JP3175170B2 - Method for producing TiC sintered body - Google Patents
Method for producing TiC sintered bodyInfo
- Publication number
- JP3175170B2 JP3175170B2 JP01352691A JP1352691A JP3175170B2 JP 3175170 B2 JP3175170 B2 JP 3175170B2 JP 01352691 A JP01352691 A JP 01352691A JP 1352691 A JP1352691 A JP 1352691A JP 3175170 B2 JP3175170 B2 JP 3175170B2
- Authority
- JP
- Japan
- Prior art keywords
- mixture
- powder
- tic
- sintering
- sintered body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Porous Artificial Stone Or Porous Ceramic Products (AREA)
- Ceramic Products (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、ファインセラミック
ス、特に耐食性、電気伝導性に優れたTiC焼結体および
その製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to fine ceramics, and more particularly to a TiC sintered body having excellent corrosion resistance and electrical conductivity, and a method for producing the same.
【0002】[0002]
【従来の技術】一般にファインセラミックスとしては酸
化物系と非酸化物系とがある。酸化物系は比較的早くか
ら開発が進められており、今日各分野で多く使用されて
いる。一方、非酸化物系は酸化物系に比べて歴史が浅
く、その開発は自動車産業、原子力、宇宙開発に伴って
進められてきたものである。この非酸化物系は窒化物、
炭化物、ホウ化物、珪化物あるいはこれらの混合物等で
あり、それぞれ特有の性質を備えているが、特に炭化物
のTiCは機械的特性の他、化学的特性や電気的特性に優
れていることから近時、注目されてきているセラミック
スである。2. Description of the Related Art In general, there are oxide-based and non-oxide-based fine ceramics. Oxide-based materials have been developed relatively early and are widely used in various fields today. On the other hand, non-oxide systems have a shorter history than oxide systems, and their development has been pursued with the automotive industry, nuclear power, and space development. This non-oxide system is nitride,
These are carbides, borides, silicides, or mixtures thereof, and each has its own properties.However, in particular, TiC of carbides is not only excellent in mechanical properties, but also because of its excellent chemical and electrical properties. At times, ceramics have been attracting attention.
【0003】ところでセラミックスを機械用として使用
する場合は、高強度を得るために焼結工程において可能
な限り理論密度近くまで緻密化する必要があるが、化学
製品や電気製品等に使用する場合は、セラミックスは大
きな表面積をもつように多孔質体である方が好ましいこ
とがある。多孔質体のTiCは耐食性、高導電性であるこ
とから高温燃料電池の電極材料としては最適である。[0003] When ceramics are used for machinery, it is necessary to densify them to as close to theoretical density as possible in the sintering process in order to obtain high strength. In some cases, it is preferable that the ceramic is porous so as to have a large surface area. Since porous TiC has corrosion resistance and high conductivity, it is most suitable as an electrode material for a high-temperature fuel cell.
【0004】セラミックス製品の製造には、原料セラミ
ックスの粉末を成形した後焼結するが、通常、この焼結
時にセラミックス粉末同士の拡散を良好にし、低温での
焼結速度を促進すべく、加圧したり、焼結助剤を用いる
ことがある。特にTiCは難焼結性であるため、焼結に際
しては加圧するか、焼結助剤を使用するかは不可欠なも
のである。加圧にはHIP 、ホットプレス等が使用されて
きた。焼結助剤としては、通常Fe、Ni、Coのような金属
粉末が添加されていた。[0004] In the production of ceramic products, the raw ceramic powder is molded and then sintered. Usually, in order to improve the diffusion of the ceramic powder during the sintering and to accelerate the sintering rate at a low temperature, a ceramic powder is added. Pressing or sintering aids may be used. In particular, since TiC is difficult to sinter, it is indispensable to apply pressure or to use a sintering aid during sintering. HIP, hot press and the like have been used for pressurization. Metal powders such as Fe, Ni, and Co were usually added as sintering aids.
