low, it increases as y increases, and y = 0.7
The maximum value is 1.0 and the fracture toughness value at that time is 4.0MP.
am was over 1/2 . Above relative density, Young's modulus,
From the viewpoint of the hardness and the fracture toughness, it is found that the value of y in the above reaction formula is effective in the range of 0.7 to 1.0.

【0024】[0024]

【発明の効果】チタン粉末(Ti)、炭化ホウ素(B
C)粉末及び窒化ホウ素(BN)粉末を主成分とする混
合粉を使用し、パルス通電加圧焼結などを用いて固相置
換反応を伴う焼結を行うことにより、数μmオーダーあ
るいはそれ以下にコントロールされた微細な原料粉末を
使用する必要がないという利点があり、作業性に富み、
低コストでTiB−Ti(CN)系複合体を得ること
ができるという大きな特徴を有する。また、原料粉に不
定比性があっても、粉末の混合比を変えて不定比性を容
易に制御することができ、しかも短時間で高密度、高硬
度、かつ破壊靭性値に優れたTiB−Ti(CN)系
複合体を得ることができる優れた効果を有する。また、
上記製造のコントロール性または作業の容易性から、さ
らにV、Cr、Mn、Fe、Co、Ni、Cu、Zr、
Nb、Mo、Ta、Wから選択した1種以上の元素を
0.001〜20重量%添加してTiB−Ti(C
N)系複合体の性質を改善することが可能となり、破壊
靭性値等をより向上させることができる特徴を有する。
According to the present invention, titanium powder (Ti), boron carbide (B 4
C) By using a mixed powder mainly composed of powder and boron nitride (BN) powder and performing sintering accompanied by a solid-phase displacement reaction using pulsed current pressure sintering or the like, an order of several μm or less. There is an advantage that it is not necessary to use fine raw material powder controlled,
It has a great feature that a TiB 2 —Ti (CN) -based composite can be obtained at low cost. In addition, even if the raw material powder has non-stoichiometric properties, it is possible to easily control the non-stoichiometric properties by changing the mixing ratio of the powders, and to achieve a high density, high hardness, and excellent fracture toughness in a short time. It has an excellent effect of obtaining a 2- Ti (CN) -based composite. Also,
From the controllability of the production or the easiness of the operation, V, Cr, Mn, Fe, Co, Ni, Cu, Zr,
One or more elements selected from Nb, Mo, Ta, and W are added in an amount of 0.001 to 20% by weight, and TiB 2 —Ti (C
It is possible to improve the properties of the N) -based composite, and has a feature that the fracture toughness value and the like can be further improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】TiB−Ti(CN)系複合体の焼結体組織
の顕微鏡写真である。
FIG. 1 is a micrograph of the structure of a sintered body of a TiB 2 —Ti (CN) -based composite.

【図2】反応式2xBC+2(1−x)BN+3(x
+1)Ti→(3x+1)TiB+2Ti(C
1−x)を想定してxを種々変え、反応性放電プラズマ
焼結を行った試料のxと相対密度及びかさ密度の関係を
示す図である。
FIG. 2 is a reaction formula of 2 × B 4 C + 2 (1-x) BN + 3 (x
+1) Ti → (3x + 1) TiB 2 + 2Ti (C x N
1 is a diagram showing the relationship between x and the relative density and bulk density of a sample subjected to reactive discharge plasma sintering while variously changing x assuming 1-x ).

【図3】同、ヤング率およびポアソン比とxの関係を示
す図である。
FIG. 3 is a diagram showing a relationship between Young's modulus and Poisson's ratio and x.

【図4】同、ビッカース硬度とxの関係を示す図であ
る。
FIG. 4 is a diagram showing the relationship between Vickers hardness and x.

【図5】同、破壊靭性値とxの関係を示す図である。FIG. 5 is a diagram showing a relationship between a fracture toughness value and x.

