JP2005060821A - beta TYPE TITANIUM ALLOY, AND COMPONENT MADE OF beta TYPE TITANIUM ALLOY - Google Patents

beta TYPE TITANIUM ALLOY, AND COMPONENT MADE OF beta TYPE TITANIUM ALLOY Download PDF

Info

Publication number
JP2005060821A
JP2005060821A JP2004052790A JP2004052790A JP2005060821A JP 2005060821 A JP2005060821 A JP 2005060821A JP 2004052790 A JP2004052790 A JP 2004052790A JP 2004052790 A JP2004052790 A JP 2004052790A JP 2005060821 A JP2005060821 A JP 2005060821A
Authority
JP
Japan
Prior art keywords
titanium alloy
type titanium
alloy
rolling
forging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004052790A
Other languages
Japanese (ja)
Other versions
JP4581425B2 (en
Inventor
Michiharu Ogawa
道治 小川
Akihiro Suzuki
昭弘 鈴木
Tetsuya Shimizu
哲也 清水
Katsuhiko Ikeda
勝彦 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2004052790A priority Critical patent/JP4581425B2/en
Publication of JP2005060821A publication Critical patent/JP2005060821A/en
Application granted granted Critical
Publication of JP4581425B2 publication Critical patent/JP4581425B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Forging (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a β type titanium alloy having high strength, requires no expensive additional elements, thus, low in cost, but enabling easy mass-production of a component, and to provide a method of producing a component having high strength using the alloy as the material. <P>SOLUTION: The β type titanium alloy has an alloy composition comprising, by mass, 10 to 20% Cr and ≤5% Fe, and the balance Ti with inevitable impurities. Further, either or both of ≤7% Ni and ≤6% Al can be incorporated therein. In one method for producing the component, the β type titanium alloy is forged or rolled at β transus or higher and also at ≤1,100°C into a component, and the component is successively subjected to solution heat treatment to recrystallize crystal grains. Preferably, aging treatment is further performed. In an another method, the β type titanium alloy is cold-worked successively to the forging or rolling so as to be a component. Preferably, solution heat treatment is performed prior to the cold working. Further, aging treatment is preferably performed after the cold working. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、β型チタン合金と、この合金を材料とする部品に関する。本発明により、チタンに比較的安価な合金元素を添加した廉価な合金を材料とし、高い強度を有する部品が提供される。 The present invention relates to a β-type titanium alloy and a part made of this alloy. According to the present invention, there is provided a component having a high strength made of an inexpensive alloy obtained by adding a relatively inexpensive alloy element to titanium.

軽量で高い強度をもつ部品の材料としてはβ型チタン合金が適切であって、これまでに、下記のような組成のものが開発されている。
Ti−15V−3Al−3Cr−3Sn
Ti−3Al−8V−6Cr−4Mo−4Sn
Ti−13V−11Cr−3Al
Ti−15Mo−5Zr−3Al
Ti−29Nb−13Ta−4.6Zr
A β-type titanium alloy is suitable as a material for lightweight and high-strength parts, and materials having the following compositions have been developed so far.
Ti-15V-3Al-3Cr-3Sn
Ti-3Al-8V-6Cr-4Mo-4Sn
Ti-13V-11Cr-3Al
Ti-15Mo-5Zr-3Al
Ti-29Nb-13Ta-4.6Zr

上記の合金組成には、V,Mo,Nb,Taといった高価な成分が比較的多量に存在し、したがってこれらのチタン合金は高価である。そのような成分を含有しないが、高強度なチタン合金として、Cr:6〜13%、Fe:1〜4%およびAl:3〜7%を含有し、残部がTiからなる合金が開示された(特許文献1)。この高強度チタン合金は、加工性にすぐれているというが、実際に製造してみると、結晶粒が不均一になりやすく、それにともなって強度が低いことが少なくない。改善策としては、固溶化処理や時効処理を行なうか、または冷間加工を行なうべきである。 In the above alloy composition, there are relatively large amounts of expensive components such as V, Mo, Nb, and Ta, and therefore these titanium alloys are expensive. An alloy that does not contain such components but contains Cr: 6 to 13%, Fe: 1 to 4%, and Al: 3 to 7% as a high-strength titanium alloy, with the balance being Ti is disclosed. (Patent Document 1). This high-strength titanium alloy is said to be excellent in workability, but when actually manufactured, the crystal grains tend to be non-uniform, and the strength is often low accordingly. As an improvement measure, solution treatment, aging treatment, or cold working should be performed.

