JPH08176695A - Production of titanium nitride sinter - Google Patents

Production of titanium nitride sinter

Info

Publication number
JPH08176695A
JPH08176695A JP7249998A JP24999895A JPH08176695A JP H08176695 A JPH08176695 A JP H08176695A JP 7249998 A JP7249998 A JP 7249998A JP 24999895 A JP24999895 A JP 24999895A JP H08176695 A JPH08176695 A JP H08176695A
Authority
JP
Japan
Prior art keywords
titanium nitride
sintering
tin
sintered body
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7249998A
Other languages
Japanese (ja)
Inventor
Jong Ku Park
鍾 九 朴
Sung Tae Park
勝 泰 朴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Korea Advanced Institute of Science and Technology KAIST
Original Assignee
Korea Advanced Institute of Science and Technology KAIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Korea Advanced Institute of Science and Technology KAIST filed Critical Korea Advanced Institute of Science and Technology KAIST
Publication of JPH08176695A publication Critical patent/JPH08176695A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58007Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides
    • C04B35/58014Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides based on titanium nitrides, e.g. TiAlON
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/405Iron group metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To prepare a completely densified sintered titanium nitride having substantially no residual pores and no second phases by sintering a compact of raw powders which has been obtained by adding a specific amount of Mo2C and C as well as a particular metal carbide to a Ti-Ni system.
SOLUTION: The objective sintered titanium nitride is prepared by first providing granulated powders of the composition; TiN-pMo2C-qC-rNi-sMeC ((p) is 5-20 wt.%, (q) is 0-1.5 wt.%, (r) is 15-30 wt.%, (s) is 0-5 wt.%, but (q) and (s) are not simultaneously 0%, Me represents at least one of V, W, Ta and Nb), compacting the granulated powders and sintering the powder compact. By this method, the wettability of the liquid phase of the added Ni is markedly improved, and thermal decomposition of TiN is inhibited, thereby the objective sintered body can be obtained. For example, the raw powders are provided by adding Mo2C and C to a mixture having the fundamental composition of 80%TiN-20Ni which has been obtained by using TiN, TiN0.85, Mo2C and Ni powders, each having an average particle size of 2-4 μm and a purity of ≥99.9%, mixing them and pulverizing the mixed powder by a wet-process.
COPYRIGHT: (C)1996,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、窒化チタン焼結体
の製造方法に関する。更に詳しくは、窒化チタン粉末の
粒子表面に対するニッケル液相の湿潤性を顕著に改善し
て熱分解を防止することを特徴とする、窒化チタン焼結
体の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a titanium nitride sintered body. More specifically, the present invention relates to a method for producing a titanium nitride sintered body, which is characterized in that the wettability of the nickel liquid phase on the particle surface of the titanium nitride powder is remarkably improved to prevent thermal decomposition.

【0002】[0002]

【従来の技術】一般的に、窒化チタン材料は、硬度が高
く、耐熱性がよく、黄金色の光沢を有している。窒化チ
タンが主に用いられる分野は、装飾用材料分野あるいは
耐摩耗材料分野である。窒化チタン自体は、装飾用材料
が備えるべき特性、及び耐摩耗材料が有しなければなら
ない特性を十分に有しているが、製造方法上の問題があ
るため、他の材料上に被覆(コーチング)を行い、窒化
チタンの物性を利用している実情である。窒化チタンは
融点が2950℃であるため、一般的な材料加工法では
製造が不可能である。殆ど唯一に選択できる製造方法
は、窒化チタン粉末を製造した後、焼結体を造る方法で
ある。
2. Description of the Related Art Generally, titanium nitride materials have high hardness, good heat resistance, and golden luster. The fields in which titanium nitride is mainly used are in the fields of decorative materials and wear resistant materials. Titanium nitride itself has a sufficient property that the decorative material should have, and the property that the wear-resistant material must have, but there is a problem in the manufacturing method, so that it is coated (coated) on another material. ) Is performed and the physical properties of titanium nitride are utilized. Since titanium nitride has a melting point of 2950 ° C., it cannot be manufactured by a general material processing method. The manufacturing method which can be selected almost exclusively is a method of manufacturing a titanium nitride powder and then producing a sintered body.

【0003】しかし、窒化チタンの融点が非常に高いた
め、窒化チタン粉末の緻密化に必要な温度もやはり非常
に高い。しかし、窒化チタンは、一般的な窒化物と同様
に高温で焼結させると熱分解する問題点がある。従っ
て、焼結温度を低くすることができる焼結方法を探し出
すのが、窒化チタン製造の鍵である。窒化チタン粉末を
比較的低い温度で焼結するためには、焼結速度を速くす
ることができる焼結助剤を添加しなくてはならないが、
今まで、窒化チタン粉末の焼結に関する研究報告は多く
ない。
However, since the melting point of titanium nitride is very high, the temperature required for densifying the titanium nitride powder is also very high. However, titanium nitride has a problem that it is thermally decomposed when it is sintered at a high temperature like general nitrides. Therefore, finding a sintering method capable of lowering the sintering temperature is the key to manufacturing titanium nitride. In order to sinter the titanium nitride powder at a relatively low temperature, it is necessary to add a sintering aid capable of increasing the sintering rate,
To date, there have been few research reports on the sintering of titanium nitride powder.

【0004】焼結助剤としてニッケル粉末を添加し、液
相が現われる1353℃(1626K)以上の温度で焼
結することにより(液相焼結法)、93%以上の焼結密
度を得る方法〔H. Mitani, H. Nagai and M. Fukuhara,
「日本金属学会誌」 42, 582(1978); M. Fukuhara and
H. Mitani,「日本金属学会誌」 43, 169(1979); M. Fuk
uhara and H. Mitani, Trans. JIM, 21, 210(1980); M.
Fukuhara and H. Mitani,「粉体及び粉末治金」 226,
143(1979) 〕が報告されている。
A method of obtaining a sintered density of 93% or more by adding nickel powder as a sintering aid and sintering at a temperature of 1353 ° C. (1626K) or higher at which a liquid phase appears (liquid phase sintering method). 〔H. Mitani, H. Nagai and M. Fukuhara,
"Journal of the Japan Institute of Metals" 42, 582 (1978); M. Fukuhara and
H. Mitani, "The Japan Institute of Metals" 43, 169 (1979); M. Fuk
uhara and H. Mitani, Trans. JIM, 21, 210 (1980); M.
Fukuhara and H. Mitani, "Powder and Powder Metallurgy" 226,
143 (1979)] has been reported.

【0005】[0005]

【発明が解決しようとする課題】しかし、かかる製造方
法の短所は、窒化チタンの焼結の際に窒化チタンの熱分
解を防ぐことができず、熱分解により生じる窒素ガスに
よって気孔が形成されるので、完全に緻密化された焼結
体の製造は不可であった。本発明は、従来の方法では解
決できなかった窒化チタンの焼結時の熱分解の問題を解
決し、完全に緻密化された焼結体を製造する方法を提供
することを目的とする。
However, the disadvantage of such a manufacturing method is that the thermal decomposition of titanium nitride cannot be prevented during the sintering of titanium nitride, and pores are formed by the nitrogen gas generated by the thermal decomposition. Therefore, it was impossible to manufacture a completely densified sintered body. An object of the present invention is to solve the problem of thermal decomposition during sintering of titanium nitride, which could not be solved by the conventional method, and to provide a method for producing a completely densified sintered body.

【0006】[0006]

【課題を解決するための手段】本発明者らは、かかる製
造方法の短所を解決するために研究を重ねた結果、窒化
チタン焼結時に残留気孔が残る原因は、添加したニッケ
ルの液相が焼結温度で窒化チタンの粒子を完全に覆わな
かったためであり、ニッケル液相の湿潤性を顕著に改善
することにより、窒化チタンの熱分解を防止することが
できることを発見し、本発明を完成するに至った。本発
明は、残留気孔のない完全緻密な窒化チタン焼結体の製
造方法に関するものであり、以下に詳細に説明する。本
発明は、 (a)下記組成 TiN−pMo2 C−qC−rNi−sMeC (式中、pは5〜20重量%、qは0〜1.5重量%、
rは15〜30重量%及びsは0〜5重量%であり、但
しqとsは同時に0重量%ではない。MeCはVC、W
C、TaC及びNbCから選択される1種又は2種以上
の炭化物である)を有する造粒粉末を提供する工程; (b)前記造粒粉末を加圧成形する工程、及び (c)粉末成形体を焼結する工程からなる、残留気孔が
ないTiN固溶体の固状粒子とNi固溶体マトリックス
のみで構成された焼結体の製造方法である。
As a result of repeated studies to solve the disadvantages of the manufacturing method, the present inventors have found that the cause of residual pores during titanium nitride sintering is that the liquid phase of the added nickel is This is because the particles of titanium nitride were not completely covered at the sintering temperature, and it was discovered that thermal decomposition of titanium nitride can be prevented by significantly improving the wettability of the nickel liquid phase, and the present invention was completed. Came to do. The present invention relates to a method for producing a completely dense titanium nitride sintered body having no residual pores, which will be described in detail below. The present invention, (a) the following composition TiN-pMo 2 C-qC- rNi-sMeC ( wherein, p is 5-20 wt%, q is 0 to 1.5 wt%,
r is 15 to 30% by weight and s is 0 to 5% by weight, provided that q and s are not 0% by weight at the same time. MeC is VC, W
Providing a granulated powder having one or more kinds of carbides selected from C, TaC and NbC); (b) pressing the granulated powder; and (c) powder molding. It is a method for producing a sintered body, which comprises a step of sintering a body and is composed only of solid particles of TiN solid solution having no residual pores and a Ni solid solution matrix.

【0007】[0007]

【発明の実施の形態】本発明の方法により得た窒化チタ
ン焼結体は、残留気孔がなく、第二相が現われなく、T
iN固溶体の固状粒子とNi固溶体マトリックスのみで
構成される。以下、本発明の窒化チタン焼結体の製造方
法について詳細に説明する。窒化チタン−ニッケル(T
iN−Ni)系に、所定量の炭化モリブデン(Mo2
C)及び炭素(C)を同時に添加して混合する。混合し
た粉末を湿式法で粉砕し、粉砕した粉末を乾燥した後、
所定のメッシュの篩を用いて造粒化する。所望の粒度の
粉末に成形した後、真空下又は窒素雰囲気下で焼結す
る。焼結は通常の方法、焼結温度を液相が形成される温
度(1353℃)以上にする液相焼結法により行うこと
ができる。
BEST MODE FOR CARRYING OUT THE INVENTION The titanium nitride sintered body obtained by the method of the present invention has no residual pores, no second phase appears, and T
It is composed only of solid particles of iN solid solution and Ni solid solution matrix. Hereinafter, the method for producing the titanium nitride sintered body of the present invention will be described in detail. Titanium nitride-nickel (T
A predetermined amount of molybdenum carbide (Mo 2
C) and carbon (C) are added simultaneously and mixed. After grinding the mixed powder by a wet method and drying the ground powder,
Granulate using a sieve with a given mesh. After being formed into a powder having a desired particle size, it is sintered under vacuum or under a nitrogen atmosphere. Sintering can be carried out by an ordinary method or a liquid phase sintering method in which the sintering temperature is set to a temperature at which a liquid phase is formed (1353 ° C.) or higher.

【0008】また、本発明による窒化チタン焼結体の製
造において、VC、WC、TaC及びNbCの中から1
種又は2種以上を5重量%以下の量で添加すれば、焼結
体の結晶粒の平均粒径を微細化させることができる。こ
のとき、焼結体の結晶粒の平均粒径は5μm 以下であ
り、これは、このような炭化物を添加しない場合の焼結
体の結晶粒の平均粒径が約10μm であることに照らし
て見ると、顕著に微細化されたものである。本発明によ
る窒化チタン焼結体の製造方法によれば、従来の方法で
は得ることができなかった完全に緻密化された窒化チタ
ン焼結体の製造が可能である。
In the production of the titanium nitride sintered body according to the present invention, one of VC, WC, TaC and NbC is selected.
If the seeds or two or more species are added in an amount of 5% by weight or less, the average grain size of the crystal grains of the sintered body can be made fine. At this time, the average grain size of the crystal grains of the sintered body was 5 μm or less. This means that the average grain size of the crystal grains of the sintered body when such a carbide was not added was about 10 μm. Looking at it, it is remarkably miniaturized. According to the method for producing a titanium nitride sintered body according to the present invention, it is possible to produce a completely densified titanium nitride sintered body which could not be obtained by the conventional method.

【0009】[0009]

【実施例】以下、本発明を次の実施例により具体的に説
明する。しかし、下記の実施例は例示の目的として提供
するものであり、本発明の範囲を制限するものではな
い。
The present invention will be described in detail below with reference to the following examples. However, the following examples are provided for purposes of illustration and are not intended to limit the scope of the invention.

【0010】実施例1 純度99.9%以上のTiN、TiN0.85、Mo2 C及
びNi粉末を使用した。これらの平均粒径は2〜4μm
であった。80%TiN−20Niを基本の組成とし、
ここに炭化モリブデン(Mo2 C)と炭素を添加した。
混合した粉末にアセトンを添加して、湿式法で72時間
ボールミル粉砕を行った。粉砕した粉末は真空乾燥オー
ブンで乾燥した後、120メッシュの篩を用いて造粒化
した。造粒化した粉末1.5gを、分割型金型を利用し
て約10MPa の圧力で成形した。粉末成形体は黒鉛発熱
体を使用する真空炉で10Pa以下の真空度を維持しなが
ら焼結を行った。得た焼結体に対して、焼結密度、液相
流出の可否、結晶粒の平均粒径等を調査した。その結果
を下記表1に要約した。試片番号#1〜#8ではTiN
固溶体以外の第二相が形成された。追加添加した炭素の
量が0.3%未満であるときには、液相のみが試片表面
に流出した。
Example 1 TiN, TiN 0.85 , Mo 2 C and Ni powders having a purity of 99.9% or more were used. The average particle size of these is 2-4 μm
Met. 80% TiN-20Ni as a basic composition,
Molybdenum carbide (Mo 2 C) and carbon were added here.
Acetone was added to the mixed powder, and ball milling was performed for 72 hours by a wet method. The ground powder was dried in a vacuum drying oven and then granulated using a 120 mesh screen. 1.5 g of the granulated powder was molded at a pressure of about 10 MPa using a split mold. The powder compact was sintered in a vacuum furnace using a graphite heating element while maintaining a vacuum degree of 10 Pa or less. For the obtained sintered body, the sintering density, the possibility of liquid phase outflow, the average grain size of crystal grains, and the like were investigated. The results are summarized in Table 1 below. TiN for sample numbers # 1 to # 8
A second phase other than solid solution was formed. When the amount of carbon added additionally was less than 0.3%, only the liquid phase flowed out to the surface of the specimen.

【0011】[0011]

【表1】 [Table 1]

【0012】実施例2 実施例1と同様な組成の粉末を、同温度で同時間焼結し
た。但し、先ず焼結により内部が10Pa以下の真空度を
有した後、700℃まで加熱し、この温度で高純度窒素
を吹き入れて、200Pa以下の圧力を維持しながら14
50℃まで加熱した後、焼結した。焼結後、液相の流出
状態及び焼結密度は実施例1の結果と同一であった。
Example 2 A powder having the same composition as in Example 1 was sintered at the same temperature for the same time. However, after the inside has a vacuum degree of 10 Pa or less by sintering, it is heated to 700 ° C., high-purity nitrogen is blown at this temperature, and the pressure of 200 Pa or less is maintained.
After heating to 50 ° C., it was sintered. After sintering, the outflow state of the liquid phase and the sintered density were the same as the results of Example 1.

【0013】実施例3 下記の表2に示す組成比率で粉末を混合し、示した焼結
条件を適用したことを除いては、実施例1と同一な方法
で焼結体を製造した。各焼結体に対して、焼結密度、液
晶流出の可否、結晶粒の平均粒径を測定した。その結果
を下記の表2に表わした。
Example 3 A sintered body was manufactured in the same manner as in Example 1, except that the powders were mixed in the composition ratios shown in Table 2 below and the sintering conditions shown in the table were applied. For each sintered body, the sintered density, the possibility of liquid crystal outflow, and the average grain size of crystal grains were measured. The results are shown in Table 2 below.

【0014】[0014]

【表2】 [Table 2]

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 (a)下記組成 TiN−pMo2 C−qC−rNi−sMeC (式中、pは5〜20重量%、qは0〜1.5重量%、
rは15〜30重量%及びsは0〜5重量%であり、た
だしqとsは同時に0重量%ではない。MeCはVC、
WC、TaC及びNbCから選択される1種又は2種以
上の炭化物である)を有する造粒粉末を提供する工程; (b)前記造粒粉末を加圧成形する工程、及び (c)粉末成形体を焼結する工程からなる、残留気孔が
ないTiN固溶体の固状粒子とNi固溶体マトリックス
のみで構成された焼結体の製造方法。
1. A (a) the following composition TiN-pMo 2 C-qC- rNi-sMeC ( wherein, p is 5-20 wt%, q is 0 to 1.5 wt%,
r is 15 to 30% by weight and s is 0 to 5% by weight, provided that q and s are not 0% by weight at the same time. MeC is VC,
Providing a granulated powder having one or more kinds of carbides selected from WC, TaC and NbC); (b) pressing the granulated powder; and (c) powder molding. A method for producing a sintered body, which comprises only solid particles of TiN solid solution having no residual pores and a Ni solid solution matrix, which comprises a step of sintering the body.
【請求項2】 sが0より大きく、結晶粒の平均粒径が
5μm 未満である、微細焼結組織の焼結体を得る、請求
項1記載の方法。
2. The method according to claim 1, wherein a sintered body having a fine sintered structure in which s is larger than 0 and the average grain size of crystal grains is less than 5 μm is obtained.
【請求項3】 工程(c)の焼結が、液相が形成される
1353℃以上の温度で行われる、請求項1又は2記載
の方法。
3. The method according to claim 1, wherein the sintering in step (c) is performed at a temperature of 1353 ° C. or higher at which a liquid phase is formed.
【請求項4】 工程(c)の焼結が、真空下又は200
Pa以下の窒素分圧下で行われる、請求項3記載の方法。
4. The sintering in step (c) is under vacuum or 200.
The method according to claim 3, which is carried out under a partial pressure of nitrogen equal to or lower than Pa.
JP7249998A 1994-09-29 1995-09-28 Production of titanium nitride sinter Pending JPH08176695A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR19940024725 1994-09-29
KR1019950031529A KR0140409B1 (en) 1994-09-29 1995-09-23 Process for preparing sintered titanium nitride
KR31529/1995 1995-09-23
KR24725/1994 1995-09-23

Publications (1)

Publication Number Publication Date
JPH08176695A true JPH08176695A (en) 1996-07-09

Family

ID=26630589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7249998A Pending JPH08176695A (en) 1994-09-29 1995-09-28 Production of titanium nitride sinter

Country Status (2)

Country Link
JP (1) JPH08176695A (en)
KR (1) KR0140409B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019137914A (en) * 2018-02-13 2019-08-22 三菱マテリアル株式会社 TiN-BASED SINTERED BODY AND TiN-BASED SINTERED BODY-MADE CUTTING TOOL
WO2019159781A1 (en) * 2018-02-13 2019-08-22 三菱マテリアル株式会社 Tin-based sintered body and cutting tool made of tin-based sintered body
JP2020033597A (en) * 2018-08-29 2020-03-05 三菱マテリアル株式会社 TiN-BASED SINTERED BODY AND TiN-BASED SINTERED BODY-MADE CUTTING TOOL
JP2020037731A (en) * 2018-09-06 2020-03-12 三菱マテリアル株式会社 TiN-BASED SINTERED BODY AND TiN-BASED SINTERED BODY-MADE CUTTING TOOL
JP2020055050A (en) * 2018-09-28 2020-04-09 三菱マテリアル株式会社 SURFACE-COATED TiN-BASED CERMET-MADE CUTTING TOOL HAVING HARD COATING LAYER EXERTING EXCELLENT CHIPPING RESISTANCE
US20220055118A1 (en) * 2018-09-28 2022-02-24 Mitsubishi Materials Corporation SURFACE-COATED TiN-BASED CERMET CUTTING TOOL IN WHICH HARD COATING LAYER EXHIBITS EXCELLENT CHIPPING RESISTANCE

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100796649B1 (en) * 2006-06-21 2008-01-22 재단법인서울대학교산학협력재단 Ceramic and cermet having the second phase to improve toughness via phase separation from complete solid-solution phase and the method for preparing them
JP2010500477A (en) * 2006-08-08 2010-01-07 財団法人ソウル大学校産学協力財団 Mixed powder containing solid solution powder and sintered body using the same, mixed cermet powder containing solid solution powder, cermet using the same, and method for producing them

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5165008A (en) * 1974-12-03 1976-06-05 Ngk Spark Plug Co Chitsukachitankishoketsugokinno seizoho
JPS5171809A (en) * 1974-12-19 1976-06-22 Ngk Spark Plug Co Chitsukachitankishoketsugokinno seizoho
JPS5337113A (en) * 1976-09-18 1978-04-06 Nippon Shinkinzoku Kk Titaniummnitrideebased highhstrength sintered alloy
JPS6345345A (en) * 1986-08-11 1988-02-26 Mitsubishi Metal Corp Tough cermet and its manufacture
JPH0598382A (en) * 1991-10-04 1993-04-20 Ngk Spark Plug Co Ltd Cermet for rotary tool