【図6】反応式BC+BN+(5/2+2/y)Ti
→(5/2)TiB+2/yTi(C
0.50.5を想定してyを種々変え、反応性放
電プラズマ焼結を行った試料のyと相対密度及びかさ密
度の関係を示す図である。
FIG. 6: Reaction formula B 4 C + BN + (5/2 + 2 / y) Ti
→ (5/2) TiB 2 + 2 / yTi (C
FIG. 5 is a diagram showing the relationship between y and relative density and bulk density of a sample subjected to reactive discharge plasma sintering with various values of y assuming 0.5 N 0.5 ) y .

【図7】同、ヤング率およびポアソン比とyの関係を示
す図である。
FIG. 7 is a view showing the relationship between Young's modulus and Poisson's ratio and y.

【図8】同、ビッカース硬度とyの関係を示す図であ
る。
FIG. 8 is a diagram showing a relationship between Vickers hardness and y.

【図9】同、破壊靭性値とxの関係を示す図である。FIG. 9 is a diagram showing a relationship between a fracture toughness value and x.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 29/14 C22C 29/14 A B Fターム(参考) 4G001 BA23 BA33 BA61 BA67 BB43 BB44 BB57 BB67 BC13 BC46 BC55 BC61 BD12 BD16 BD18 BD36 BE11 BE22 BE33 4K018 AB02 AB03 AB04 AC01 AD04 BA02 BA03 BA04 BA09 BA11 BA13 DA12 EA06 EA22 KA15 KA18 KA19 KA37 KA62 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (Reference) C22C 29/14 C22C 29/14 AB BF term (Reference) 4G001 BA23 BA33 BA61 BA67 BB43 BB44 BB57 BB67 BC13 BC46 BC55 BC61 BD12 BD16 BD18 BD36 BE11 BE22 BE33 4K018 AB02 AB03 AB04 AC01 AD04 BA02 BA03 BA04 BA09 BA11 BA13 DA12 EA06 EA22 KA15 KA18 KA19 KA37 KA62