【0005】[0005]
【発明が解決しようとする課題】ところが、TiC焼結体
の製造において焼結助剤を用いると、たしかに焼結その
ものは容易に行われるが、上述のような金属成分である
焼結助剤はTiC焼結体の耐食性を劣化させるばかりでな
く、空孔間に流れ込んで気孔率を低下させてしまうもの
であり、また気孔率や気孔径等の気孔の性質を原料成分
あるいは配合組成により制御するのが困難となるもので
あった。従って、例えば高温燃料電池の電極材料のよう
に多孔性、耐食性、高導電性および特定の気孔条件を要
求される材料の製造には焼結助剤の使用は好ましいもの
ではなかった。However, if a sintering aid is used in the production of a TiC sintered body, the sintering itself can be easily carried out. Not only deteriorates the corrosion resistance of the TiC sintered body, but also decreases the porosity by flowing between the pores, and the properties of the pores such as the porosity and the pore diameter are controlled by the raw material components or the composition. Was difficult. Therefore, the use of a sintering aid has not been favorable for the production of materials requiring porosity, corrosion resistance, high conductivity and specific porosity conditions, such as electrode materials for high temperature fuel cells.
【0006】本発明は、前記従来技術における問題点を
解消し、例えば高温燃料電池の電極に要求されるような
レベルの特性を十分に備えた多孔性TiC焼結体とその製
造方法を提供することを目的とするものである。The present invention solves the above-mentioned problems in the prior art and provides a porous TiC sintered body having a sufficient level of characteristics required for an electrode of a high-temperature fuel cell, for example, and a method for producing the same. The purpose is to do so.
【0007】[0007]
【課題を解決するための手段】前記目的を達成するため
に本発明者らは鋭意研究を重ねた結果、燃焼反応法に着
目し、従来炭化物、窒化物、ほう化物などの合成法とし
て利用されている燃焼反応法をTiC の焼結に利用すると
ともに、必要により圧粉成形体に予めTiC 粉末を少なく
とも一部配合しておくことにより、強度および気孔率な
どの特性の調整が可能になることを知り、本発明に至っ
た。Means for Solving the Problems In order to achieve the above object, the present inventors have conducted intensive studies, and as a result, focused on the combustion reaction method, which has been conventionally used as a method for synthesizing carbides, nitrides, borides and the like. By utilizing the combustion reaction method used for sintering TiC and, if necessary, incorporating at least part of the TiC powder in the green compact in advance, it is possible to adjust properties such as strength and porosity. And came to the present invention.
【0008】ここに、燃焼反応法とは、金属Ti粉末とカ
ーボン粉末の混合物にある一定以上のエネルギーを加え
ると反応が開始され、その反応熱により連鎖的に反応が
進行し、目的とする炭化物、窒化物、ほう化物などを熱
効率よく合成する方法である。本発明にあってはこの燃
焼反応法をTiC の焼結に利用するもので、本明細書にお
いてこれを「燃焼焼結法」と称する。[0008] Here, the combustion reaction method means that when a certain amount of energy is added to a mixture of a metal Ti powder and a carbon powder, the reaction is started, and the heat of the reaction causes the reaction to proceed in a chain, so that the desired carbide is produced. , Nitrides, borides and the like are synthesized efficiently. In the present invention, this combustion reaction method is used for sintering TiC, and is referred to as "combustion sintering method" in this specification.
【0009】本発明の要旨とするところは、金属Ti粉末
と炭素粉末との混合物を圧粉成形し、得られた圧粉成形
体の周囲にTi粉末と炭素粉末の混合物を充填し、後者の
混合物に着火することで燃焼焼結法により焼結助剤なし
で非加圧下で焼結することを特徴とする多孔性TiC 焼結
体の製造方法である。別の面からは、本発明は、少なく
とも一部TiC 粉末を配合された金属Ti粉末と炭素粉末と
の混合物を圧粉成形し、得られた圧粉成形体の周囲にTi
粉末と炭素粉末の混合物を充填し、後者の混合物に着火
することで燃焼焼結法により焼結助剤なしで非加圧下で
焼結することを特徴とする多孔性TiC 焼結体の製造方法
である。本発明のより具体的態様によれば、上記TiC 焼
結体は、燃焼反応によって生成したTiC が先に生成した
TiC あるいは最初から添加されているTiC を多孔状態に
焼結あるいは結合している。The gist of the present invention is that a mixture of a metal Ti powder and a carbon powder is compacted, a mixture of the Ti powder and the carbon powder is filled around the obtained compact, and the latter is compacted. This is a method for producing a porous TiC sintered body, characterized in that the mixture is ignited by a combustion sintering method by a combustion sintering method without sintering agent under non-pressure. From another aspect, the present invention provides a method of compacting a mixture of a metal Ti powder and a carbon powder, at least partially containing TiC powder, and forming a titanium compact around the obtained compact.
A method for producing a porous TiC sintered body, characterized in that a mixture of powder and carbon powder is filled, and the latter mixture is ignited to be sintered under non-pressure without a sintering aid by a combustion sintering method. It is. According to a more specific aspect of the present invention, in the TiC sintered body, TiC generated by a combustion reaction is generated first.
TiC or TiC added from the beginning is sintered or bonded in a porous state.
【0010】ここに、「燃焼焼結法」とは、広義には、
圧粉成形体( 成形混合物ともいう)の焼結に際して、焼
結助剤なしで非加圧下にあって前述の燃焼反応法を利用
して行われる焼結法であり、一般には圧粉成形体の焼結
に要する熱エネルギーは、その周囲に充填したTiおよび
C の粉末燃焼熱を利用すればよい。あるいは場合によっ
ては上記圧粉成形体に含まれるTiおよびC の粉末の燃焼
熱だけでよく、外部からは着火エネルギーだけを供給す
るだけでよい。Here, the “combustion sintering method” is broadly defined as
When sintering a green compact (also referred to as a molding mixture), this is a sintering method that is performed under the non-pressurized state without a sintering aid and using the combustion reaction method described above. The thermal energy required for sintering is
The heat of powder combustion of C may be used. Alternatively, in some cases, only the combustion heat of the Ti and C powders contained in the green compact may be used, and only ignition energy may be supplied from the outside.
【0011】本発明におけるかかる燃焼焼結法の具体的
態様としては、例えば次のような態様を挙げることがで
きるが、これらにのみ制限されるものではなく、同じ原
理に基づく限りいずれの態様も本発明に包含されること
はこれまでの説明からも十分に理解されよう。ただし、
いずれの場合にあっても焼結助剤は使用されず、非加圧
下で焼結が進行する。Specific examples of the combustion sintering method according to the present invention include, for example, the following embodiments, but are not limited thereto, and all embodiments are based on the same principle. The inclusion in the present invention will be fully understood from the above description. However,
In any case, no sintering aid is used, and sintering proceeds under no pressure.
【0012】 (1) Ti粉末とカーボン粉末がモル比80:20〜35:65 で混
合された混合物…A 前記混合物Aが圧縮成形された成形混合物…B 総充填量の5〜50%からなる成形混合物Bと残部混合物
Aとからなる原料を反応容器内に充填し、これらを真空
または不活性雰囲気下で加熱着火して燃焼反応を起こさ
しめることにより多孔性のTiC 焼結体を得る。 (2) Ti粉末とカーボン粉末がモル比80:20〜35:65 で混
合された混合物…A 前記混合物Aが圧縮成形された成形混合物…B 前記混合物AとTiC 粉末が重量比100:0〜60:40 で混合
された混合物…C (ただし100:0 の場合を除く) 総充填量の5〜50%からなる成形混合物Bと残部混合物
Cとからなる原料を反応容器内に充填し、これらを真空
または不活性雰囲気下で加熱着火して燃焼反応を起こさ
しめることにより多孔性のTiC 焼結体を得る。(1) A mixture in which Ti powder and carbon powder are mixed in a molar ratio of 80:20 to 35:65: A A mixture obtained by compression-molding the mixture A: B 5 to 50% of the total filling amount A raw material comprising the molding mixture B and the remaining mixture A is charged into a reaction vessel, and these are heated and ignited in a vacuum or an inert atmosphere to cause a combustion reaction, thereby obtaining a porous TiC sintered body. (2) Mixture in which Ti powder and carbon powder are mixed at a molar ratio of 80:20 to 35:65: A Molding mixture in which the mixture A is compression-molded: B The mixture A and the TiC powder are in a weight ratio of 100: 0 to Mixture mixed at 60:40 ... C (excluding the case of 100: 0) The raw material consisting of the molding mixture B consisting of 5 to 50% of the total filling amount and the remaining mixture C is filled in a reaction vessel, Is heated and ignited in a vacuum or an inert atmosphere to cause a combustion reaction to obtain a porous TiC sintered body.
【0013】 (3) Ti粉末とカーボン粉末がモル比80:20〜35:65 で混
合された混合物…A 前記混合物AとTiC 粉末が重量比100:0 〜5:95で混合さ
れていて、しかも圧縮成形された成形混合物…B (ただ
し100:0 の場合を除く) 総充填量の5〜50%からなる成形混合物Bと残部混合物
Aとからなる原料を反応容器内に充填し、これらを真空
または不活性雰囲気下で加熱着火して燃焼反応を起こさ
しめることにより多孔性のTiC 焼結体を得る。 (4) Ti粉末とカーボン粉末がモル比80:20〜35:65 で混
合された混合物…A 前記混合物AとTiC 粉末が重量比100:0 〜5:95で混合さ
れていて、しかも圧縮成形された成形混合物…B (ただ
し100:0 の場合を除く) 前記混合物AとTiC 粉末が重量比100:0〜60:40 で混合
された混合物…C (ただし100:0 の場合を除く) 総充填量の5〜50%からなる成形混合物Bと残部混合物
Cとからなる原料を反応容器内に充填し、これらを真空
または不活性雰囲気下で加熱着火して燃焼反応を起こさ
しめることにより多孔性のTiC 焼結体を得る。(3) A mixture of Ti powder and carbon powder in a molar ratio of 80:20 to 35:65: A The mixture A and the TiC powder are mixed in a weight ratio of 100: 0 to 5:95, In addition, a compression-molded molding mixture B (except for the case of 100: 0) A raw material composed of a molding mixture B consisting of 5 to 50% of the total filling amount and the remaining mixture A is filled in a reaction vessel, and these are mixed. A porous TiC sintered body is obtained by heating and igniting in a vacuum or an inert atmosphere to cause a combustion reaction. (4) A mixture in which Ti powder and carbon powder are mixed at a molar ratio of 80:20 to 35:65: A The mixture A and the TiC powder are mixed at a weight ratio of 100: 0 to 5:95, and are compression-molded. Molded mixture: B (except for 100: 0) Mixture of the mixture A and TiC powder in a weight ratio of 100: 0 to 60:40: C (except for 100: 0) A raw material comprising a molding mixture B comprising 5 to 50% of the filling amount and a residual mixture C is filled in a reaction vessel, and these are heated and ignited in a vacuum or an inert atmosphere to cause a combustion reaction, whereby the porosity is increased. To obtain a TiC sintered body.
【0014】[0014]
【作用】次に、本発明のTiC焼結体およびその製造方法
について説明する。Next, a TiC sintered body of the present invention and a method for producing the same will be described.
【0015】図1は本発明の製造方法の概略説明図であ
る。図示例では圧粉成形体に含まれるTi+カーボン粉末
以外に、この圧粉成形体の周囲にTi+カーボン粉末の混
合物を充填しており、この混合物の燃焼熱も圧粉成形体
の焼結に利用される。図中、反応容器である多孔質カー
ボン製の坩堝1内には圧粉成形体である成形混合体Bが
配置され、その周囲にはTi+カーボン粉末の混合物であ
る混合物Cが充填されている。混合物Cに着火すること
で圧粉成形体の燃焼焼結が瞬間的に行われるが、図示例
にあっては充填層の頂部にさらに混合物Cをペレット状
に成形してから載置しており、これにカーボンヒータ2
によって着火する。FIG. 1 is a schematic explanatory view of the manufacturing method of the present invention. In the illustrated example, in addition to the Ti + carbon powder contained in the green compact, a mixture of the Ti + carbon powder is filled around the green compact, and the combustion heat of this mixture is also used for sintering the green compact. Is done. In the figure, a molded mixture B, which is a green compact, is placed in a porous carbon crucible 1, which is a reaction vessel, and the periphery thereof is filled with a mixture C, which is a mixture of Ti + carbon powder. By igniting the mixture C, the green compact is fired and sintered instantaneously. In the illustrated example, the mixture C is further formed into a pellet at the top of the packed bed and then placed. And carbon heater 2
Ignite by.