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5165008A (en) * 1974-12-03 1976-06-05 Ngk Spark Plug Co Chitsukachitankishoketsugokinno seizoho
JPS5171809A (en) * 1974-12-19 1976-06-22 Ngk Spark Plug Co Chitsukachitankishoketsugokinno seizoho
JPS5337113A (en) * 1976-09-18 1978-04-06 Nippon Shinkinzoku Kk Titaniummnitrideebased highhstrength sintered alloy
JPS6345345A (en) * 1986-08-11 1988-02-26 Mitsubishi Metal Corp Tough cermet and its manufacture
JPH0598382A (en) * 1991-10-04 1993-04-20 Ngk Spark Plug Co Ltd Cermet for rotary tool

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019137914A (en) * 2018-02-13 2019-08-22 三菱マテリアル株式会社 TiN-BASED SINTERED BODY AND TiN-BASED SINTERED BODY-MADE CUTTING TOOL
WO2019159781A1 (en) * 2018-02-13 2019-08-22 三菱マテリアル株式会社 Tin-based sintered body and cutting tool made of tin-based sintered body
US11389878B2 (en) 2018-02-13 2022-07-19 Mitsubishi Materials Corporation TiN-based sintered body and cutting tool made of TiN-based sintered body
JP2020033597A (en) * 2018-08-29 2020-03-05 三菱マテリアル株式会社 TiN-BASED SINTERED BODY AND TiN-BASED SINTERED BODY-MADE CUTTING TOOL
JP2020037731A (en) * 2018-09-06 2020-03-12 三菱マテリアル株式会社 TiN-BASED SINTERED BODY AND TiN-BASED SINTERED BODY-MADE CUTTING TOOL
JP2020055050A (en) * 2018-09-28 2020-04-09 三菱マテリアル株式会社 SURFACE-COATED TiN-BASED CERMET-MADE CUTTING TOOL HAVING HARD COATING LAYER EXERTING EXCELLENT CHIPPING RESISTANCE
US20220055118A1 (en) * 2018-09-28 2022-02-24 Mitsubishi Materials Corporation SURFACE-COATED TiN-BASED CERMET CUTTING TOOL IN WHICH HARD COATING LAYER EXHIBITS EXCELLENT CHIPPING RESISTANCE
US12109625B2 (en) * 2018-09-28 2024-10-08 Mitsubishi Materials Corporation Surface-coated TiN-based cermet cutting tool in which hard coating layer exhibits excellent chipping resistance

Also Published As

Publication number Publication date
KR0140409B1 (en) 1998-06-01
KR960010588A (en) 1996-04-20

Similar Documents

Publication Publication Date Title
US20110020163A1 (en) Super-Hard Enhanced Hard Metals
JPH05209247A (en) Cermet alloy and its production
EP2098482A1 (en) Silicon alloy and its powder, production apparatus, production process, and sinter
US20110227259A1 (en) Methods of forming sintered boron carbide
JPH05271842A (en) Cermet alloy and its production
SE511102C2 (en) Process for producing diamond impregnated carbide via in-situ conversion of dispersed graphite
JPH08176695A (en) Production of titanium nitride sinter
US4300951A (en) Liquid phase sintered dense composite bodies and method for producing the same
US7648675B2 (en) Reaction sintered zirconium carbide/tungsten composite bodies and a method for producing the same
US5666636A (en) Process for preparing sintered titanium nitride cermets
JPS63199843A (en) Composite molded body of molybdenum or its alloy and zirconia and its production
JPH0350808B2 (en)
JP4165850B2 (en) Plate-like tungsten carbide-containing powder and method for producing the same
JPH0118137B2 (en)
JPS63230570A (en) Sic-tic normal pressure sintered body and manufacture
JPH0687656A (en) Sintered compact based on tantalum-containing multiple compound and its production
JPH0687655A (en) Tantalum carbide-based sintered compact and its production
Zhang et al. Reaction sintered zirconium carbide/tungsten composite bodies and a method for producing the same
JPH08311576A (en) Production of titanium carbonitride and titanium carbide sintered compact
JPS63230571A (en) Manufacture of sic-tic normal pressure sintered body
JPH08246082A (en) Production of titanium carbonitride-titanium carbide composite sintered compact
JP2000290744A (en) Sintered compact of titanium diboride ceramics, and its manufacture
JPH0453829B2 (en)
JPH0243330A (en) Production of super hard sintered compact
JPH0559405A (en) Production of high-hardness sintered hard alloy

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040826

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040907

A521 Written amendment

Effective date: 20041105

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041207

A61 First payment of annual fees (during grant procedure)

Effective date: 20041220

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080107

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20090107

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20110107

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20130107

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20130107

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20130107

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20130107

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250