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】 チタン粉末(Ti)、炭化ホウ素(B
C)粉末及び窒化ホウ素(BN)粉末を主成分とする混
合粉を焼結することを特徴とするTiB−Ti(C
N)系複合体の製造方法。
1. Titanium powder (Ti), boron carbide (B 4
C) sintering a mixed powder mainly composed of powder and boron nitride (BN) powder, wherein TiB 2 -Ti (C
N) A method for producing a composite.
【請求項2】 99%以上の相対密度を有することを特
徴とする請求項1記載のTiB−Ti(CN)系複合
体の製造方法。
2. The method for producing a TiB 2 —Ti (CN) -based composite according to claim 1, having a relative density of 99% or more.
【請求項3】 V、Cr、Mn、Fe、Co、Ni、C
u、Zr、Nb、Mo、Ta、Wから選択した1種以上
の元素を0.001〜20重量%含有することを特徴と
する請求項1又は2記載のTiB−Ti(CN)系複
合体の製造方法。
3. V, Cr, Mn, Fe, Co, Ni, C
u, Zr, Nb, Mo, Ta, TiB 2 -Ti (CN) based composite according to claim 1 or 2, characterized in that it contains 0.001 to 20 wt% of one or more elements selected from W How to make the body.
【請求項4】 固相置換反応を伴う焼結であることを特
徴とする請求項1〜3のそれぞれに記載のTiB−T
i(CN)系複合体の製造方法。
4. The TiB 2 -T according to claim 1, wherein the sintering is accompanied by a solid phase substitution reaction.
A method for producing an i (CN) -based composite.
【請求項5】 パルス通電加圧焼結により焼結すること
を特徴とする請求項1〜4のそれぞれに記載のTiB
−Ti(CN)系複合体の製造方法。
5. The TiB 2 according to claim 1, wherein the sintering is performed by pulse current pressure sintering.
-A method for producing a Ti (CN) -based composite.
【請求項6】 TiB−Ti(Cx−1(但
し、0<x<1、0.7≦y≦1.0)系複合体であるこ
とを特徴とする請求項1〜5のそれぞれに記載のTiB
−Ti(CN)系複合体の製造方法。
6. The composite according to claim 1, wherein the composite is a TiB 2 —Ti (C x N x−1 ) y (where 0 <x <1, 0.7 ≦ y ≦ 1.0) system composite. TiB described in each of Nos. 1 to 5
A method for producing a 2- Ti (CN) -based composite.
【請求項7】 平均粒径20μm以下のTiB粒子と
平均粒径20μm以下のTi(Cx−1)粒子(但
し、0<x<1)の混合組織を備えていることを特徴とす
る請求項1〜6のそれぞれに記載のTiB−Ti(C
N)系複合体の製造方法。
7. A mixed structure of TiB 2 particles having an average particle diameter of 20 μm or less and Ti (C x N x-1 ) particles having an average particle diameter of 20 μm or less (where 0 <x <1). The TiB 2 —Ti (C) according to each of claims 1 to 6
N) A method for producing a composite.
【請求項8】 TiB−Ti(Cx−1(但
し、0<x<1、0.7≦y≦1.0)系焼結組織を備え
ていることを特徴とするTiB−Ti(CN)系複合
体。
8. It is characterized by having a sintered structure of TiB 2 —Ti (C x N x−1 ) y (where 0 <x <1, 0.7 ≦ y ≦ 1.0). A TiB 2 —Ti (CN) -based composite.
【請求項9】 チタン粉末(Ti)、炭化ホウ素(B
C)粉末及び窒化ホウ素(BN)粉末を主成分とする混
合粉末を焼結することによって得られた焼結複合体組織
を備えていることを特徴とする請求項8記載のTiB
−Ti(CN)系複合体。
9. Titanium powder (Ti), boron carbide (B 4
The TiB 2 according to claim 8, comprising a sintered composite structure obtained by sintering a mixed powder containing C) powder and boron nitride (BN) powder as main components.
-Ti (CN) based composite.
【請求項10】 99%以上の相対密度を有することを
特徴とする請求項8又は9記載のTiB−Ti(C
N)系複合体。
10. The TiB 2 —Ti (C) according to claim 8, having a relative density of 99% or more.
N) -based complex.
【請求項11】 V、Cr、Mn、Fe、Co、Ni、
Cu、Zr、Nb、Mo、Ta、Wから選択した1種以
上の元素を0.001〜20重量%含有することを特徴
とする請求項8〜10記載のTiB−Ti(CN)系
複合体。
11. V, Cr, Mn, Fe, Co, Ni,
Cu, Zr, Nb, Mo, Ta, TiB 2 -Ti (CN) based composite according to claim 8-10, wherein the one or more elements selected from W contains 0.001 to 20 wt% body.
【請求項12】 固相置換反応を伴う焼結であることを
特徴とする請求項8〜11のそれぞれに記載のTiB
−Ti(CN)系複合体。
12. The TiB 2 according to claim 8, wherein the sintering is accompanied by a solid phase substitution reaction.
-Ti (CN) based composite.
【請求項13】 パルス通電加圧焼結であることを特徴
とする請求項8〜12のそれぞれに記載のTiB−T
i(CN)系複合体。
13. The TiB 2 -T according to claim 8, wherein sintering is carried out by pulse electric current pressure.
i (CN) -based complex.
【請求項14】 TiB−Ti(Cx−1
(但し、0<x<1、0.7≦y≦1.0)系複合体で
あることを特徴とする請求項8〜13のそれぞれに記載
のTiB−Ti(CN)系複合体。
14. TiB 2 —Ti (C x N x−1 )
y (where, 0 <x <1,0.7 ≦ y ≦ 1.0) based TiB 2 -Ti (CN) based composite according to each of claims 8 to 13, which is a complex .
【請求項15】 平均粒径20μm以下のTiB粒子
と平均粒径20μm以下のTi(Cx−1)粒子
(但し、0<x<1)の混合組織を備えていることを特徴
とする請求項8〜14のそれぞれに記載のTiB−T
i(CN)系複合体。
15. A mixed structure of TiB 2 particles having an average particle diameter of 20 μm or less and Ti (C x N x-1 ) particles having an average particle diameter of 20 μm or less (where 0 <x <1). The TiB 2 -T according to any one of claims 8 to 14,
i (CN) -based complex.
JP31719999A 1999-11-08 1999-11-08 TiB2-Ti (CN) -based composite and production method thereof Expired - Fee Related JP3626378B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31719999A JP3626378B2 (en) 1999-11-08 1999-11-08 TiB2-Ti (CN) -based composite and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31719999A JP3626378B2 (en) 1999-11-08 1999-11-08 TiB2-Ti (CN) -based composite and production method thereof