【0016】本発明は、難焼結性原料の焼結に通常使用
される焼結助剤を使用しない点に特徴を有する。また、
先に述べた燃焼反応法に一部みれらる加圧下で反応させ
ることにより反応生成物 (ほう化物、窒化物等) をその
まま焼結させる方法とはその目的においても異なる。The present invention is characterized in that a sintering aid usually used for sintering a hardly sinterable raw material is not used. Also,
The method differs from the above-mentioned method of sintering reaction products (borides, nitrides, etc.) as they are by reacting them under pressure, which is partially observed in the combustion reaction method.
【0017】すなわち、本発明では、難焼結性物質 (原
料) に、該物質の構成元素を添加して反応させることに
より、原料自体を結合させる自己反応焼結法を利用した
ものである。したがって、本発明では外部からエネルギ
ー (熱) を加え続ける必要なくTiCの焼結体が得られ
る。That is, in the present invention, a self-reaction sintering method is used, in which the constituent elements of a hardly sinterable substance (raw material) are added and reacted to combine the raw materials themselves. Therefore, in the present invention, a sintered body of TiC can be obtained without having to continuously apply energy (heat) from the outside.
【0018】Ti粉末とカーボン粉末の混合物は反応が進
行すると、その反応熱が高くなるため、まず、金属Tiが
溶融し、原料粉同士を引き寄せると同時に溶融Ti中へC
が溶け込み、TiC が生成し、このTiC が先に生成したTi
C あるいは最初から添加してあったTiC を結合し、焼結
する。すなわち、金属Tiは一般に用いられる焼結助剤的
役割を果たすものと考えられる。また、得られた焼結体
は原料のまわりの隙間を、反応で生成したTiCが埋めた
ような形状となっている。このようにして得られる多孔
性焼結体は、低温で液相を生ずるような焼結助剤を含ま
ないので、原料の特性を100 %活用できる利点がある。As the reaction of the mixture of the Ti powder and the carbon powder proceeds, the heat of reaction increases. First, the metal Ti is melted, the raw material powders are attracted to each other, and at the same time, the C is introduced into the molten Ti.
Melts into TiC, and this TiC
C or TiC added from the beginning is combined and sintered. That is, it is considered that metal Ti plays a role as a commonly used sintering aid. Further, the obtained sintered body has such a shape that the gap around the raw material is filled with TiC generated by the reaction. Since the porous sintered body thus obtained does not contain a sintering aid that generates a liquid phase at a low temperature, there is an advantage that the characteristics of the raw material can be utilized 100%.
【0019】本発明の好適態様によれば、前述の混合物
Bと混合物Cの中のTiC粉末の量を変えることにより、
TiC焼結体の特性を容易に変えることができる。得られ
る焼結体の特性は、その原料の配合に依存する。金属Ti
粉とカーボン粉末の混合物はその反応が急激であり、発
熱により膨脹する傾向が極めて大である。それ故、圧粉
成形体内のTiC粉末の配合割合を多くするほど、得られ
る焼結体の密度強度の高いものが得られるが、圧粉成形
体においてTiC 粉末が重量比で95を超える場合、また原
料混合物においては重量比で40を超える場合は、金属Ti
粉末およびカーボン粉末量が少なくなり、焼結が可能な
程度に十分に反応熱が発生しないおそれがある。反応熱
による焼結を充分行うためには、好ましくは反応容器内
の充填物の50重量%以上は上記混合物Cであり、95%を
超えれば経済的でない。According to a preferred embodiment of the present invention, by changing the amount of the TiC powder in the mixture B and the mixture C,
The characteristics of the TiC sintered body can be easily changed. The characteristics of the obtained sintered body depend on the composition of the raw material. Metal Ti
The reaction of the mixture of the powder and the carbon powder is rapid, and the tendency of the mixture to expand due to heat generation is extremely large. Therefore, the higher the mixing ratio of the TiC powder in the green compact, the higher the density of the resulting sintered body is obtained.However, when the weight ratio of the TiC powder in the green compact exceeds 95, If the weight ratio of the raw material mixture exceeds 40, the metal Ti
The amounts of the powder and the carbon powder are reduced, and there is a possibility that reaction heat is not generated sufficiently to enable sintering. In order to sufficiently perform sintering by reaction heat, the mixture C preferably accounts for 50% by weight or more of the filling in the reaction vessel, and if it exceeds 95%, it is not economical.