出願人も、高強度で価格低廉なチタン合金として、Cr:2〜12%、Fe:8.8%以下、Ni:7%以下およびAl:6%以下を含み、残部Tiからなるβ型チタン合金を提案した(特許文献2)。この合金は、βトランザス以上の温度に加熱して急冷することにより、高い強度と延性をもたらす均一なβ相が得られる。さらに350〜600℃で時効処理を施すことにより、硬さを高めて耐摩耗性を向上させることができる。しかし、この合金は固溶化状態で硬く、さらに時効反応が早いため、圧延の巻取りで折損する傾向がある。こうした特性は、この合金で部品を量産する場合に、それを困難にする要因である。
特開平03−061341 特開2002−235133
Applicants have also included β-type titanium composed of the balance Ti, including Cr: 2 to 12%, Fe: 8.8% or less, Ni: 7% or less, and Al: 6% or less as a high-strength and inexpensive titanium alloy. An alloy was proposed (Patent Document 2). This alloy can be heated to a temperature above β transus and rapidly cooled to obtain a uniform β phase that provides high strength and ductility. Furthermore, by applying an aging treatment at 350 to 600 ° C., the hardness can be increased and the wear resistance can be improved. However, since this alloy is hard in a solid solution state and has a quick aging reaction, it tends to be broken by rolling up. These characteristics are factors that make it difficult to mass produce parts with this alloy.
JP 03-061341 A JP 2002-235133 A

本発明の目的は、高価な添加元素を必要とせず、したがって価格が低廉であるが、高い強度を有し、部品の量産が容易なβ型チタン合金を提供することにある。その合金を材料として製造される、高強度な部品を提供することもまた、本発明の目的に含まれる。 An object of the present invention is to provide a β-type titanium alloy which does not require an expensive additive element and is therefore inexpensive, but has high strength and easy mass production of parts. It is also included in the object of the present invention to provide a high-strength part manufactured from the alloy.

本発明のβ型チタン合金は、質量%で、Cr:10〜20%およびFe:5%以下を含有し、残部がTiおよび不可避な不純物からなる合金組成を有する。 The β-type titanium alloy of the present invention has an alloy composition containing, in mass%, Cr: 10 to 20% and Fe: 5% or less, with the balance being Ti and inevitable impurities.

本発明のチタン合金の部品のひとつのグループは、上記のβ型チタン合金に、熱間加工、すなわちβトランザス以上であって1100℃以下の温度で鍛造または圧延を行なって部品形状を与えたものである。 One group of parts of the titanium alloy of the present invention is the above-mentioned β-type titanium alloy, which is hot-worked, that is, forged or rolled at a temperature of not less than β transus and not more than 1100 ° C. to give a part shape It is.

本発明のチタン合金の部品のいまひとつのグループは、上記のβ型チタン合金に、熱間加工、すなわちβトランザス以上であって1100℃以下の温度で鍛造または圧延を行なったのち、冷間加工を行なって部品形状を与えたものである。 Another group of parts of the titanium alloy according to the present invention includes hot working, that is, forging or rolling at a temperature of not less than β transus and not more than 1100 ° C. The part shape is given in line.

本発明によれば、従来のβ型チタン合金のように、V,Mo,Nb,Taといった高価な合金元素を必要とすることなく、Fe,Cr,Niといった比較的安価な合金元素を添加しただけで、高強度を発揮するβ型チタン合金を提供することができる。時効速度を遅延化する効果を有するCrの添加は、この合金を各種部品に加工する際の製造性を高める。 According to the present invention, a relatively inexpensive alloy element such as Fe, Cr, or Ni is added without requiring an expensive alloy element such as V, Mo, Nb, or Ta as in a conventional β-type titanium alloy. It is possible to provide a β-type titanium alloy that exhibits high strength. The addition of Cr, which has the effect of delaying the aging rate, increases the manufacturability when this alloy is processed into various parts.

本発明に従うチタン合金の部品は、上記ふたつのグループのいずれにおいても高い強度を示すが、とくに冷間加工を施したものは、後述する実施例にみるとおり、すぐれた強度を示す。 The titanium alloy parts according to the present invention show high strength in any of the above two groups, but particularly those subjected to cold working show excellent strength, as seen in the examples described later.

本発明のβ型チタン合金は、上記した基本的な合金成分に加えて、さらに、Ni:7%以下およびAl:6%以下の一方または両方を含有することができる。 In addition to the basic alloy components described above, the β-type titanium alloy of the present invention can further contain one or both of Ni: 7% or less and Al: 6% or less.

本発明のβ型チタン合金の合金組成は、前掲の特許文献2の高強度β型チタン合金と対比したとき、Cr量が高く、Fe量が低減されたものといえる。本発明の合金においてFeおよびCrは、(Niを添加する場合はNiも)、合金を強度の高いβ相とするために添加する。しかし、Fe含有量を増加させて強度を高めたβチタン合金は硬く、製造性が低い。この欠点を補うため、Cr量を増加させた。以下、合金組成の限定理由を説明する。 It can be said that the alloy composition of the β-type titanium alloy of the present invention has a high Cr content and a reduced Fe content when compared with the high-strength β-type titanium alloy of Patent Document 2 described above. In the alloy of the present invention, Fe and Cr (when Ni is added, Ni is also added) to make the alloy have a high-strength β phase. However, β-titanium alloys having increased strength by increasing the Fe content are hard and have low productivity. In order to compensate for this defect, the Cr content was increased. Hereinafter, the reasons for limiting the alloy composition will be described.

Cr:10〜20%
Crは、Tiをβ相化するとともに、時効速度を遅くする効果を有する、比較的安価な元素である。本発明のβ型チタン合金を構成する必須の元素として、上記の範囲内で添加する。10%未満では時効反応を遅くする効果が低い。好ましいのは、13%またはそれを超える量である。20%を超えて添加しても、効果が飽和するし、合金の比重が高くなって、本来チタン合金がもつ、軽量という利点が失われる。
Cr: 10-20%
Cr is a relatively inexpensive element that has the effect of slowing the aging rate while turning Ti into β-phase. As an essential element constituting the β-type titanium alloy of the present invention, it is added within the above range. If it is less than 10%, the effect of slowing the aging reaction is low. Preferred is an amount of 13% or more. Even if added over 20%, the effect is saturated, the specific gravity of the alloy becomes high, and the advantage of light weight inherent to the titanium alloy is lost.

Fe:5%以下
Feも、上記のようにTiをβ相化する元素である。Fe量の増大によって強度は上昇するが、硬さが増して加工性を損なうため、両者のバランスをとって上限を5%とした。
Fe: 5% or less Fe is also an element that makes Ti into β phase as described above. Although the strength increases as the amount of Fe increases, the hardness increases and the workability is impaired. Therefore, the upper limit is set to 5% by balancing the two.

Ni:7%以下
Niは、β相を安定化する元素のうちで、比較的安価なものであるから、本発明の合金においては、Crの一部を置換する形で添加することができる。しかし、Niを過剰に含有すると、熱処理の際に金属間化合物TiNi2が生成しやすくなり、これが脆化を引き起こして強度が低下する。そこで7%という上限を設けた。
Ni: 7% or less Ni is an element that stabilizes the β phase and is relatively inexpensive. Therefore, in the alloy of the present invention, Ni can be added in a form of replacing a part of Cr. However, when Ni is contained excessively, the intermetallic compound TiNi 2 is easily generated during the heat treatment, which causes embrittlement and decreases strength. Therefore, an upper limit of 7% was set.

Al:6%以下
Alは、合金の時効処理で生じるα相を強化するために添加する。過剰に添加すると、金属間化合物Ti3Alが析出して合金が脆くなるので、含有率の上限を6%とした。
Al: 6% or less Al is added to reinforce the α phase generated by the aging treatment of the alloy. If added excessively, the intermetallic compound Ti 3 Al precipitates and the alloy becomes brittle, so the upper limit of the content was made 6%.