Publications (2)

Publication Number Publication Date
JP2001139375A true JP2001139375A (en) 2001-05-22
JP3626378B2 JP3626378B2 (en) 2005-03-09

Family

ID=18085578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31719999A Expired - Fee Related JP3626378B2 (en) 1999-11-08 1999-11-08 TiB2-Ti (CN) -based composite and production method thereof

Country Status (1)

Country Link
JP (1) JP3626378B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003268479A (en) * 2002-03-18 2003-09-25 National Institute Of Advanced Industrial & Technology Hard metal and manufacturing method therefor
JP2007261881A (en) * 2006-03-29 2007-10-11 Akita Prefecture Tib2 base ti-si-c-based composite ceramic and method of manufacturing sintered compact thereof
CN107287461A (en) * 2017-07-10 2017-10-24 台州学院 A kind of Ultra-fine Grained high performance Ti (C, N) TiB2WC TaC composite cermets cutters and preparation method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106498232B (en) * 2016-09-30 2018-01-09 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) A kind of preparation method of nickel aluminium base Self-repair Composites

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003268479A (en) * 2002-03-18 2003-09-25 National Institute Of Advanced Industrial & Technology Hard metal and manufacturing method therefor
JP2007261881A (en) * 2006-03-29 2007-10-11 Akita Prefecture Tib2 base ti-si-c-based composite ceramic and method of manufacturing sintered compact thereof
CN107287461A (en) * 2017-07-10 2017-10-24 台州学院 A kind of Ultra-fine Grained high performance Ti (C, N) TiB2WC TaC composite cermets cutters and preparation method

Also Published As

Publication number Publication date
JP3626378B2 (en) 2005-03-09

Similar Documents

Publication Publication Date Title
CA2977288C (en) Reactive additive manufacturing
US7393559B2 (en) Methods for production of FGM net shaped body for various applications
JPH11504074A (en) Composite material and method for producing the same
US5794113A (en) Simultaneous synthesis and densification by field-activated combustion
Yin et al. Improvement in microstructure and mechanical properties of Ti (C, N) cermet prepared by two-step spark plasma sintering
JPH0578107A (en) Nitride powder
JP2000503344A (en) Composite material and method for producing the same
JP3626378B2 (en) TiB2-Ti (CN) -based composite and production method thereof
Lee et al. Processing of net‐shaped nanocrystalline Fe‐Ni material
Jiang et al. Parameters investigation during simultaneous synthesis and densification WC–Ni composites by field-activated combustion
JP2005089252A (en) Metallic ceramic sintered compact titanium silicon carbide and method of manufacturing the same
JP3175170B2 (en) Method for producing TiC sintered body
JPH08176695A (en) Production of titanium nitride sinter
JP4566296B2 (en) Method for producing titanium nitride sintered body
JP3032818B2 (en) Titanium boride dispersed hard material
JP2852407B2 (en) High-strength diamond-metal composite sintered body and its manufacturing method
JP3793813B2 (en) High strength titanium alloy and method for producing the same
Jiang et al. Combustion synthesis of tungsten carbides under electric fieldII. Field-activated pressure-assisted combustion synthesis
JP2000144301A (en) Tungsten carbide sintered body and its production
JPH0350808B2 (en)
KR100424780B1 (en) Method for one step synthesis and densification of tungsten carbide hard metal
Jiang et al. Field-activated pressure-assisted combustion synthesis tungsten carbide–cobalt composites
JPH0891936A (en) Sintered material of boron nitride of cubic system
JP2000290744A (en) Sintered compact of titanium diboride ceramics, and its manufacture
JP3245698B2 (en) Method for producing oxycarbide-based sintered body

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040616

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041019

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20041026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041202

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees