JP6212976B2 - α + β type titanium alloy member and manufacturing method thereof - Google Patents

α + β type titanium alloy member and manufacturing method thereof Download PDF

Info

Publication number
JP6212976B2
JP6212976B2 JP2013129653A JP2013129653A JP6212976B2 JP 6212976 B2 JP6212976 B2 JP 6212976B2 JP 2013129653 A JP2013129653 A JP 2013129653A JP 2013129653 A JP2013129653 A JP 2013129653A JP 6212976 B2 JP6212976 B2 JP 6212976B2
Authority
JP
Japan
Prior art keywords
less
modulus
young
acicular
titanium alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013129653A
Other languages
Japanese (ja)
Other versions
JP2015004100A (en
Inventor
吉紹 立澤
吉紹 立澤
哲 川上
哲 川上
高橋 一浩
一浩 高橋
藤井 秀樹
秀樹 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2013129653A priority Critical patent/JP6212976B2/en
Publication of JP2015004100A publication Critical patent/JP2015004100A/en
Application granted granted Critical
Publication of JP6212976B2 publication Critical patent/JP6212976B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本発明は、ヤング率が120GPa以上140GPa以下と高い、α+β型チタン合金部材およびその製造方法に関する。   The present invention relates to an α + β type titanium alloy member having a high Young's modulus of 120 GPa or more and 140 GPa or less and a method for producing the same.

チタン合金の常温におけるヤング率は、α相が主であるα型チタン合金、α+β型チタン合金などでは約100〜120GPa、β相が主であるβ型チタン合金では、70〜90GPaである。しかしながら、β型チタン合金でもα+β二相域で時効熱処理し、α相を析出させると、上記のα型チタン合金、α+β型チタン合金と同様に、ヤング率を約100〜120GPaに増加させることが可能である。このように、チタン合金では、その用途に合わせて望まれるヤング率にあったチタン合金が使用されている。   The Young's modulus at room temperature of the titanium alloy is about 100 to 120 GPa for an α-type titanium alloy, α + β-type titanium alloy or the like mainly containing an α phase, and 70 to 90 GPa for a β-type titanium alloy mainly containing a β phase. However, even with a β-type titanium alloy, when the aging heat treatment is performed in the α + β two-phase region and the α-phase is precipitated, the Young's modulus can be increased to about 100 to 120 GPa, similar to the α-type titanium alloy and α + β-type titanium alloy. Is possible. As described above, a titanium alloy having a desired Young's modulus is used for the titanium alloy.

高ヤング率が望まれる部材としては、構造用部材として二輪もしくは四輪車のエンジン部材や、一般民生品用途としてのゴルフクラブなどがある。しかしながら、チタン・チタン合金では、鉄鋼材料などと異なり、元々、ヤング率が低く、120GPa以上のヤング率を有するチタン合金は限られてくる。   As members for which a high Young's modulus is desired, there are two- or four-wheeled vehicle engine members as structural members, and golf clubs for general consumer products. However, titanium / titanium alloys, unlike steel materials, originally have low Young's modulus, and titanium alloys having a Young's modulus of 120 GPa or more are limited.

特許文献1では、Ti−Al−Fe系にMoを添加し、質量%で、4.4%以上5.5%未満のAl、1.4%以上2.2%未満のFe、2.5%以上5%未満のMoを含有し、不純物としてSiが0.1%未満、Cが0.01%未満に抑制した高強度α+β型チタン合金が記載されている。この合金に種々の熱処理を施し、β相の残留量を変化させることで、ヤング率を75〜90GPaの間に制御している。この中で、800〜900℃に加熱後に400℃〜600℃で3〜5時間加熱することで、ヤング率を115〜125GPaに調整する方法が述べられている。しかしながら、この合金では、高価な元素であるMoを使用しているという点や、高ヤング率に制御するためには、α相を析出させる長時間の熱処理を行う必要がある点から、製造コストが高くなる懸念がある。   In Patent Document 1, Mo is added to a Ti—Al—Fe system, and in mass%, 4.4% or more and less than 5.5% Al, 1.4% or more and less than 2.2% Fe, 2.5% A high-strength α + β-type titanium alloy containing Mo in an amount of not less than 5% and less than 5% and having impurities suppressed to less than 0.1% and C less than 0.01% is described. This alloy is subjected to various heat treatments to change the residual amount of β phase, thereby controlling the Young's modulus between 75 and 90 GPa. Among them, a method is described in which the Young's modulus is adjusted to 115 to 125 GPa by heating at 800 to 900 ° C. and then heating at 400 to 600 ° C. for 3 to 5 hours. However, this alloy uses an expensive element Mo, and in order to control it to a high Young's modulus, it is necessary to perform a long-time heat treatment for precipitating the α phase. There is a concern that will increase.

また、特許文献2では、ゴルフクラブフェース用のチタン合金として、質量%で、4.7%以上5.5%以下のAl、0.5%以上1.4%以下のFe、0.03%以下のN、かつ、[O]eq=[O]+2.77[N]より計算される[O]eqが0.25%以上0.34%以下の高強度α+β型チタン合金が記載されている。この合金は、Fe、Al、O、Nの添加量をコントロールすることで、加工度の大きな加工を行う場合、高ヤング率、かつ、強度・延性バランスに優れる特性を得ることができる。また、加工度が小さい場合であっても、β単相域もしくはβ変態点直下のα+β二相域で一方向熱延するか、あるいはさらに、熱延方向と同じ方向に一方向冷延した後に通常用いられる好適な条件で焼鈍し、Transverse-textureを発達させることで、140GPa前後の高ヤング率、かつ、強度・延性バランスに優れる特性を得ている。しかしながら、この方法では、加工度の大きい加工や一方向圧延が条件となっており、例えば、最終形状までの加工が少ない製品ではこの方法を用いることは難しい。   Further, in Patent Document 2, as a titanium alloy for a golf club face, 4.7% to 5.5% Al, 0.5% to 1.4% Fe, 0.03% by mass%. A high-strength α + β-type titanium alloy having the following N and [O] eq calculated from [O] eq = [O] +2.77 [N] of 0.25% to 0.34% is described. Yes. By controlling the amount of Fe, Al, O, and N added to this alloy, it is possible to obtain characteristics that have a high Young's modulus and an excellent balance between strength and ductility when processing with a high degree of processing. Moreover, even if the degree of work is small, after one-way hot rolling in the β single-phase region or α + β two-phase region immediately below the β transformation point, or further, after one-way cold rolling in the same direction as the hot rolling direction By annealing under suitable conditions that are usually used and developing a transverse-texture, a high Young's modulus of around 140 GPa and excellent strength / ductility balance are obtained. However, in this method, processing with a high degree of processing or unidirectional rolling is a condition. For example, it is difficult to use this method for a product with few processing to the final shape.

特開2010−100943号公報JP 2010-1000094 A 特開2012−132057号公報JP 2012-132057 A

そこで、本発明は、安価な合金組成で製造方法によらず高ヤング率を得ることが可能なα+β型チタン合金を提供することを目的とするものである。   Therefore, an object of the present invention is to provide an α + β type titanium alloy that can obtain a high Young's modulus with an inexpensive alloy composition regardless of the production method.

本発明者らは、前記課題を達成すべく、鋭意検討した結果、α安定化元素としてAlを、β安定化元素として安価なFeを選択し、添加量を適切に制御し、所望の金属組織とすることで、800MPa以上の引張強度、且つ、120GPa以上の高ヤング率を実現できることを見出した。この際、β単相域加熱後、空冷相当以上の冷却速度で冷却すれば良く、熱処理前の加工方法は問わない。   As a result of diligent studies to achieve the above-mentioned problems, the inventors have selected Al as the α-stabilizing element and inexpensive Fe as the β-stabilizing element, and appropriately controlled the addition amount to obtain a desired metal structure. It was found that a tensile strength of 800 MPa or more and a high Young's modulus of 120 GPa or more can be realized. At this time, after the β single-phase region heating, cooling may be performed at a cooling rate equivalent to or higher than air cooling, and the processing method before heat treatment is not limited.

即ち、
(1)質量%で、4.7%以上5.5%以下のAl、0.8%以上2.1%以下のFe、0.046%以上0.151%以下のOを含有し、及び式(1)で表される酸素当量[O]eqが0.06%以上0.35%以下であり
、残部チタン及び不可避的不純物からなるα+β型チタン合金部材であって、金属組織が面積率90%以上の針状組織で且つ針状α粒の短軸方向の幅が10μm以下でヤング率が120GPa以上140GPa以下であることを特徴とする、引張強度が800MPa以上のα+β型チタン合金部材。
[O]eq=[O]+2.77[N] −−−−− 式(1)
ここで、[O]と[N]は、各々、質量%で表される酸素、及び窒素の含有量である。
(2)圧延加工、鍛造加工、棒線加工、あるいは伸線加工のいずれかの方法により加工されたチタン合金をβ変態点以上、かつ1158℃以上で加熱した後、水冷する方法で冷却することを特徴とした、(1)に記載のα+β型チタン合金部材の製造方法。
(3)圧延加工、鍛造加工、棒線加工、あるいは伸線加工のいずれかの方法により加工されたチタン合金をβ変態点以上、かつ1158℃以上で加熱した後、水冷する方法で冷却することを特徴とする、
質量%で、4.7%以上5.5%以下のAl、0.8%以上2.1%以下のFeを含有し、及び式(1)で表される酸素当量[O]eqが0.06%以上0.35%以下であり、残部チタン及び不可避的不純物からなるα+β型チタン合金部材であって、金属組織が面積率90%以上の針状組織で且つ針状α粒の短軸方向の幅が10μm以下でヤング率が120GPa以上140GPa以下である、引張強度が800MPa以上のα+β型チタン合金部材の製造方法。
[O]eq=[O]+2.77[N] −−−−− 式(1)
ここで、[O]と[N]は、各々、質量%で表される酸素、及び窒素の含有量である。
That is,
(1) by mass%, containing 4.7% to 5.5% Al, 0.8% to 2.1% Fe , 0.046% to 0.151% O , and The oxygen equivalent [O] eq represented by the formula (1) is 0.06% or more and 0.35% or less, and is an α + β type titanium alloy member made of the balance titanium and unavoidable impurities, wherein the metal structure has an area ratio. An α + β-type titanium alloy member having a tensile strength of 800 MPa or more, having a needle-like structure of 90% or more, a width in the minor axis direction of needle-like α grains of 10 μm or less, and a Young's modulus of 120 GPa or more and 140 GPa or less.
[O] eq = [O] +2.77 [N] ----- Formula (1)
Here, [O] and [N] are the contents of oxygen and nitrogen expressed in mass%, respectively.
(2) A titanium alloy processed by any one of rolling, forging, bar wire, or wire drawing is heated at a β transformation point or higher and 1158 ° C. or higher, and then cooled by a water cooling method. The method for producing an α + β-type titanium alloy member according to (1), characterized in that
(3) A titanium alloy processed by any one of rolling, forging, bar wire, or wire drawing is heated at a β transformation point or higher and 1158 ° C. or higher, and then cooled by a water cooling method. Characterized by the
It contains 4.7% or more and 5.5% or less of Al, 0.8% or more and 2.1% or less of Fe in mass%, and the oxygen equivalent [O] eq represented by the formula (1) is 0 0.06% or more and 0.35% or less, an α + β type titanium alloy member composed of the remaining titanium and inevitable impurities, wherein the metal structure is an acicular structure having an area ratio of 90% or more and the short axis of acicular α grains A method for producing an α + β-type titanium alloy member having a tensile strength of 800 MPa or more and having a direction width of 10 μm or less and a Young's modulus of 120 GPa or more and 140 GPa or less.
[O] eq = [O] +2.77 [N] ----- Formula (1)
Here, [O] and [N] are the contents of oxygen and nitrogen expressed in mass%, respectively.

本発明により、比較的安価な合金組成からなるα+β型チタン合金を用いて、簡単な熱処理のみで、800MPa以上の引張強度、且つ、120GPa以上の高ヤング率を達成できるチタン合金部材およびその製造方法を提供できるため、産業上の効果は計り知れない。   According to the present invention, a titanium alloy member capable of achieving a tensile strength of 800 MPa or more and a high Young's modulus of 120 GPa or more with only a simple heat treatment using an α + β type titanium alloy having a relatively inexpensive alloy composition, and a method for producing the same The industrial effects are immeasurable.

本発明になるα+βチタン合金部材の針状組織の図Diagram of acicular structure of α + β titanium alloy member according to the present invention

以下、本発明について詳しく説明する。   The present invention will be described in detail below.

まず、本発明の材質指標について説明する。   First, the material index of the present invention will be described.

チタン合金の常温におけるヤング率は、α相が主であるα型チタン合金、α+β型チタン合金などでは約100〜120GPa程度である。しかしながら、構造用部材として二輪もしくは四輪車のエンジン部材や、一般民生品用途としてのゴルフクラブなどでは、高ヤング率が望まれる。そこで、800MPa以上の引張強度、且つ、120GPa以上の高ヤング率を達成できるチタン合金部材およびその製造方法を考案した。   The Young's modulus at room temperature of a titanium alloy is about 100 to 120 GPa for α-type titanium alloys, α + β-type titanium alloys, etc., which mainly have an α phase. However, a high Young's modulus is desired for a two-wheel or four-wheel vehicle engine member as a structural member, a golf club for general consumer goods, and the like. Therefore, a titanium alloy member capable of achieving a tensile strength of 800 MPa or more and a high Young's modulus of 120 GPa or more and a manufacturing method thereof have been devised.

以下に、本発明に示した添加元素を選択した理由と、その含有範囲を限定した理由を示す。以降、添加元素の含有量は、「質量%」で示す。   The reason for selecting the additive element shown in the present invention and the reason for limiting the content range are shown below. Henceforth, content of an addition element is shown by "mass%".

Feは、比較的安価なβ安定化元素であり、添加することでβ相を強化することができる。また、高いβ安定化能を示す元素であるため、添加量を少なくすることが可能である。800MPa以上の引張強度を得るためには、0.8%以上のFeの添加が必要である。一方で、α相と比較しヤング率の低いβ相を安定化させるため、過剰に添加するとヤング率が120GPa未満となってしまう。また、FeはTi中で凝固偏析しやすく、このことからもFeの添加量を2.1%以下とした。   Fe is a relatively inexpensive β-stabilizing element, and the β phase can be strengthened by adding Fe. In addition, since it is an element exhibiting high β-stabilizing ability, the amount added can be reduced. In order to obtain a tensile strength of 800 MPa or more, it is necessary to add 0.8% or more of Fe. On the other hand, in order to stabilize the β phase having a lower Young's modulus compared to the α phase, the Young's modulus becomes less than 120 GPa when added excessively. In addition, Fe is easily solidified and segregated in Ti, and for this reason, the amount of Fe added is set to 2.1% or less.

Alはα安定元素であり、α相中に固溶し、固溶強化する元素である。Feと同様に安価な元素であることも特徴として挙げられる。800MPa以上の引張強度を得るためには、4.7%以上のAlの添加が必要である。一方で、Alを過剰に添加すると、高温および室温での延性や冷間加工性が低下してしまう。そこで、Alの添加量を5.5%以下とした。   Al is an α-stable element, and is an element that dissolves in the α phase and strengthens the solution. A feature is that it is an inexpensive element like Fe. In order to obtain a tensile strength of 800 MPa or more, it is necessary to add 4.7% or more of Al. On the other hand, when Al is added excessively, ductility and cold workability at high temperature and room temperature are lowered. Therefore, the amount of Al added is set to 5.5% or less.

OおよびNはいずれもα相中に侵入型固溶し、室温でのα相を固溶強化する。Alとの複合添加により、高強度および高ヤング率を達成することが可能である。特許文献2に記載されている様に、Tiに及ぼすOとNの強化機構の類似性から、室温での強度に及ぼすOおよびNの働きは、前記の式(1)に示す[O]eqにより示すことができる。Alと同様、800MPa以上の引張強度を得るためには、[O]eqを0.06%以上とする必要がある。一方で、OやNを過剰添加すると、高強度化に伴い、延性が低下するため、[O]eqを0.35%以下とする必要がある。   Both O and N are interstitial solid solution in the α phase, strengthening the α phase at room temperature. High strength and high Young's modulus can be achieved by the combined addition with Al. As described in Patent Document 2, from the similarity of the strengthening mechanism of O and N on Ti, the action of O and N on the strength at room temperature is represented by [O] eq shown in the above formula (1). Can be shown. Similar to Al, in order to obtain a tensile strength of 800 MPa or more, [O] eq needs to be 0.06% or more. On the other hand, if O or N is added excessively, ductility decreases with increasing strength, so [O] eq needs to be 0.35% or less.

前記以外は、残部チタン及び不可避的不純物からなるチタン合金である。   Other than the above, the titanium alloy is composed of the remaining titanium and inevitable impurities.

本発明のα+β型チタン合金部材の主たる金属組織は、針状組織を呈しており、個々の針状α粒の短軸方向の幅が10μm以下であることを特徴としている。α相は針状の結晶粒(以下、針状α粒とし、このような結晶粒から成る組織を針状組織と記載する。)となり、一つの旧β相の結晶粒内部を横断して直線的に成長し、旧β相の結晶粒界(以下、旧β粒界と記載する。)まで伸びていることが多い。等軸粒の旧β粒の内部を針状の結晶が横断し、針状の軸方向が、旧β粒によって異なるような針状組織が形成されている。本発明になる針状組織の例を図1に示す。図からも示されるように、一つの針状α粒のアスペクト比は、変態起点と、成長方向、及び旧β粒のどの部分にあるのか等によって異なる。即ち、本発明における針状α粒のアスペクト比は多様な値をとるため、針状α粒をアスペクト比によって一義的に制限することはできない。本発明になるチタン合金部材における針状組織(針状α粒)は面積率で少なくとも90%以上であると好ましい。この断面組織に制御することにより、前記含有成分と相まって、ヤング率が120GPa以上の高ヤング率を達成し、引張強度が800MPa以上のα+β型チタン合金部材とすることができる。また、針状α粒の幅が狭い程、高ヤング率となる。なお、本発明の実施例の中で針状α粒の幅が狭かった素材を用いても、ヤング率は概ね140GPa以下となったため、ヤング率の上限を140GPaとした。   The main metal structure of the α + β type titanium alloy member of the present invention has a needle-like structure, and the width in the minor axis direction of each needle-like α grain is 10 μm or less. The α phase becomes needle-like crystal grains (hereinafter referred to as needle-like α grains, and the structure composed of such crystal grains is referred to as a needle-like structure), and is linear across the inside of one old β-phase crystal grain. In many cases, it grows up to the grain boundary of the old β phase (hereinafter referred to as the former β grain boundary). A needle-like crystal crosses the inside of the old β grains of equiaxed grains, and a needle-like structure is formed in which the needle-like axial direction differs depending on the old β grains. An example of a needle-like tissue according to the present invention is shown in FIG. As shown in the figure, the aspect ratio of one acicular α grain varies depending on the transformation start point, the growth direction, and the part of the old β grain. That is, since the aspect ratio of the acicular α grains in the present invention takes various values, the acicular α grains cannot be uniquely limited by the aspect ratio. The acicular structure (acicular α grains) in the titanium alloy member according to the present invention is preferably at least 90% or more in terms of area ratio. By controlling to this cross-sectional structure, it is possible to obtain an α + β type titanium alloy member having a Young's modulus of 120 GPa or more and a tensile strength of 800 MPa or more in combination with the above-mentioned components. Further, the narrower the width of the needle-like α grains, the higher the Young's modulus. In the examples of the present invention, even if a material having a narrow acicular α-grain width was used, the Young's modulus was approximately 140 GPa or less, so the upper limit of the Young's modulus was set to 140 GPa.

次に、本発明のα+β型チタン合金部材の製造方法について説明する。   Next, the manufacturing method of the (alpha) + (beta) type titanium alloy member of this invention is demonstrated.

前記の成分範囲のチタン合金を、加工方法に依らず種々加工方法で最終形状に近い形状まで加工した後、β変態点以上のβ単相域まで加熱した後、空冷相当以上の冷却速度で冷却することで、主たる金属組織が針状組織で且つ針状α粒の短軸方向の幅が10μm以下とすることができ、その結果、120〜140GPaの高ヤング率とすることができる。すなわち、高ヤング率を達成するための集合組織制御などは不要である。対象とするチタン合金の製造履歴、加工履歴によって本発明の効果が影響を受けることはないのである。なお、β変態点以上では、ほとんどの合金の化学組成で、熱処理時(加熱保持時)組織がβ単相となるため、β変態点以上としている。しかしながら、β変態点以上であっても、β変態点直上への加熱ではβ単相にならない可能性もあり、この場合は、β変態点+20℃程度よりも高温で熱処理することが望ましい。一方で、加熱温度が高くなるとコストの観点から現実的ではないことや、高温ほど素材表層の酸化が激しくなり歩留が低下することなどから、上限をβ変態点+200℃とした。また、素材内部が完全にβ単相となれば、加熱時間は短時間でも良い。前記の熱処理後、空冷相当以上の冷却速度で冷却することで、高ヤング率を達成できる。ここで、空冷相当以上の冷却速度とは、冷媒として空気、水、水蒸気ミスト、He等のガスを用いた冷却方法、あるいは、前記冷却方法の一種以上を組み合わせることで達成される。   After the titanium alloy having the above component range is processed to a shape close to the final shape by various processing methods regardless of the processing method, it is heated to a β single-phase region above the β transformation point, and then cooled at a cooling rate equivalent to air cooling or higher. By doing so, the main metal structure is an acicular structure and the width of the acicular α grains in the minor axis direction can be 10 μm or less, and as a result, a high Young's modulus of 120 to 140 GPa can be obtained. That is, texture control or the like for achieving a high Young's modulus is unnecessary. The effect of the present invention is not affected by the production history and processing history of the target titanium alloy. Above the β transformation point, the chemical composition of most alloys is the β transformation point or higher because the structure during heat treatment (at the time of heating and holding) is a β single phase. However, even when the temperature is equal to or higher than the β transformation point, there is a possibility that the β single phase may not be formed by heating immediately above the β transformation point. In this case, it is desirable to perform heat treatment at a temperature higher than about the β transformation point + 20 ° C. On the other hand, the upper limit is set to the β transformation point + 200 ° C. because the heating temperature is not realistic from the viewpoint of cost, and the higher the temperature, the more the surface layer is oxidized and the yield is lowered. If the inside of the material is completely β single phase, the heating time may be short. After the heat treatment, a high Young's modulus can be achieved by cooling at a cooling rate equivalent to air cooling or higher. Here, the cooling rate equivalent to air cooling or higher is achieved by a cooling method using a gas such as air, water, water vapor mist, and He as a refrigerant, or a combination of one or more of the above cooling methods.

また、本発明になるチタン材は、熱処理前の加工が、圧延加工でも、鍛造加工でも、棒線加工でも、伸線加工でもよい。熱処理前の加工が鍛造の場合は、鍛造方向と垂直な方向のヤング率が、丸棒の圧延の場合は、長手方向のヤング率が高くなることが明らかとなった。   Further, the titanium material according to the present invention may be subjected to a rolling process, a forging process, a bar wire process, or a wire drawing process before the heat treatment. It has been clarified that the Young's modulus in the direction perpendicular to the forging direction is higher when the process before the heat treatment is forged, and the Young's modulus in the longitudinal direction is higher when the round bar is rolled.

さらに詳細に、このような針状組織の形成過程について以下に説明する。熱処理前のチタン部材は、圧延あるいは鍛造等によって加工された部材であり、その金属組織は、加工された方向に伸びたα相の結晶粒によって構成されている(以下、このような結晶粒から成る組織を延伸状組織と記載する。)。そのようなチタン部材をβ変態点に以上に加熱すると、延伸状組織もしくは加熱中に再結晶により等軸状になったα相はβ相に変態する。このときのβ粒は、等軸状である。その後、冷却し、β変態点以下の温度となることによって再びα相に変態する。この時α相の起点は旧β粒界にある場合が多い。本発明では、空冷相当以上の冷却速度で冷却することにより、α相は針状の結晶粒となり、一つの旧β粒内部を横断して直線的に成長し、旧β粒界まで伸びていることが多い。即ち、針状α粒は、旧β粒内部を直線的に細く区切るように成長し、針状結晶の両端点は旧β結晶粒界上にある。最終的には、等軸粒の旧β粒の内部を針状の結晶が横断し、針状の軸方向が、旧β粒によって異なるような針状組織が形成される。図1に示すとおりである。また、冷却時にα変態せずにβ相のままである領域、即ち残留β相が針状α粒の間に存在する。しかしながら、針状組織がうまく形成されない部分も稀に存在し、この様な部分は、加熱時にすべてβ変態せずにα相が残る場合であると考えられる。そのような針状α粒以外のα粒は、冷却後も、初期の延伸した結晶粒のままもしくは、加熱中の再結晶により等軸化した結晶粒であり、針状組織の背景の中に、ところどころ、延伸状もしくは等軸状α粒が存在するような組織となる。このようなα粒が存在することは好ましくない。前述のとおり、本発明になるチタン合金部材における針状組織(針状α粒)は面積率で少なくとも90%以上であると好ましい。また前述のとおり、針状α粒の幅が狭い程、高ヤング率となる。すなわち、空冷と比べ冷却速度が速い水冷の方が針状α粒の短軸方向の幅は狭くなり、高ヤング率とすることができる。   In more detail, the formation process of such a needle-like structure will be described below. The titanium member before the heat treatment is a member processed by rolling or forging, and its metal structure is composed of α-phase crystal grains extending in the processed direction (hereinafter referred to as such crystal grains). The resulting structure is referred to as a stretched structure). When such a titanium member is heated to the β transformation point or more, the stretched structure or the α phase that has become equiaxed by recrystallization during heating is transformed into the β phase. The β grains at this time are equiaxed. Thereafter, it is cooled and transformed to the α phase again when the temperature becomes equal to or lower than the β transformation point. At this time, the origin of the α phase is often at the old β grain boundary. In the present invention, by cooling at a cooling rate equivalent to or higher than air cooling, the α phase becomes needle-like crystal grains, grows linearly across the inside of one old β grain, and extends to the old β grain boundary. There are many cases. That is, the acicular α grains grow so that the inside of the old β grains is linearly divided, and both end points of the acicular crystals are on the old β crystal grain boundaries. Eventually, acicular crystals traverse the inside of equiaxed old β grains, and an acicular structure is formed in which the axial direction of the needle varies depending on the old β grains. As shown in FIG. Further, a region that remains in the β phase without undergoing α transformation upon cooling, that is, a residual β phase exists between the acicular α grains. However, there is rarely a portion where the needle-like structure is not formed well, and such a portion is considered to be a case where the α phase remains without any β transformation during heating. The α grains other than such acicular alpha grains are crystal grains that are initially stretched crystal grains or equiaxed by recrystallization during heating even after cooling, and are in the background of the acicular structure. However, in some cases, the structure is such that stretched or equiaxed α grains are present. It is not preferable that such α grains exist. As described above, the acicular structure (acicular α grains) in the titanium alloy member according to the present invention is preferably at least 90% in terms of area ratio. As described above, the narrower the needle-like α grains, the higher the Young's modulus. That is, water cooling, which has a higher cooling rate than air cooling, reduces the width of the acicular α grains in the minor axis direction, and can achieve a high Young's modulus.

以下の実施例により本発明をさらに詳細に説明する。   The following examples illustrate the invention in more detail.

<実施例1>   <Example 1>

表1に示す組成のチタン合金を真空アーク溶解法により溶解し、円柱型のインゴットを鋳造した。これを熱間鍛造して直径100mmのビレットとした。このビレットを950℃に加熱後、熱間圧延により直径18mmの丸棒を製造した。この丸棒に、800℃、2hの焼鈍を行った後、表1に記載の温度で20minの熱処理(一部熱処理を実施していない比較例あり)を行い、表1に示す冷却方法で冷却した。その後、平均直径6mmのASTMハーフサイズの引張試験片(平行部の直径6.25mm、長さ32mm)を採取して引張特性を調べた。尚、前記熱処理及び冷却時には試料に熱電対を溶着し、冷却時の温度を0.5秒間隔でモニターした。引張特性に影響を及ぼす金属組織の形成には、β変態点近傍の冷却速度が重要である。しかしながら、β変態点以下に試料が冷却されると、β→α変態が開始し変態終了までの間、変態潜熱により急激に冷却速度が低下する。したがって、各試料のβ変態点における冷却速度は、β変態点か開始する前のβ変態点+50℃からβ変態点までの温度範囲の冷却速度とほぼ同等になるとみなした。この冷却速度は、空冷の場合は2℃/s〜3℃/sの範囲であり、水冷(水槽に試料を浸漬)の場合は、80〜90℃/sの範囲であった。部材が十分小さい場合、Heによるガス冷却でも、空冷相当以上の冷却速度が得られることを確認した。引張試験片採取時に、その部位近傍から光学顕微鏡観察用の試験片を採取し、L断面(長手方向に平行な断面)を観察面とする埋め込み研磨試料を作製し、硝フッ酸水溶液(硝酸濃度が約12%、フッ酸濃度が約1.5%)を用いて室温でエッチングした後に観察した。この際、金属組織を確認すると共に、針状α粒の短軸方向の幅(各視野からランダムに10カ所測定し、計20視野測定した際の平均値を算出)を計測した。なお、冷却方法として水冷を行った試験片では、断面組織観察時に針状α粒の短軸方向の幅が狭く、分解能の低い光学顕微鏡では正確な数値が測定できなかったため、これらの針状α粒の短軸方向の幅は3μm以下と表1に記載した。これらの試験片いくつかは、透過電子顕微鏡観察により、微細な針状α粒から成る組織であることを確認している。同様に光学顕微鏡観察用の埋め込み試料から、針状組織の面積率を算出した。また、製造時の疵や割れは目視にて観察し、疵のあり、なしについても評価した。これらの結果を表1に示す。   A titanium alloy having the composition shown in Table 1 was melted by a vacuum arc melting method to cast a cylindrical ingot. This was hot forged into a billet with a diameter of 100 mm. After the billet was heated to 950 ° C., a round bar having a diameter of 18 mm was manufactured by hot rolling. After this bar was annealed at 800 ° C. for 2 hours, it was subjected to heat treatment for 20 minutes at the temperature shown in Table 1 (there was a comparative example in which some heat treatment was not performed) and cooled by the cooling method shown in Table 1 did. Thereafter, ASTM half-size tensile test pieces (parallel portion diameter 6.25 mm, length 32 mm) having an average diameter of 6 mm were collected and examined for tensile properties. A thermocouple was welded to the sample during the heat treatment and cooling, and the temperature during cooling was monitored at 0.5 second intervals. The cooling rate near the β transformation point is important for the formation of a metal structure that affects the tensile properties. However, when the sample is cooled below the β transformation point, the cooling rate rapidly decreases due to the latent heat of transformation until the β → α transformation starts and the transformation ends. Therefore, the cooling rate at the β transformation point of each sample was considered to be substantially equal to the cooling rate in the temperature range from the β transformation point + 50 ° C. to the β transformation point before the start of the β transformation point. This cooling rate was in the range of 2 ° C./s to 3 ° C./s in the case of air cooling, and in the range of 80 to 90 ° C./s in the case of water cooling (immersing the sample in a water bath). When the member was sufficiently small, it was confirmed that a cooling rate equivalent to air cooling or higher could be obtained even with gas cooling with He. At the time of collecting the tensile test piece, a test piece for optical microscope observation was taken from the vicinity of the tensile test piece, and an embedded polished sample having an L cross section (cross section parallel to the longitudinal direction) as an observation surface was prepared. Was observed after etching at room temperature using about 12% and hydrofluoric acid concentration of about 1.5%. At this time, while confirming the metal structure, the width in the short axis direction of the acicular α-grains (measured at 10 random points from each field of view and calculated the average value when measuring 20 fields in total) was measured. In addition, in the test piece that was water-cooled as a cooling method, since the width of the minor axis direction of the acicular α grains was narrow at the time of cross-sectional structure observation, and an accurate numerical value could not be measured with an optical microscope with low resolution, these acicular α The width in the minor axis direction of the grains is shown in Table 1 as 3 μm or less. Some of these test pieces have been confirmed to have a structure composed of fine acicular α grains by observation with a transmission electron microscope. Similarly, the area ratio of the needle-like tissue was calculated from the embedded sample for optical microscope observation. In addition, wrinkles and cracks during production were visually observed, and the presence or absence of wrinkles was also evaluated. These results are shown in Table 1.

No.1に記載の比較例は、加工後の熱処理を実施しなかった場合である。その金属組織は、加工方向である長手方向に伸びた延伸状組織であり、針状組織ではなかった。この場合は、ヤング率が120GPa未満となり、高ヤング率が得られなかった。   No. The comparative example described in 1 is a case where heat treatment after processing was not performed. The metal structure was an elongated structure extending in the longitudinal direction, which is the processing direction, and was not an acicular structure. In this case, the Young's modulus was less than 120 GPa, and a high Young's modulus was not obtained.

No.2からNo.6の比較例は、1100℃で20min保持後、水冷した場合である。いずれも120GPa以上の高ヤング率が得られていた。No.2に記載の比較例は、800MPa以上の引張強度が得られたが、Al添加量が多かったことに起因すると考えられる熱延疵及び割れが発生していた。No.3に記載の比較例は、Al添加量が少なく、800MPa以上の強度が得られなかった。No.4に記載の比較例は、Fe添加量が少なく、800MPa以上の強度が得られなかった。No.5に記載の比較例は、800MPa以上の引張強度が得られたものの、Fe添加量に起因すると考えられる熱延疵及び割れが発生していた。No.6に記載の比較例は、Oの添加量を高くして[O]eqを高くしており、800MPa以上の引張強度及び120GPa以上のヤング率が得られたものの、延性が低下したことに起因すると思われる製造時の割れが確認された。   No. 2 to No. The comparative example 6 is a case where it is cooled with water after being kept at 1100 ° C. for 20 minutes. In all cases, a high Young's modulus of 120 GPa or more was obtained. No. In the comparative example described in 2, a tensile strength of 800 MPa or more was obtained, but hot rolling and cracking considered to be caused by a large amount of Al addition occurred. No. In the comparative example described in 3, the addition amount of Al was small, and a strength of 800 MPa or more was not obtained. No. In the comparative example described in No. 4, the Fe addition amount was small, and a strength of 800 MPa or more was not obtained. No. In the comparative example described in No. 5, although a tensile strength of 800 MPa or more was obtained, hot rolling and cracking considered to be caused by the amount of Fe added occurred. No. In the comparative example described in No. 6, [O] eq was increased by increasing the amount of O, and although a tensile strength of 800 MPa or higher and a Young's modulus of 120 GPa or higher were obtained, the ductility decreased. Then, the crack at the time of manufacture considered to be confirmed was confirmed.

No.7からNo.12の発明例は、[O]eqを0.15%程度になるように、AlおよびFeの添加量を変化させて作製したインゴットを用い、製造した丸棒を評価した結果である。   No. 7 to No. Twelfth invention example is a result of evaluating a manufactured round bar using an ingot produced by changing the addition amount of Al and Fe so that [O] eq is about 0.15%.

No.7に記載の発明例は、1050℃で20min保持後、空冷した場合である。金属組織は主に針状組織で、個々の針状α粒の幅も10μm以下となっており、800MPa以上の引張強度及び120GPa以上のヤング率が得られた。No.8に記載の発明例は、1050℃で20min保持後、水冷した場合である。こちらも金属組織は主に針状組織で、個々の針状α粒の幅も3μm以下となっており、空冷材よりも針状α粒の幅が狭くなっていた。また、空冷材と比べ、引張強度、ヤング率とも高くなっていた。   No. The example of invention described in 7 is the case where it cools by air after hold | maintaining for 20 minutes at 1050 degreeC. The metal structure was mainly an acicular structure, and the width of each acicular α-grain was 10 μm or less, and a tensile strength of 800 MPa or more and a Young's modulus of 120 GPa or more were obtained. No. The invention example of 8 is a case where it cools with water after hold | maintaining for 20 minutes at 1050 degreeC. Also here, the metal structure is mainly an acicular structure, and the width of each acicular α particle is 3 μm or less, and the width of the acicular α particle is narrower than that of the air-cooled material. Moreover, both tensile strength and Young's modulus were higher than those of air-cooled materials.

No.9に記載の発明例は、No.7及びNo.8記載の発明例より50℃高い1100℃で20min保持後、空冷した場合である。1050℃加熱の場合と同様、金属組織は主に針状組織で、個々の針状α粒の幅も10μm以下となっており、800MPa以上の引張強度及び120GPa以上のヤング率が得られた。No.10に記載の発明例は、1100℃で20min保持後、水冷した場合である。こちらも金属組織が主に針状組織になっており、個々の針状α粒の幅も3μm以下となっており、No.9の発明例よりも針状α粒の幅が狭くなっていた。また、空冷材と比べ、引張強度、ヤング率とも高くなっていた。   No. The invention example described in No. 9 7 and no. This is a case where air cooling is performed after holding for 20 minutes at 1100 ° C., which is 50 ° C. higher than the invention example described in 8. As in the case of heating at 1050 ° C., the metal structure is mainly an acicular structure, the width of each acicular α-grain is 10 μm or less, and a tensile strength of 800 MPa or more and a Young's modulus of 120 GPa or more are obtained. No. The invention example described in 10 is a case where it is cooled with water after being kept at 1100 ° C. for 20 minutes. Also here, the metal structure is mainly a needle-like structure, and the width of each needle-like α grain is 3 μm or less. The width of the needle-like α grains was narrower than that of the ninth invention example. Moreover, both tensile strength and Young's modulus were higher than those of air-cooled materials.

No.11に記載の発明例は、より高温の1150℃で20min保持後、空冷した場合である。金属組織は主に針状組織で、個々の針状α粒の幅も10μm以下となっており、引張強度は800MPa以上、ヤング率は120GPa以上と好適であった。No.12に記載の発明例は、1200℃で20min保持後、水冷した場合である。金属組織は主に針状組織で、個々の針状α粒の幅も3μm以下となっていた。No.11の発明例と比べ、引張強度及びヤング率はさらに向上しており、引張強度は800MPa以上、ヤング率は120GPa以上であった。   No. The invention example described in 11 is a case of air cooling after holding at a higher temperature of 1150 ° C. for 20 minutes. The metal structure was mainly an acicular structure, and the width of each acicular α-grain was 10 μm or less, the tensile strength was 800 MPa or more, and the Young's modulus was 120 GPa or more. No. The example of invention described in 12 is a case where it is cooled with water after being kept at 1200 ° C. for 20 minutes. The metal structure was mainly a needle-like structure, and the width of each needle-like α grain was 3 μm or less. No. Compared with 11 invention examples, the tensile strength and Young's modulus were further improved, the tensile strength was 800 MPa or more, and the Young's modulus was 120 GPa or more.

No.13およびNo.14の発明例は、[O]eqを0.06%程度になるように作製したインゴットを用い、製造した丸棒を評価した結果である。No.13に記載の発明例は、1100℃で20min保持後、空冷した場合である。[O]eqを低下させても、金属組織は主に針状組織のままであり、個々の針状α粒の幅も10μm以下となっていた。これらは、800MPa以上の引張強度及び120GPa以上のヤング率となっていた。No.14に記載の発明例は、1100℃で20min保持後、水冷した場合である。No.13の発明例と比較し、針状組織の個々の針状α粒はさらに細かくなっており、引張強度及びヤング率はさらに向上しており、良好な結果を示した。   No. 13 and no. The invention example of 14 is the result of evaluating a manufactured round bar using an ingot produced so that [O] eq is about 0.06%. No. The example of invention described in 13 is the case of air cooling after holding at 1100 ° C. for 20 min. Even when [O] eq was decreased, the metal structure remained mainly acicular, and the width of each acicular α grain was 10 μm or less. These had a tensile strength of 800 MPa or more and a Young's modulus of 120 GPa or more. No. The example of invention described in 14 is a case where it is water-cooled after holding at 1100 ° C. for 20 minutes. No. Compared with the thirteen invention examples, the individual acicular α grains of the acicular structure were further finer, the tensile strength and Young's modulus were further improved, and good results were shown.

No.15およびNo.16の発明例は、[O]eqを0.35%程度になるように作製したインゴットを用い、製造した丸棒を評価した結果である。No.15に記載の発明例は、1100℃で20min保持後、空冷した場合である。[O]eqが高くなっても、熱処理後の金属組織は主に針状組織を示し、個々の針状α粒の幅も10μm以下となっており、800MPa以上の引張強度及び120GPa以上のヤング率を示した。No.16に記載の発明例は、1100℃で20min保持後、水冷した場合である。この場合でも、金属組織は主に針状組織を示し、個々の針状α粒の幅も3μm以下となっていた。No.14に記載の発明例と比較し、個々の針状α粒の幅も狭くなっており、引張強度及びヤング率はさらに向上した。   No. 15 and no. Inventive example 16 is the result of evaluating a manufactured round bar using an ingot produced so that [O] eq is about 0.35%. No. The example of invention described in 15 is the case of air cooling after holding at 1100 ° C. for 20 min. Even when [O] eq increases, the metal structure after heat treatment mainly shows a needle-like structure, the width of each acicular α-grain is 10 μm or less, a tensile strength of 800 MPa or more, and a Young of 120 GPa or more. Showed the rate. No. The example of invention described in 16 is the case where it is water-cooled after holding at 1100 ° C. for 20 minutes. Even in this case, the metal structure mainly showed a needle-like structure, and the width of each needle-like α grain was 3 μm or less. No. Compared with the invention example of 14, the width | variety of each acicular (alpha) grain was also narrow, and the tensile strength and the Young's modulus improved further.

No.17ないしNo.23に記載の発明例は、No.14に記載の発明例に示した素材と同様の組成のインゴットを用い、β変態点を基準に熱処理時の加熱温度を変化させ、得られた試験片で同様の引張試験を行った結果である。   No. 17 to No. The invention example described in No. 23 is No. 23. 14 is a result of performing a similar tensile test on the obtained test piece using an ingot having the same composition as the material shown in the invention example described in 14, changing the heating temperature during heat treatment based on the β transformation point. .

No.17およびNo.18に記載の発明例は、熱処理時の加熱温度をβ変態点+20℃とした場合である。No.17に記載の発明例は、978℃で20min保持後、空冷した場合である。金属組織は主に針状組織で、個々の針状α粒の幅も10μm以下となっており、800MPa以上の引張強度及び120GPa以上のヤング率が得られた。No.18に記載の発明例は、978℃で20min保持後、水冷した場合である。この場合も金属組織は主に針状組織であり、空冷材と比較し、個々の針状α粒さらに細かくなっており、引張強度及びヤング率はさらに向上した。   No. 17 and no. The example of invention described in 18 is a case where the heating temperature at the time of heat treatment is β transformation point + 20 ° C. No. The example of invention described in 17 is the case where it cools by air after hold | maintaining for 20 minutes at 978 degreeC. The metal structure was mainly an acicular structure, and the width of each acicular α-grain was 10 μm or less, and a tensile strength of 800 MPa or more and a Young's modulus of 120 GPa or more were obtained. No. The example of invention described in 18 is a case where it is cooled with water after being kept at 978 ° C. for 20 minutes. Also in this case, the metal structure was mainly a needle-like structure, and each needle-like α grain became finer than the air-cooled material, and the tensile strength and Young's modulus were further improved.

No.19およびNo.20に記載の発明例は、熱処理時の加熱温度をβ変態点+100℃とした場合である。No.19に記載の発明例は、1058℃で20min保持後、空冷した場合である。加熱温度を高くしても、金属組織は主に針状組織で、個々の針状α粒の幅も10μm以下となっており、800MPa以上の引張強度及び120GPa以上のヤング率が得られた。No.20に記載の発明例は、1058℃で20min保持後、水冷した場合である。この場合も金属組織は主に針状組織であり、空冷材と比較し、個々の針状α粒の幅は狭くなっており、引張強度及びヤング率はさらに向上した。   No. 19 and no. The example of invention described in 20 is a case where the heating temperature at the time of the heat treatment is β transformation point + 100 ° C. No. The example of invention described in 19 is the case of air cooling after holding at 1058 ° C. for 20 min. Even when the heating temperature was increased, the metal structure was mainly a needle-like structure, the width of each acicular α-grain was 10 μm or less, and a tensile strength of 800 MPa or more and a Young's modulus of 120 GPa or more were obtained. No. The example of invention described in 20 is a case where it is cooled with water after being kept at 1058 ° C. for 20 minutes. Also in this case, the metal structure was mainly a needle-like structure, and the width of each needle-like α grain was narrower than that of the air-cooled material, and the tensile strength and Young's modulus were further improved.

No.21およびNo.22に記載の発明例は、熱処理時の加熱温度をβ変態点+200℃とした場合である。No.21に記載の発明例は、1158℃で20min保持後、空冷した場合である。No.19に記載の発明例よりもさらに加熱温度を高くしても、金属組織は主に針状組織であった。また、この組織の個々の針状α粒の幅は10μm以下となっており、800MPa以上の引張強度及び120GPa以上のヤング率を示した。No.22に記載の発明例は、1158℃で20min保持後、水冷した場合である。水冷した場合でも、金属組織は主に針状組織であり、空冷材と比べ、個々の針状α粒の幅は狭くなっていた。また、引張強度及びヤング率も良好であった。   No. 21 and no. The invention example described in No. 22 is a case where the heating temperature at the time of the heat treatment is β transformation point + 200 ° C. No. The invention example described in No. 21 is a case where air cooling is performed after holding at 1158 ° C. for 20 minutes. No. Even when the heating temperature was higher than that of the invention example described in Item 19, the metal structure was mainly a needle-like structure. Moreover, the width | variety of each acicular (alpha) grain of this structure | tissue is 10 micrometers or less, The tensile strength of 800 MPa or more and the Young's modulus of 120 GPa or more were shown. No. The invention example described in No. 22 is a case where it is cooled with water after being held at 1158 ° C. for 20 minutes. Even when water-cooled, the metal structure was mainly a needle-like structure, and the width of each needle-like α grain was narrower than that of the air-cooled material. Also, the tensile strength and Young's modulus were good.

No.23に記載の発明例は、熱処理時の加熱温度をβ変態点+250℃である1208℃で20min保持後、空冷した場合である。こちらでも、No.21の発明例とほぼ同等の金属組織および引張特性(引張強度およびヤング率)が得られた。しかしながら、熱処理温度が、1200℃以上と高温で加熱したため、素材表面が激しく酸化し、歩留まりが大きく低下した。   No. The invention example described in No. 23 is a case where the heating temperature at the time of the heat treatment is kept at 1208 ° C. which is the β transformation point + 250 ° C. for 20 minutes and then air-cooled. Again, no. A metal structure and tensile properties (tensile strength and Young's modulus) almost equivalent to those of 21 invention examples were obtained. However, since the heat treatment temperature was heated at a high temperature of 1200 ° C. or higher, the material surface was violently oxidized and the yield was greatly reduced.

No.24ないしNo.31に記載の発明例は、No.15に記載の発明例に示した素材と同様の組成のインゴットを用い、β変態点を基準に熱処理時の加熱温度を変化させ、得られた試験片で同様の引張試験を行った結果である。   No. 24 to No. The invention example described in No. 31 is No. 31. 15 is a result of performing a similar tensile test on the obtained test piece using an ingot having the same composition as that of the material shown in Example 15 of the invention, changing the heating temperature during heat treatment based on the β transformation point. .

No.24に記載の発明例は、熱処理時の加熱温度をβ変態点+10℃である1058℃で20min保持後、空冷した場合である。No.1に記載の比較例の熱処理なしの素材と比較すると、ヤング率は高くなっており、120GPaに達していた。しかしながら、断面組織観察より、一部でβ域に達するまでの加熱時に再結晶したと思われる等軸状α粒がそのまま残存しており、完全にβ変態していなかった領域が約10%と大きかった。これは、β変態点の直上での加熱であり、加熱時間も20minと短かったためであると考えられる。熱処理によってβ相に変態した領域(残りの約90%の領域)は、その後の冷却過程で再度α変態し針状組織となっており、針状α粒の幅は10μmとなっていた。なお、熱処理中の保持時間を長時間化して、1058℃で60min保持後、空冷した試験片では、実施例No.25の実施例に記載したように、断面組織の約98%が針状組織となっていることを確認しており、β変態点直上で熱処理を行う場合は、十分長い保持時間を設定する方が好ましい。   No. The invention example described in No. 24 is a case where the heating temperature at the time of the heat treatment is kept at 1058 ° C. which is the β transformation point + 10 ° C. for 20 minutes and then air-cooled. No. Compared with the raw material without heat treatment of the comparative example described in 1, the Young's modulus was high and reached 120 GPa. However, from the cross-sectional structure observation, equiaxed α-grains that seem to have been recrystallized during heating until reaching the β region partially remain, and the region that was not completely β-transformed is about 10%. It was big. This is considered to be because the heating was just above the β transformation point and the heating time was as short as 20 min. The region transformed to β phase by heat treatment (the remaining about 90% region) was again α transformed into a needle-like structure in the subsequent cooling process, and the width of the needle-like α grains was 10 μm. In addition, in the test piece which extended the holding time during heat processing, hold | maintained at 1058 degreeC for 60 minutes, and was air-cooled, Example No. As described in Example 25, it was confirmed that about 98% of the cross-sectional structure is a needle-like structure, and when heat treatment is performed immediately above the β transformation point, a sufficiently long holding time is set. Is preferred.

No.26およびNo.27に記載の発明例は、熱処理時の加熱温度をβ変態点+20℃とした場合である。No.26に記載の発明例は、1068℃で20min保持後、空冷した場合である。金属組織は主に針状組織で、個々の針状α粒の幅も10μm以下となっており、800MPa以上の引張強度及び120GPa以上のヤング率が得られた。No.27に記載の発明例は、1068℃で20min保持後、水冷した場合である。この場合も金属組織は主に針状組織であり、空冷材と比較し、個々の針状α粒さらに細かくなっており、引張強度及びヤング率はさらに向上した。   No. 26 and no. The example of invention described in 27 is a case where the heating temperature during the heat treatment is set to the β transformation point + 20 ° C. No. The invention example described in No. 26 is a case of air cooling after holding at 1068 ° C. for 20 min. The metal structure was mainly an acicular structure, and the width of each acicular α-grain was 10 μm or less, and a tensile strength of 800 MPa or more and a Young's modulus of 120 GPa or more were obtained. No. The example of invention described in 27 is the case where it is water-cooled after holding at 1068 ° C. for 20 min. Also in this case, the metal structure was mainly a needle-like structure, and each needle-like α grain became finer than the air-cooled material, and the tensile strength and Young's modulus were further improved.

No.28およびNo.29に記載の発明例は、熱処理時の加熱温度をβ変態点+100℃とした場合である。No.28に記載の発明例は、1148℃で20min保持後、空冷した場合である。加熱温度を高くしても、金属組織は主に針状組織で、個々の針状α粒の幅も10μm以下となっており、800MPa以上の引張強度及び120GPa以上のヤング率が得られた。No.29に記載の発明例は、1148℃で20min保持後、水冷した場合である。この場合も金属組織は主に針状組織であり、空冷材と比較し、個々の針状α粒の幅は狭くなっており、引張強度及びヤング率はさらに向上した。   No. 28 and no. The example of invention described in 29 is a case where the heating temperature at the time of the heat treatment is β transformation point + 100 ° C. No. The example of invention described in 28 is a case where it is air-cooled after holding at 1148 ° C. for 20 minutes. Even when the heating temperature was increased, the metal structure was mainly a needle-like structure, the width of each acicular α-grain was 10 μm or less, and a tensile strength of 800 MPa or more and a Young's modulus of 120 GPa or more were obtained. No. The example of invention described in 29 is the case where it cools with water after hold | maintaining for 20 minutes at 1148 degreeC. Also in this case, the metal structure was mainly a needle-like structure, and the width of each needle-like α grain was narrower than that of the air-cooled material, and the tensile strength and Young's modulus were further improved.

No.30およびNo.31に記載の発明例は、熱処理時の加熱温度をβ変態点+200℃とした場合である。No.30に記載の発明例は、1248℃で20min保持後、空冷した場合である。No.28に記載の発明例よりもさらに加熱温度を高くしても、金属組織は主に針状組織であった。また、この組織の個々の針状α粒の幅は10μm以下となっており、800MPa以上の引張強度及び120GPa以上のヤング率を示した。No.31に記載の発明例は、1248℃で20min保持後、水冷した場合である。水冷した場合でも、金属組織は主に針状組織であり、空冷材と比べ、個々の針状α粒の幅は狭くなっていた。また、引張強度及びヤング率も良好であった。   No. 30 and no. The example of invention described in 31 is a case where the heating temperature at the time of heat treatment is β transformation point + 200 ° C. No. The invention example described in 30 is a case where air cooling is performed after holding at 1248 ° C. for 20 minutes. No. Even when the heating temperature was higher than that of the invention example described in 28, the metal structure was mainly a needle-like structure. Moreover, the width | variety of each acicular (alpha) grain of this structure | tissue is 10 micrometers or less, The tensile strength of 800 MPa or more and the Young's modulus of 120 GPa or more were shown. No. The example of invention described in 31 is a case where it is water-cooled after holding at 1248 ° C. for 20 minutes. Even when water-cooled, the metal structure was mainly a needle-like structure, and the width of each needle-like α grain was narrower than that of the air-cooled material. Also, the tensile strength and Young's modulus were good.

<実施例2>   <Example 2>

前述の実施例1は、丸棒を用いた実施例であったが、次に鍛造材を用いた実施例をしめす。また、この際、実施例1のNo.9に示した素材と同様の組成のインゴットを用いた。表2に示す組成のチタン合金を真空アーク溶解法により溶解し、円柱型のインゴットを鋳造した。これを熱間鍛造して直径100mmのビレットとした。このビレットを950℃に加熱後、熱間圧延により直径17mmの丸棒を製造した。この丸棒を、950℃、30minの加熱を行った後、熱間鍛造を行い、70mmL×40mmW×4.5mmtの平板状鍛造材を作製した。この鍛造材を用い、表2に記載の1050〜1200℃で20minの熱処理(一部熱処理を実施していない比較例あり)を行い、表2に示す冷却方法で冷却した。後、JIS13Bハーフサイズの板状引張試験片(4mmt)を採取して引張特性を調べた。実施例1と同様に、引張試験片採取時、近傍部位から光学顕微鏡観察用の試験片を採取し、L断面埋め込み研磨試料を作製、硝フッ酸水溶液を用い室温でエッチングした後に観察した。この際、金属組織を確認すると共に、針状α粒の短軸方向の幅および針状組織の面積率(測定条件は実施例1と同様)を計測した。これらの結果を表2に示す。   The above-mentioned Example 1 was an example using a round bar. Next, an example using a forging material will be shown. At this time, No. 1 in Example 1 was used. An ingot having the same composition as the material shown in FIG. A titanium alloy having the composition shown in Table 2 was melted by a vacuum arc melting method to cast a cylindrical ingot. This was hot forged into a billet with a diameter of 100 mm. After heating the billet to 950 ° C., a round bar having a diameter of 17 mm was manufactured by hot rolling. The round bar was heated at 950 ° C. for 30 min, and then hot forged to produce a flat forged material of 70 mmL × 40 mmW × 4.5 mmt. Using this forged material, heat treatment was carried out at 1050 to 1200 ° C. shown in Table 2 for 20 minutes (there was a comparative example in which some heat treatment was not performed), and cooling was performed by the cooling method shown in Table 2. Thereafter, a JIS13B half-size plate-like tensile test piece (4 mmt) was sampled and examined for tensile properties. In the same manner as in Example 1, when collecting a tensile test piece, a test piece for observation with an optical microscope was collected from the vicinity, and an L-section embedded polishing sample was prepared and observed after etching at room temperature using a nitric hydrofluoric acid aqueous solution. At this time, the metal structure was confirmed, and the width of the acicular α grains in the minor axis direction and the area ratio of the acicular structure (measurement conditions were the same as in Example 1) were measured. These results are shown in Table 2.

No.32に記載の比較例は、加工後の熱処理を実施しなかった場合である。金属組織は、加工方向に伸びた延伸状結晶粒組織であり、針状組織ではなかった。この場合は、ヤング率が120GPa未満となり、高ヤング率が得られなかった。   No. The comparative example described in 32 is a case where heat treatment after processing was not performed. The metal structure was an elongated crystal grain structure extending in the processing direction and was not an acicular structure. In this case, the Young's modulus was less than 120 GPa, and a high Young's modulus was not obtained.

No.33に記載の発明例は、1050℃で20min保持後、空冷した場合である。金属組織は主に針状組織で、個々の針状α粒の幅も10μm以下となっており、800MPa以上の引張強度及び120GPa以上のヤング率が得られた。No.34に記載の発明例は、1050℃で20min保持後、水冷した場合である。こちらも金属組織は主に針状組織で、個々の針状α粒の幅も3μm以下となっており、空冷材よりも針状α粒の幅が狭くなっていた。また、空冷材と比べ、引張強度、ヤング率とも高くなっていた。   No. The example of invention described in 33 is a case where it is air-cooled after being kept at 1050 ° C. for 20 minutes. The metal structure was mainly an acicular structure, and the width of each acicular α-grain was 10 μm or less, and a tensile strength of 800 MPa or more and a Young's modulus of 120 GPa or more were obtained. No. The example of invention described in 34 is a case where it is cooled with water after being kept at 1050 ° C. for 20 minutes. Also here, the metal structure is mainly an acicular structure, and the width of each acicular α particle is 3 μm or less, and the width of the acicular α particle is narrower than that of the air-cooled material. Moreover, both tensile strength and Young's modulus were higher than those of air-cooled materials.

No.35に記載の発明例は、1100℃で20min保持後、空冷した場合である。1050℃加熱の場合と同様、金属組織は主に針状組織で、個々の針状α粒の幅も10μm以下となっており、800MPa以上の引張強度及び120GPa以上のヤング率が得られた。No.36に記載の発明例は、1100℃で20min保持後、水冷した場合である。こちらも金属組織が主に針状組織になっており、個々の針状α粒の幅も3μm以下となっており、No.35の発明例よりも針状α粒の幅が狭くなっていた。また、空冷材と比べ、引張強度、ヤング率とも僅かに高くなっていた。   No. The invention example described in 35 is a case where air cooling is performed after holding at 1100 ° C. for 20 minutes. As in the case of heating at 1050 ° C., the metal structure is mainly an acicular structure, the width of each acicular α-grain is 10 μm or less, and a tensile strength of 800 MPa or more and a Young's modulus of 120 GPa or more are obtained. No. The invention example described in 36 is a case where it is cooled at 1100 ° C. for 20 minutes and then cooled with water. Also here, the metal structure is mainly a needle-like structure, and the width of each needle-like α grain is 3 μm or less. The width of the acicular α grains was narrower than the 35 invention examples. In addition, the tensile strength and Young's modulus were slightly higher than those of the air-cooled material.

No.37に記載の発明例は、より高温の1200℃で20min保持後、空冷した場合である。金属組織は主に針状組織で、個々の針状α粒の幅も10μm以下となっていた。引張強度は800MPa以上、ヤング率は120GPa以上となっていた。No.38に記載の発明例は、1200℃で20min保持後、水冷した場合である。金属組織は主に針状組織で、No.37の発明例と比べ、個々の針状α粒の幅も狭くなっていた。また、引張強度は800MPa以上、ヤング率は120GPa以上であった。   No. The example of invention of 37 is a case where it cools by air after hold | maintaining for 20 minutes at 1200 degreeC of higher temperature. The metal structure was mainly an acicular structure, and the width of each acicular α grain was 10 μm or less. The tensile strength was 800 MPa or more and the Young's modulus was 120 GPa or more. No. The example of invention described in 38 is a case where it cools with water after hold | maintaining for 20 minutes at 1200 degreeC. The metal structure is mainly a needle-like structure. Compared to 37 invention examples, the width of each acicular α grain was also narrow. Moreover, the tensile strength was 800 MPa or more and the Young's modulus was 120 GPa or more.