【0020】[0020]
【実施例】表1に示す各組成割合で、多孔質カーボン坩
堝1内に油圧プレスで圧縮成形した所定量、形状の圧粉
成形体Bと所定量の混合物CあるいはAを充填し、この
上にペレット状にした混合物CあるいはAを載置する。
そして、これらを真空または不活性雰囲気 (Ar、He、真
空等) 中でペレット状混合物CあるいはAにカーボンヒ
ーター2で着火し、反応容器である坩堝内でTi粉末を燃
焼反応させることにより2500℃以上の高温を得て圧粉成
形体Bを焼結し、TiCの焼結体を得る。得られたTiC 焼
結体の各特性を測定した。結果は同じく表1に示す。同
表中、従来例とあるのは、TiC 粉末を焼結剤としてFe粉
末を使用して焼結した場合である。EXAMPLE A porous carbon crucible 1 was filled with a predetermined amount and shape of a green compact B and a predetermined amount of a mixture C or A, which were compression-molded with a hydraulic press, at the respective composition ratios shown in Table 1. The mixture C or A in the form of a pellet is placed on the plate.
Then, these are ignited in a vacuum or an inert atmosphere (Ar, He, vacuum, etc.) to the pellet mixture C or A by the carbon heater 2 and the Ti powder is burned and reacted in a crucible as a reaction vessel at 2500 ° C. By obtaining the above high temperature, the green compact B is sintered to obtain a TiC sintered body. Each characteristic of the obtained TiC sintered body was measured. The results are also shown in Table 1. In the table, the conventional example is a case in which TiC powder is sintered using Fe powder as a sintering agent.
【0021】次に、混合物AとしてTi: カーボン粉末の
モル比が1:1 の混合物を使用し、一方これにTiC 粉末が
ゼロないし80重量%となるように配合して得た圧粉成形
体を上述と同様の操作を繰り返して燃焼焼結を行い、Ti
C 焼結体を製造した。得られた焼結体について曲げ強
度、かさ密度、見掛け密度、ならびに気孔率および気孔
容積をそれぞれ測定した。これらの結果を表2、図2お
よび図3にまとめて示す。ただし、図2および図3にお
いてTiC 配合量はモル%で示す。Next, as the mixture A, a mixture having a molar ratio of Ti: carbon powder of 1: 1 was used, and a green compact was obtained by mixing the mixture with the TiC powder in an amount of 0 to 80% by weight. The same operation as above was repeated to perform combustion sintering,
C A sintered body was manufactured. The bending strength, bulk density, apparent density, porosity, and pore volume of the obtained sintered body were measured. These results are summarized in Table 2, FIG. 2 and FIG. However, in FIGS. 2 and 3, the amount of TiC is shown in mol%.
【0022】[0022]
【表1】 [Table 1]
【0023】[0023]
【表2】 添加TiC 量( 重量%) 曲げ強度(MPa) 0 70 30 85 60 100 80 125 これらの結果からも分かるように、圧粉成形体へのTiC
粉末配合率ゼロの場合にあってもそれなりのTiC 焼結体
が得られることが分かるが、TiC 配合量を増加するに伴
って、曲げ強度は改善され、かさ密度および見掛け密度
もわずかに増加傾向が見られる。[Table 2] Amount of TiC added (% by weight) Flexural strength (MPa) 0 70 30 85 60 100 80 125 As can be seen from these results, TiC in the green compact was
It can be seen that a reasonable TiC sintered body can be obtained even when the powder blending ratio is zero, but as the TiC blending amount increases, the bending strength improves, and the bulk density and apparent density tend to increase slightly. Can be seen.
【0024】[0024]
【発明の効果】本発明のTiC焼結体は焼結剤が含まれて
いないため、気孔率が大きく、しかも耐食性、電気伝導
性にも優れており、高温燃料電池材料あるいはフィルタ
などに適している。また、本発明のTiC焼結体の製造方
法は、外部からのエネルギーを多量に加えることなく高
温度を得ることができるため燃料が節約できるばかりで
なく、難焼結性のTiCでも焼結助剤なしに強固な焼結が
できるとともに、多孔質の焼結体が得られるという従来
にない優れた効果を有しており、産業上極めて有用であ
る。Since the TiC sintered body of the present invention does not contain a sintering agent, it has a high porosity, is excellent in corrosion resistance and electric conductivity, and is suitable for a high temperature fuel cell material or a filter. I have. Further, the method for producing a TiC sintered body of the present invention can obtain a high temperature without applying a large amount of external energy, so that not only fuel can be saved, but also sintering of hardly sinterable TiC can be achieved. Strong sintering can be performed without an agent, and a porous sintered body can be obtained, which has an unprecedented excellent effect, and is extremely useful in industry.
【図1】本発明のTiC焼結体の製造方法を説明する図で
ある。FIG. 1 is a diagram illustrating a method for producing a TiC sintered body of the present invention.
【図2】本発明の実施例の結果をまとめて示すグラフで
ある。FIG. 2 is a graph collectively showing the results of Examples of the present invention.
【図3】本発明の実施例の結果をまとめて示すグラフで
ある。FIG. 3 is a graph collectively showing the results of the examples of the present invention.
1: 坩堝 2 : カーボンヒータ B: 成形混合物 (圧粉成形体) C(A): 混合物 1: crucible 2: carbon heater B: molding mixture (compacted green body) C (A): mixture
───────────────────────────────────────────────────── フロントページの続き (72)発明者 大柳 満之 滋賀県大津市瀬田大江町横谷1−5龍谷 大学内 (72)発明者 佐久間 健 栃木県真岡市松山町1番地千住金属工業 株式会社栃木事業所内 (56)参考文献 特開 昭63−190778(JP,A) 特開 昭63−277578(JP,A) 特開 昭60−246271(JP,A) (58)調査した分野(Int.Cl.7,DB名) C04B 35/56,35/64,38/00 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Mitsuyuki Oyanagi 1-5 Yokoya, Seta-Oe-cho, Otsu, Shiga Prefecture Inside Ryukoku University (72) Inventor Takeshi Ken Sakuma 1 Matsuyama-cho, Moka-shi, Tochigi Sensen Metal Industry Co., Ltd. In-house (56) References JP-A-63-190778 (JP, A) JP-A-63-277578 (JP, A) JP-A-60-246271 (JP, A) (58) Fields investigated (Int. 7 , DB name) C04B 35 / 56,35 / 64,38 / 00
Claims (2)
成形し、得られた圧粉成形体の周囲にTi粉末と炭素粉末
の混合物を充填し、後者の混合物に着火することで燃焼
焼結法により焼結助剤なしで非加圧下で焼結することを
特徴とする多孔性TiC 焼結体の製造方法。1. A mixture of a metal Ti powder and a carbon powder is compacted, a mixture of the Ti powder and the carbon powder is filled around the obtained compact, and the latter mixture is ignited for combustion. A method for producing a porous TiC sintered body, characterized by sintering under no pressure by a sintering method without a sintering aid.
