JPH0559405A - Production of high-hardness sintered hard alloy - Google Patents
Production of high-hardness sintered hard alloyInfo
- Publication number
- JPH0559405A JPH0559405A JP3250437A JP25043791A JPH0559405A JP H0559405 A JPH0559405 A JP H0559405A JP 3250437 A JP3250437 A JP 3250437A JP 25043791 A JP25043791 A JP 25043791A JP H0559405 A JPH0559405 A JP H0559405A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- hard alloy
- alloy
- cemented carbide
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 26
- 239000000956 alloy Substances 0.000 title claims abstract description 26
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 239000000843 powder Substances 0.000 claims abstract description 30
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 26
- 239000000203 mixture Substances 0.000 claims abstract description 10
- 239000011261 inert gas Substances 0.000 claims abstract description 6
- 239000002245 particle Substances 0.000 claims abstract description 5
- 239000002994 raw material Substances 0.000 claims description 11
- 238000005245 sintering Methods 0.000 abstract description 12
- 238000001513 hot isostatic pressing Methods 0.000 abstract description 9
- 229910009043 WC-Co Inorganic materials 0.000 abstract description 8
- 238000002156 mixing Methods 0.000 abstract description 2
- 229910003178 Mo2C Inorganic materials 0.000 abstract 3
- 239000000463 material Substances 0.000 abstract 2
- 239000012071 phase Substances 0.000 description 17
- 238000005520 cutting process Methods 0.000 description 7
- 229910052799 carbon Inorganic materials 0.000 description 5
- 229910052804 chromium Inorganic materials 0.000 description 5
- 229910052720 vanadium Inorganic materials 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000012535 impurity Substances 0.000 description 3
- 239000007791 liquid phase Substances 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000000280 densification Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 229910000765 intermetallic Inorganic materials 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 206010053759 Growth retardation Diseases 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、高圧水流ノズル用、
切削、摺動、線引ダイス等の工具用として切削特性に優
れた高硬度、高耐摩耗、高耐食、高剛性の超硬合金の製
造法に関するものである。BACKGROUND OF THE INVENTION The present invention relates to a high pressure water jet nozzle,
The present invention relates to a method for producing a cemented carbide having high hardness, high wear resistance, high corrosion resistance, and high rigidity, which is excellent in cutting characteristics for tools such as cutting, sliding, and drawing dies.
【0002】[0002]
【従来の技術】従来から、耐摩耗性が良く、切削特性に
優れる工具用硬質合金がIVa,Va,VIa族金属元
素の炭化物、窒化物などからなる硬質相と鉄族金属の結
合相とから得られていることは周知である。2. Description of the Related Art Conventionally, a hard alloy for tools having good wear resistance and excellent cutting characteristics is composed of a hard phase composed of carbides and nitrides of IVa, Va and VIa group metal elements and a binder phase of iron group metal. It is well known that it has been obtained.
【0003】特に、WC−Co系超硬合金は、機械的性
質に最も優れるため、切削工具や耐摩耗工具の分野では
有用である。このWC−Co系超硬合金は、WC粉末
(硬質相)とCo粉末(結合相)からなる混合粉末を、
乾燥・造粒→ホットプレス→焼結することにより得てい
るが、合金の硬度向上や強度向上、耐摩耗性向上等を図
るには、合金中のWC粒子を微粒にする必要がある。こ
の場合、使用原料のWC粉末を微粒粉とする方法が採ら
れている。しかし、微粒のWC粉末を用いれば、液相焼
結下で硬質相(WC)が粒成長する。これを防止するた
めに、従来ではWC粉末の製造時にCr,V等を添加し
て、上記粒成長の抑制を図っている。In particular, the WC-Co type cemented carbide is most useful in the field of cutting tools and wear resistant tools because it has the best mechanical properties. This WC-Co based cemented carbide is prepared by mixing a powder mixture of WC powder (hard phase) and Co powder (binding phase),
It is obtained by drying / granulation → hot pressing → sintering, but in order to improve hardness, strength, wear resistance and the like of the alloy, it is necessary to make the WC particles in the alloy into fine particles. In this case, a method is adopted in which the WC powder used as a raw material is made into fine powder. However, if the fine WC powder is used, the hard phase (WC) undergoes grain growth under liquid phase sintering. In order to prevent this, conventionally, Cr, V, etc. are added at the time of manufacturing the WC powder to suppress the grain growth.
【0004】ところが、上記従来例のように、WCの粒
成長を抑制するために、Cr,V等を添加すると、WC
中にCr2 O3 ,V2 O5 等の安定酸化物が多く含まれ
ることとなり、その量は例えばWC原料粉末中0.3〜
0.8%となる。この安定酸化物の存在が少量結合金属
とのぬれ性を阻害し、合金の高密度化が妨げられる。こ
の結果、資源的に希少かつ高価なCo量を減らすことが
できないという不具合が生じる。However, when Cr, V, etc. are added to suppress the grain growth of WC as in the above-mentioned conventional example, WC
A large amount of stable oxides such as Cr 2 O 3 and V 2 O 5 are contained in the powder, and the amount thereof is, for example, 0.3 to 0.3 in the WC raw material powder.
It becomes 0.8%. The presence of this stable oxide hinders the wettability with a small amount of the binding metal, and prevents the densification of the alloy. As a result, there arises a problem that the amount of Co, which is rare and expensive in terms of resources, cannot be reduced.
【0005】[0005]
【発明が解決しようとする課題】この発明は、上記従来
の課題に鑑みてなされたもので、焼結前の原料粉末中の
Co量を減少でき、合わせてWC−Coのぬれ性を向上
させることができる高密度、高強度の超硬合金の製造法
を提供することを目的とする。SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional problems, and can reduce the amount of Co in the raw material powder before sintering, and also improve the wettability of WC-Co. An object of the present invention is to provide a method for producing a high-density, high-strength cemented carbide that can be manufactured.
【0006】[0006]
【課題を解決するための手段】この発明者らは、鋭意研
究の末、WC−Co混合物に、Mo又はMo2 C、及び
VCを所定量添加することにより、Co量を減らしても
WC−Coのぬれ性が阻害されることがなく、これによ
り高硬度、耐摩耗性、耐食性、高剛性に優れた硬質合金
が得られることを見出して、この発明を完成するに至っ
たものである。Means for Solving the Problems The inventors of the present invention, after earnest research, add WC-Co mixture to a predetermined amount of Mo or Mo 2 C and VC to reduce the WC-content even if the Co content is reduced. The inventors have found that the wettability of Co is not hindered, and that a hard alloy excellent in high hardness, wear resistance, corrosion resistance, and high rigidity can be obtained, thereby completing the present invention.
【0007】即ち、この発明に係る高硬度超硬合金は、
粒径2μm以下のWC粉末に、Co、Mo又はMo2
C、及びVCを配合している原料粉末を成形したのちに
予備焼結し、さらに高圧不活性ガス雰囲気中にて熱間静
水圧プレス焼結することにより、組成が0.2〜1.0
重量%Co、2.0〜7.0重量%Mo又はMo2 C、
0.2〜0.6重量%VC、残部がWCである硬質合金
を得ることを特徴とするものである。That is, the high hardness cemented carbide according to the present invention is
Co, Mo or Mo 2 in WC powder with a particle size of 2 μm or less
A raw material powder containing C and VC is molded, pre-sintered, and further hot isostatically pressed and sintered in a high-pressure inert gas atmosphere to obtain a composition of 0.2 to 1.0.
Wt% Co, 2.0 to 7.0 wt% Mo or Mo 2 C,
It is characterized in that a hard alloy having a VC of 0.2 to 0.6% by weight and a balance of WC is obtained.
【0008】[0008]
【作用】この発明は上記したように、WC、Co、Mo
又はMo2 C、及びVCを原料粉末とする。硬質相の主
体となるWCは、不純物程度のCr,Vを含有し、例え
ば93.87重量%W粉末に61.3重量%C粉末を混
合し、炭化炉で非酸化性雰囲気で炭化して得られる粒径
2μm以下のWC粉末を用いる。The present invention, as described above, has WC, Co and Mo.
Alternatively, Mo 2 C and VC are used as raw material powders. WC, which is the main constituent of the hard phase, contains Cr and V as impurities and, for example, is mixed with 93.87 wt% W powder and 61.3 wt% C powder and carbonized in a carbonization furnace in a non-oxidizing atmosphere. The obtained WC powder having a particle size of 2 μm or less is used.
【0009】結合金属としてのCoは、0.4重量%の
低い割合で配合される。上記WC粉末中のCr,Vは不
純物程度であるので、安定酸化物の量が少なくなるた
め、このようにCo量を減少させても、WC−Coのぬ
れ性が阻害されない。Co as a binding metal is incorporated in a low proportion of 0.4% by weight. Since Cr and V in the WC powder are impurities, the amount of the stable oxide is small, and thus the wettability of WC-Co is not hindered even if the amount of Co is reduced.
【0010】ところで、上記Coを減じると、合金中に
WC(α相)−γ(Wを含むCo相)の他にW3 Co3
C(ζ相)の金属間化合物や遊離炭素(Free Ca
rbon)が出現し易くなる。これが出現すると、合金
の硬度、強度が低下する原因となる。これを防止するた
めに、Mo又はMo2 Cを5.5重量%の割合で配合す
る。このMo又はMo2 Cは、主に原料粉末中の遊離炭
素と結合する。By the way, when the above Co is reduced, in addition to WC (α phase) -γ (Co phase containing W) in the alloy, W 3 Co 3
C (ζ phase) intermetallic compounds and free carbon (Free Ca
rbon) is more likely to appear. When this appears, it causes a decrease in hardness and strength of the alloy. In order to prevent this, Mo or Mo 2 C is added in a proportion of 5.5% by weight. This Mo or Mo 2 C mainly bonds with free carbon in the raw material powder.
【0011】一方、上記WC粉末製造時にCr,V量を
WC粉末中で不純物程度となるように添加するために、
安定酸化物の発生防止を図れる反面、液相焼結下で硬質
相(WC)が粒成長し易くなる。これを防止するため
に、0.4重量%のVCを配合する。このVCによって
粒成長を抑制することができ、合金の高密度化を達成で
きる。On the other hand, in order to add Cr and V in the WC powder so as to become impurities in the WC powder,
While it is possible to prevent the generation of stable oxides, the hard phase (WC) is likely to grow grains during liquid phase sintering. To prevent this, 0.4% by weight of VC is added. Grain growth can be suppressed by this VC, and the densification of the alloy can be achieved.
【0012】この発明の超硬合金の製造の一例について
説明すると、上記WC,Co,Mo又はMo2 C,VC
からなる原料粉末を市販のボールミル湿式混合機で配合
し、この混合物を乾燥・造粒後にプレス成型し、所定条
件で予備焼結したのち、さらに液相出現温度より低い温
度以上の温度で50kg/cm2 以上の高圧不活性ガス中で
熱間静水圧プレス焼結(HIP)することによって得ら
れるのである。An example of the production of the cemented carbide of the present invention will be described. WC, Co, Mo or Mo 2 C, VC
The raw material powder consisting of is mixed with a commercially available ball mill wet mixer, and the mixture is dried, granulated, press-molded, pre-sintered under predetermined conditions, and then 50 kg / at a temperature lower than the liquid phase appearance temperature. It is obtained by hot isostatic pressing (HIP) in a high pressure inert gas of cm 2 or more.
【0013】この発明における予備焼結の条件は、真空
又は特殊雰囲気中で1300℃〜1600℃×1Hrが
適当であり、熱間静水圧プレスによる焼結はアルゴン等
の不活性ガス雰囲気中80kg/cm2 以上の圧力下、13
00℃〜1600℃×1Hrが適当である。この予備焼
結と熱間静水圧プレス焼結は同一工程で行なうようにし
てもよい。即ち、同一炉内で予備焼結と熱間静水圧プレ
ス焼結を連続して行なうことにより、製造工程を簡略化
できると共に、焼結体表面が炉からの出し入れで変形す
るのを防止できるという利点が得られる。The pre-sintering conditions in the present invention are preferably 1300 ° C. to 1600 ° C. × 1 Hr in a vacuum or a special atmosphere, and the sintering by hot isostatic pressing is carried out in an inert gas atmosphere such as argon at 80 kg /. under pressure over cm 2 , 13
A temperature of 00 ° C to 1600 ° C x 1 Hr is suitable. This preliminary sintering and hot isostatic pressing sintering may be performed in the same step. That is, by continuously performing pre-sintering and hot isostatic pressing in the same furnace, it is possible to simplify the manufacturing process and prevent the surface of the sintered body from being deformed when it is taken in and out of the furnace. Benefits are obtained.
【0014】上記製造法によって得られた合金は、超硬
合金の組成範囲は、0.2〜1.0重量%Co、2.0
〜7.0重量%Mo又Mo2 C、0.2〜0.6重量%
VC、残部がWCである。ここで、上記Coが0.2重
量%未満の場合、Coが硬質相の表面に均一にぬれず
に、著しい偏析を生ずる。結果として合金的諸特性が劣
ってしまう。これに対し、Coが1.0重量%を越える
と、Co相がほぼ均一に硬質相の表面にぬれていくが、
合金としてはCo相の特性の影響が表われる。また、上
記Mo又Mo2 Cが2.0重量%未満の場合、使用する
WC粉末中の遊離炭素(F.C)と反応し、Mo2 C生
成又は/及びaWC+bC+cMo→a’WC+dMo
2 C+eMo反応に伴うCo相の硬質相へのぬれ性が促
進されず、合金中のCoは偏析してくる。これに対し、
Mo又はMo2 Cが7.0重量%を越えると、Mo又は
Mo2 Cの特性の影響が合金特性として大きく表われ、
硬度が低くなる。さらに、上記VCが0.2重量%未満
の場合、VCとCo、硬質相とのぬれ性が悪く偏析し、
WCの粒成長抑制効果が低下し、WCが成長する。これ
に対し、VCが0.6重量%を越えると、VCの特性が
合金特性として影響大となったり(合金硬度が低くなる
等)、他の元素との金属間化合物の生成、析出等によ
り、合金特性の靭性低下を招く。The alloy obtained by the above manufacturing method has a composition range of cemented carbide of 0.2 to 1.0 wt% Co, 2.0.
~ 7.0 wt% Mo or Mo 2 C, 0.2-0.6 wt%
VC, the rest is WC. Here, when the Co content is less than 0.2% by weight, Co does not uniformly wet the surface of the hard phase, and significant segregation occurs. As a result, the alloy-like properties are inferior. On the other hand, when Co exceeds 1.0% by weight, the Co phase wets the surface of the hard phase almost uniformly,
As an alloy, the influence of the characteristics of the Co phase appears. Further, when the above Mo or Mo 2 C is less than 2.0% by weight, it reacts with free carbon (FC) in the WC powder to be used to produce Mo 2 C or / and aWC + bC + cMo → a′WC + dMo.
The wettability of the Co phase to the hard phase accompanying the 2 C + eMo reaction is not promoted, and Co in the alloy segregates. In contrast,
When Mo or Mo 2 C exceeds 7.0 wt%, the effect of the characteristics of Mo or Mo 2 C is cracking large table as an alloy properties,
Hardness becomes low. Further, when the above VC is less than 0.2% by weight, the wettability of VC with Co and the hard phase is poor and segregation occurs,
The grain growth suppression effect of WC is reduced and WC grows. On the other hand, when the VC exceeds 0.6% by weight, the characteristics of the VC have a great influence on the alloy characteristics (alloy hardness decreases, etc.), and the formation and precipitation of intermetallic compounds with other elements may occur. However, the toughness of the alloy properties is reduced.
【0015】さらに、得られた超硬合金は、密度が1
4.8g /cm2 以上、ビッカース硬度が2300kg/mm
2 以上で、かつ破壊靭性値が3.0以上である。Further, the obtained cemented carbide has a density of 1
4.8g / cm 2 or more, Vickers hardness is 2300kg / mm
It is 2 or more and the fracture toughness value is 3.0 or more.
【0016】さらに、上記合金の有孔度は、ASTM規
格でA06以下、B06以下或はC02以下である。こ
のASTM規格は、巣の大きさがA型は10μm未満、
B型は10μm以上25μm未満、C型は遊離炭素に起
因するものであり、A06は、200倍に拡大した顕微
鏡組織に基づき0.2%(vol.) 、B06は、100倍
に拡大した顕微鏡組織に基づき0.2%(vol.)(13
00pores /cm2)とされる。Further, the porosity of the above alloy is A06 or less, B06 or less or C02 or less according to the ASTM standard. According to this ASTM standard, the size of the nest is less than 10 μm for A type,
Type B is from 10 μm to less than 25 μm, type C is due to free carbon, A06 is 0.2% (vol.) Based on the microscope tissue magnified 200 times, and B06 is a microscope magnified 100 times. 0.2% (vol.) (13
00pores / cm 2 ).
【0017】[0017]
【実施例】以下、この発明を実施例により詳細に説明す
る。EXAMPLES The present invention will now be described in detail with reference to examples.
【0018】表1に示す4種の配合組成(配合Wt/
%)のものをそれぞれボールミルにて約8時間混合して
原料粉を作成した。The four types of composition shown in Table 1 (formulation Wt /
%) Were mixed in a ball mill for about 8 hours to prepare raw material powders.
【0019】[0019]
【表1】 [Table 1]
【0020】これらの原料粉を乾燥・造粒後、1.0T
/cm2 (20×20×20mm) でプレス成形し、約1時
間1470℃で予備焼結を行ない、引き続き同一炉内で
アルゴンガス雰囲気下、1000kg/cm2 の高圧力で1
320℃、1時間の熱間静水圧プレス焼結(HIP)を
行ない、硬質合金を得た。After drying and granulating these raw material powders, 1.0T
/ Cm 2 (20 × 20 × 20 mm), press-molded, and pre-sintered at 1470 ° C. for about 1 hour. Then, in the same furnace, under argon gas atmosphere, high pressure of 1000 kg / cm 2
Hot isostatic pressing sintering (HIP) was performed at 320 ° C. for 1 hour to obtain a hard alloy.
【0021】熱間静水圧プレス後の合金特性を表2に示
す。実施例Aでは比較例Bと比較して、高密度、高硬度
で、破壊靭性に優れていることが判る。Table 2 shows the alloy properties after hot isostatic pressing. As compared with Comparative Example B, Example A has high density, high hardness, and excellent fracture toughness.
【0022】[0022]
【表2】 [Table 2]
【0023】この発明に係る高強度超硬質合金は、耐食
性、有孔度、耐摩耗性、耐放電加工、光沢性にも優れて
いることから、一般的なワークの切削工具(VB ,KT
広耗)、耐摩耗工具の他、W−Ni等、難加工ワークの
分野にも広範囲に活用し得る。The high-strength cemented carbide according to the present invention is excellent in corrosion resistance, porosity, wear resistance, electric discharge machining, and glossiness, so that it can be used for general cutting tools (V B , K). T
(Wide wear) and wear resistant tools, as well as in the field of difficult-to-work workpieces such as W-Ni.
【0024】[0024]
【発明の効果】以上説明したように、この発明によれ
ば、WC−Co混合物に、Mo又はMo2 C、及びVC
を所定量添加することにより、焼結前の原料粉末中のC
o量を減少でき、合わせてWC−Coのぬれ性を向上さ
せることができる。その結果、高圧水流ノズル用、切
削、摺動、線引ダイス等の工具用合金として切削特性に
優れ、高硬度、高耐摩耗、高耐食、高剛性の超硬合金を
得ることができる。As described above, according to the present invention, it is possible to add Mo or Mo 2 C and VC to a WC-Co mixture.
C in the raw material powder before sintering by adding a predetermined amount of
The amount of o can be reduced, and the wettability of WC-Co can be improved. As a result, it is possible to obtain a cemented carbide having excellent cutting characteristics and having high hardness, high wear resistance, high corrosion resistance, and high rigidity as an alloy for tools such as high-pressure water jet nozzles, cutting, sliding, and drawing dies.
Claims (3)
o又はMo2 C、及びVCを配合している原料粉末を成
形したのちに予備焼結し、さらに高圧不活性ガス雰囲気
中にて熱間静水圧プレス焼結することにより、組成が
0.2〜1.0重量%Co、2.0〜7.0重量%Mo
又はMo2 C、0.2〜0.6重量%VC、残部がWC
である硬質合金を得ることを特徴とする高硬度超硬合金
の製造法。1. A WC powder having a particle size of 2 μm or less, Co, M
The raw material powder containing o or Mo 2 C and VC is molded, pre-sintered, and then hot isostatically pressed and sintered in a high-pressure inert gas atmosphere to obtain a composition of 0.2 ~ 1.0 wt% Co, 2.0-7.0 wt% Mo
Or Mo 2 C, 0.2-0.6 wt% VC, balance WC
A method for producing a high-hardness cemented carbide, which is characterized in that the hard alloy is obtained.
cm2 以上、ビッカース硬度が2300kg/mm2 以上で、
かつ破壊靭性値が3.0以上であることを特徴とする請
求項1記載の高硬度超硬合金の製造法。2. The density of the obtained hard alloy is 14.8 g /
cm 2 or more, Vickers hardness of 2300 kg / mm 2 or more,
Further, the fracture toughness value is 3.0 or more, and the method for producing a high hardness cemented carbide according to claim 1.