以上のように、丸棒を用いても、鍛造材を用いても、金属組織が針状組織で、その針状α粒の幅が10μm以下の場合、800MPa以上の引張強度及び120GPa以上のヤング率が得られていた。また、これらから実製品を作製したものでも良好な特性が得られた。   As described above, even when a round bar or a forged material is used, when the metal structure is an acicular structure and the width of the acicular α grains is 10 μm or less, the tensile strength is 800 MPa or more and the Young is 120 GPa or more. The rate was obtained. Also, good characteristics were obtained even when actual products were produced from these.

Claims (3)

質量%で、4.7%以上5.5%以下のAl、0.8%以上2.1%以下のFe、0.046%以上0.151%以下のOを含有し、及び式(1)で表される酸素当量[O]eqが0.06%以上0.35%以下であり、残部チタン及び不可避的不純物からなるα+β型チタン合金部材であって、金属組織が面積率90%以上の針状組織で且つ針状α粒の短軸方向の幅が10μm以下でヤング率が120GPa以上140GPa以下であることを特徴とする、引張強度が800MPa以上のα+β型チタン合金部材。
[O]eq=[O]+2.77[N] −−−−− 式(1)
ここで、[O]と[N]は、各々、質量%で表される酸素、及び窒素の含有量である。
4.7% or more and 5.5% or less of Al, 0.8% or more and 2.1% or less of Fe 2 , 0.046% or more and 0.151% or less of O , and the formula (1 ) Is an α + β type titanium alloy member consisting of the remaining titanium and inevitable impurities, the metal structure having an area ratio of 90% or more. An α + β-type titanium alloy member having a tensile strength of 800 MPa or more, wherein the acicular structure of the needle-like α grains has a width in the minor axis direction of 10 μm or less and a Young's modulus of 120 GPa or more and 140 GPa or less.
[O] eq = [O] +2.77 [N] ----- Formula (1)
Here, [O] and [N] are the contents of oxygen and nitrogen expressed in mass%, respectively.
圧延加工、鍛造加工、棒線加工、あるいは伸線加工のいずれかの方法により加工されたチタン合金をβ変態点以上、かつ1158℃以上で加熱した後、水冷する方法で冷却することを特徴とした、請求項1に記載のα+β型チタン合金部材の製造方法。A titanium alloy processed by any one of rolling, forging, bar wire, or wire drawing is heated at a β transformation point or higher and 1158 ° C. or higher, and then cooled by a water cooling method. The manufacturing method of the alpha + beta type titanium alloy member of Claim 1. 圧延加工、鍛造加工、棒線加工、あるいは伸線加工のいずれかの方法により加工されたチタン合金をβ変態点以上、かつ1158℃以上で加熱した後、水冷する方法で冷却することを特徴とする、A titanium alloy processed by any one of rolling, forging, bar wire, or wire drawing is heated at a β transformation point or higher and 1158 ° C. or higher, and then cooled by a water cooling method. To
質量%で、4.7%以上5.5%以下のAl、0.8%以上2.1%以下のFeを含有し、及び式(1)で表される酸素当量[O]eqが0.06%以上0.35%以下であり、残部チタン及び不可避的不純物からなるα+β型チタン合金部材であって、金属組織が面積率90%以上の針状組織で且つ針状α粒の短軸方向の幅が10μm以下でヤング率が120GPa以上140GPa以下である、引張強度が800MPa以上のα+β型チタン合金部材の製造方法。  It contains 4.7% or more and 5.5% or less of Al, 0.8% or more and 2.1% or less of Fe in mass%, and the oxygen equivalent [O] eq represented by the formula (1) is 0 0.06% or more and 0.35% or less, an α + β type titanium alloy member composed of the remaining titanium and inevitable impurities, wherein the metal structure is an acicular structure having an area ratio of 90% or more and the short axis of acicular α grains A method for producing an α + β-type titanium alloy member having a tensile strength of 800 MPa or more and having a direction width of 10 μm or less and a Young's modulus of 120 GPa or more and 140 GPa or less.
[O]eq=[O]+2.77[N] −−−−− 式(1)[O] eq = [O] +2.77 [N] ----- Formula (1)
ここで、[O]と[N]は、各々、質量%で表される酸素、及び窒素の含有量である。  Here, [O] and [N] are the contents of oxygen and nitrogen expressed in mass%, respectively.
JP2013129653A 2013-06-20 2013-06-20 α + β type titanium alloy member and manufacturing method thereof Active JP6212976B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013129653A JP6212976B2 (en) 2013-06-20 2013-06-20 α + β type titanium alloy member and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013129653A JP6212976B2 (en) 2013-06-20 2013-06-20 α + β type titanium alloy member and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2015004100A JP2015004100A (en) 2015-01-08
JP6212976B2 true JP6212976B2 (en) 2017-10-18

Family

ID=52300227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013129653A Active JP6212976B2 (en) 2013-06-20 2013-06-20 α + β type titanium alloy member and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6212976B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6696202B2 (en) * 2016-02-15 2020-05-20 日本製鉄株式会社 α + β type titanium alloy member and manufacturing method thereof
JP6673121B2 (en) * 2016-09-29 2020-03-25 日本製鉄株式会社 α + β type titanium alloy rod and method for producing the same
JP7119840B2 (en) * 2018-03-23 2022-08-17 日本製鉄株式会社 α+β type titanium alloy extruded shape
US10913991B2 (en) 2018-04-04 2021-02-09 Ati Properties Llc High temperature titanium alloys
US11001909B2 (en) 2018-05-07 2021-05-11 Ati Properties Llc High strength titanium alloys
US11268179B2 (en) 2018-08-28 2022-03-08 Ati Properties Llc Creep resistant titanium alloys
CN110220759A (en) * 2019-06-21 2019-09-10 浙江厚岸科技发展有限公司 A kind of production method of titanium cookware surface presentation metallographic structure

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4061257B2 (en) * 2003-09-18 2008-03-12 新日本製鐵株式会社 Titanium alloy for heating wire and method for producing the same
JP2005220388A (en) * 2004-02-04 2005-08-18 Nippon Steel Corp Titanium alloy for golf club head having weld zone, and method for manufacturing golf club head made of titanium
CN101899590A (en) * 2010-07-29 2010-12-01 江苏佳哲钛合金材料科技有限公司 Titanium-aluminum-iron alloy
JP5201202B2 (en) * 2010-12-21 2013-06-05 新日鐵住金株式会社 Titanium alloy for golf club face

Also Published As

Publication number Publication date
JP2015004100A (en) 2015-01-08

Similar Documents

Publication Publication Date Title
JP6212976B2 (en) α + β type titanium alloy member and manufacturing method thereof
TWI506149B (en) Production of high strength titanium
JP5567093B2 (en) Cu-Al-Mn alloy material showing stable superelasticity and method for producing the same
KR101643838B1 (en) Resource-saving titanium alloy member having excellent strength and toughness, and method for manufacturing same
JP2005527699A (en) Method for treating beta-type titanium alloy
WO2012032610A1 (en) Titanium material
JP5592600B2 (en) Bio-based Co-based alloy material for hot die forging and manufacturing method thereof
JP2013023697A (en) α+β TYPE TITANIUM ALLOY HAVING LOW YOUNG&#39;S MODULUS OF LESS THAN 75 GPa AND METHOD FOR MANUFACTURING THE SAME
JP7448777B2 (en) Production method of α+β type titanium alloy bar and α+β type titanium alloy bar
WO2016013566A1 (en) Titanium alloy member having shape change characteristics in same direction as working direction, and method for manufacturing same
JP6621196B2 (en) β-type reinforced titanium alloy and method for producing β-type reinforced titanium alloy
JP2012107282A (en) Titanium alloy member having bidirectional shape memory characteristic and manufacturing method of the same
JP5228708B2 (en) Titanium alloy for heat-resistant members with excellent creep resistance and high-temperature fatigue strength
JP2005060821A (en) beta TYPE TITANIUM ALLOY, AND COMPONENT MADE OF beta TYPE TITANIUM ALLOY
JP2017002390A (en) Titanium alloy forging material
JP4715048B2 (en) Titanium alloy fastener material and manufacturing method thereof
WO2017179652A1 (en) Titanium alloy and method for producing material for timepiece exterior parts
JP6536317B2 (en) α + β-type titanium alloy sheet and method of manufacturing the same
JP4263987B2 (en) High-strength β-type titanium alloy
TWI701343B (en) Titanium alloy plate and golf club head
JP2018053313A (en) α+β TYPE TITANIUM ALLOY BAR AND MANUFACTURING METHOD THEREFOR
JP2006200008A (en) beta-TYPE TITANIUM ALLOY AND PARTS MADE FROM beta-TYPE TITANIUM ALLOY
JP2017218660A (en) Titanium alloy forging material
JP2017002373A (en) Titanium alloy forging material
JP4528109B2 (en) Low elastic β-titanium alloy having an elastic modulus of 65 GPa or less and method for producing the same

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150105

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170904

R151 Written notification of patent or utility model registration

Ref document number: 6212976

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350