属Ti粉末と炭素粉末との混合物を圧粉成形し、得られた
圧粉成形体の周囲にTi粉末と炭素粉末の混合物を充填
し、後者の混合物に着火することで燃焼焼結法により焼
結助剤なしで非加圧下で焼結することを特徴とする多孔
性TiC 焼結体の製造方法。2. A compact of a mixture of a metal Ti powder and a carbon powder blended with at least a part of a TiC powder is compacted, and a mixture of the Ti powder and the carbon powder is filled around the obtained compact. A method for producing a porous TiC sintered body, characterized in that the latter mixture is ignited by a combustion sintering method without sintering by igniting the mixture under non-pressure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP01352691A JP3175170B2 (en) | 1990-02-06 | 1991-02-04 | Method for producing TiC sintered body |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2-25169 | 1990-02-06 | ||
JP2516990 | 1990-02-06 | ||
JP01352691A JP3175170B2 (en) | 1990-02-06 | 1991-02-04 | Method for producing TiC sintered body |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04214076A JPH04214076A (en) | 1992-08-05 |
JP3175170B2 true JP3175170B2 (en) | 2001-06-11 |
Family
ID=26349343
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP01352691A Expired - Lifetime JP3175170B2 (en) | 1990-02-06 | 1991-02-04 | Method for producing TiC sintered body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3175170B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20080057545A (en) * | 2006-12-20 | 2008-06-25 | 재단법인 포항산업과학연구원 | Method of manufacturing titanium composites |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006001829A (en) * | 2004-05-20 | 2006-01-05 | Japan Science & Technology Agency | Titanium carbide sintered compact or titanium silicon carbide sintered compact, its manufacturing method, its processing method or coating method and substrate for the same |
JP5308296B2 (en) * | 2009-09-28 | 2013-10-09 | 独立行政法人産業技術総合研究所 | Method for producing titanium silicon carbide ceramics |
JP5356991B2 (en) * | 2009-09-28 | 2013-12-04 | 独立行政法人産業技術総合研究所 | Method for producing titanium silicon carbide ceramics |
CN116730740B (en) * | 2023-06-25 | 2023-12-22 | 兰州理工大学 | Preparation method of high-strength TiC-based porous ceramic |
-
1991
- 1991-02-04 JP JP01352691A patent/JP3175170B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20080057545A (en) * | 2006-12-20 | 2008-06-25 | 재단법인 포항산업과학연구원 | Method of manufacturing titanium composites |
Also Published As
Publication number | Publication date |
---|---|
JPH04214076A (en) | 1992-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5942455A (en) | Synthesis of 312 phases and composites thereof | |
US4105455A (en) | Method of producing dense sintered silicon carbide body from polycarbosilanes | |
US5149677A (en) | Exothermic process for the production of molybdenum silicide composites | |
WO1997018162A9 (en) | Synthesis of 312 phases and composites thereof | |
US5139720A (en) | Method of producing sintered ceramic material | |
RU2310548C1 (en) | Method for producing porous materials on base of titanium nickelide | |
GB2048953A (en) | Sintering silicon carbide in boron containing atmosphere | |
JP3175170B2 (en) | Method for producing TiC sintered body | |
JPH0379306B2 (en) | ||
JP5308296B2 (en) | Method for producing titanium silicon carbide ceramics | |
JP4362582B2 (en) | Method for producing sintered metal ceramic titanium silicon carbide | |
JPH0232003B2 (en) | ||
JPS5919903B2 (en) | Hot press manufacturing method of SiC sintered body | |
JP2732290B2 (en) | Manufacturing method of aluminum nitride based sintered body | |
CN101186507B (en) | Method for synthesizing beta cellulose in aluminum-carbon refractory material | |
US3296021A (en) | Heat-resistant and oxidationproof materials | |
JPS605550B2 (en) | Manufacturing method of silicon carbide sintered body | |
JP3626378B2 (en) | TiB2-Ti (CN) -based composite and production method thereof | |
JP2008069052A (en) | Functionally gradient material and method of manufacturing the same | |
JPH0253388B2 (en) | ||
Xue et al. | Initiation of Self‐Propagating Combustion Waves in Dense Mo+ 2Si Reactants through Field‐Activation | |
JPH0350808B2 (en) | ||
JP2600564B2 (en) | Non-oxide surface high density sintered body and its manufacturing method | |
JPS60112606A (en) | Preparation of modified metal oxide | |
JPS6127352B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20010306 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090406 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100406 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100406 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110406 Year of fee payment: 10 |
|
EXPY | Cancellation because of completion of term |