格でA06以下、B06以下或はC02以上であること
を特徴とする請求項1記載の高硬度超硬合金の製造法。3. The method for producing a high hardness cemented carbide according to claim 1, wherein the porosity of the obtained hard alloy is A06 or less, B06 or less or C02 or more according to the ASTM standard.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3250437A JP3045199B2 (en) | 1991-09-02 | 1991-09-02 | Manufacturing method of high hardness cemented carbide |
EP92918325A EP0559901B1 (en) | 1991-09-02 | 1992-08-27 | Hard alloy and production thereof |
AT92918325T ATE173030T1 (en) | 1991-09-02 | 1992-08-27 | HARD ALLOY AND THEIR PRODUCTION |
DE69227503T DE69227503T2 (en) | 1991-09-02 | 1992-08-27 | HARD ALLOY AND THEIR PRODUCTION |
PCT/JP1992/001108 WO1993005191A1 (en) | 1991-09-02 | 1992-08-27 | Hard alloy and production thereof |
US07/969,816 US5421852A (en) | 1991-09-02 | 1992-08-27 | Hard alloy and its manufacturing method |
KR1019930700591A KR100231267B1 (en) | 1991-09-02 | 1992-08-27 | Hard alloy and production thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3250437A JP3045199B2 (en) | 1991-09-02 | 1991-09-02 | Manufacturing method of high hardness cemented carbide |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0559405A true JPH0559405A (en) | 1993-03-09 |
JP3045199B2 JP3045199B2 (en) | 2000-05-29 |
Family
ID=17207868
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3250437A Expired - Lifetime JP3045199B2 (en) | 1991-09-02 | 1991-09-02 | Manufacturing method of high hardness cemented carbide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3045199B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102071346A (en) * | 2011-01-12 | 2011-05-25 | 北京工业大学 | Method for preparing compact nanocrystalline WC-Co hard alloy block material with small grain size |
CN113416862A (en) * | 2021-06-04 | 2021-09-21 | 合肥工业大学 | Preparation method of hard alloy and hard alloy prepared by adopting same |
-
1991
- 1991-09-02 JP JP3250437A patent/JP3045199B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102071346A (en) * | 2011-01-12 | 2011-05-25 | 北京工业大学 | Method for preparing compact nanocrystalline WC-Co hard alloy block material with small grain size |
CN113416862A (en) * | 2021-06-04 | 2021-09-21 | 合肥工业大学 | Preparation method of hard alloy and hard alloy prepared by adopting same |
Also Published As
Publication number | Publication date |
---|---|
JP3045199B2 (en) | 2000-05-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5348806A (en) | Cermet alloy and process for its production | |
US5841045A (en) | Cemented carbide articles and master alloy composition | |
KR100231267B1 (en) | Hard alloy and production thereof | |
WO2010008004A1 (en) | Hard powder, method for producing hard powder and sintered hard alloy | |
EP1462534A1 (en) | Compositionally graded sintered alloy and method of producing the same | |
US4270952A (en) | Process for preparing titanium carbide-tungsten carbide base powder for cemented carbide alloys | |
US5928976A (en) | Composite carbide powder used for cemented carbide and method of producing the same | |
JPH05271842A (en) | Cermet alloy and its production | |
JP3310138B2 (en) | Sintered hard material | |
KR101450661B1 (en) | The method of preparation for ternary titanium carbonitride sintered bodies having enhanced mechanical properties and ternary titanium carbonitride sintered bodies prepared thereby | |
JP2580168B2 (en) | Nitrogen-containing tungsten carbide based sintered alloy | |
JP2003013169A (en) | WC-Co FINE-PARTICULATE CEMENTED CARBIDE SUPERIOR IN OXIDATION RESISTANCE | |
JP3045199B2 (en) | Manufacturing method of high hardness cemented carbide | |
JP3232599B2 (en) | High hardness cemented carbide | |
JPS6059195B2 (en) | Manufacturing method of hard sintered material with excellent wear resistance and toughness | |
JPH05230588A (en) | Hard alloy | |
JP2502322B2 (en) | High toughness cermet | |
JPS63286549A (en) | Nitrogen-containing titanium carbide-base sintered alloy having excellent resistance to plastic deformation | |
JPS61223145A (en) | Manufacture of tungsten carbide base sintered hard alloy | |
JPS63199843A (en) | Composite molded body of molybdenum or its alloy and zirconia and its production | |
JPH09227981A (en) | Cemented carbide | |
JPH06145876A (en) | Cemented carbide and its production | |
US4092156A (en) | Process for preparing titanium carbide base powder for cemented carbide alloys | |
JPH05302136A (en) | Whisker reinforced sintered hard alloy | |
JPH09300108A (en) | Cutting tool of thermet of carbonic nitride with superior anti-wearing characteristic |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090317 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090317 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100317 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100317 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110317 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110317 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120317 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120317 Year of fee payment: 12 |