本発明のβ型チタン合金を材料として前記したような部品を製造する方法のひとつのグループは、前記したように、チタン合金に対し、βトランザス以上であって1100℃以下の温度で鍛造または圧延を行なって部品形状を与え、ただちに急冷することにより、均一なβ相を形成させることである。それにより、高い強度を有する部品を製造することができる。βトランザスは、750℃前後の温度であって、チタン合金の組成によって多少変動する。この温度を下回る加工温度は、割れを招くことがある。しかし高温に過ぎると加工中に結晶粒が粗大化するから、1100℃までの温度での加工を行なうべきである。 As described above, one group of methods for manufacturing the above-described component using the β-type titanium alloy of the present invention as a material is forging or rolling the titanium alloy at a temperature of not less than β transus and not more than 1100 ° C. To form a uniform β phase by giving a part shape and immediately cooling rapidly. Thereby, parts having high strength can be manufactured. β transus is a temperature around 750 ° C. and varies somewhat depending on the composition of the titanium alloy. Processing temperatures below this temperature can lead to cracking. However, if the temperature is too high, the crystal grains become coarse during processing, so processing at temperatures up to 1100 ° C. should be performed.

上記の鍛造または圧延に続いて、固溶化熱処理を施すことが好ましい。それにより、チタン合金のβ相が再結晶化されて、すぐれた強度と延性が得られる。固溶化は、加工後のチタン合金を、βトランザス以上であって1000℃以下の温度に加熱する操作により実施することができる。 Subsequent to the forging or rolling described above, a solution heat treatment is preferably performed. Thereby, the β phase of the titanium alloy is recrystallized, and excellent strength and ductility are obtained. The solution treatment can be performed by an operation of heating the processed titanium alloy to a temperature not lower than β transus and not higher than 1000 ° C.

鍛造または圧延に続いて、時効処理を施すことも好ましい。時効処理は、350〜600℃、好ましくは400〜550℃で実施することができる。前述のように、本発明のβ型チタン合金は時効反応があまり早くないから、そのコントロールは容易である。時効処理によって、この合金の部品の強度はさらに高まる。時効処理は、固溶化熱処理の前に行なってもよいし、後に行なってもよいし、前後両方に行ってもよい。 It is also preferable to perform an aging treatment after forging or rolling. The aging treatment can be carried out at 350 to 600 ° C., preferably 400 to 550 ° C. As described above, the β-type titanium alloy of the present invention does not have a fast aging reaction, so that the control is easy. Aging treatment further increases the strength of the alloy parts. The aging treatment may be performed before the solution heat treatment, may be performed after the heat treatment, or may be performed both before and after.

本発明のβ型チタン合金を材料として、前記したような部品を製造する方法のいまひとつのグループは、β型チタン合金に、βトランザス以上であって1100℃以下の温度で鍛造または圧延を行なったのち、冷間加工を行なって部品形状を与えるものである。冷間加工は、より高い強度と硬さとを与える。 Another group of methods for manufacturing the above-described parts using the β-type titanium alloy of the present invention as a material was forging or rolling the β-type titanium alloy at a temperature of β transus or higher and 1100 ° C. or lower. After that, cold working is performed to give a part shape. Cold working gives higher strength and hardness.

部品形状を冷間加工により与える場合も、熱間加工によった場合と同様、固溶化熱処理を施すことが好ましい。この場合の固溶化熱処理も、前記したところと同様に、チタン合金を、βトランザス以上であって1100℃以下の温度に加熱するという操作で実施でき、固溶化により、β相が再結晶化して、均一な組織が得られる。固溶化熱処理と冷間加工とは、どちらを先にしてもよい。 When the part shape is given by cold working, it is preferable to perform solution heat treatment as in the case of hot working. The solution heat treatment in this case can also be performed by an operation of heating the titanium alloy to a temperature of not less than β transus and not more than 1100 ° C., as described above, and the β phase is recrystallized by solution treatment. A uniform structure can be obtained. Either the solution heat treatment or the cold work may be performed first.

同じく部品形状を冷間加工により与える場合も、それに続いて時効処理を施すことが好ましい。この場合の時効処理も、前記したところと同じく、350〜600℃、好ましくは400〜550℃で実施することができ、時効効果によって、この合金の部品の強度はさらに高まる。上記の固溶化熱処理と時効処理とは、併用することが好ましい。 Similarly, when the part shape is given by cold working, it is preferable to perform an aging treatment subsequently. The aging treatment in this case can be carried out at 350 to 600 ° C., preferably 400 to 550 ° C., as described above, and the strength of the alloy component is further increased by the aging effect. The solution heat treatment and the aging treatment are preferably used in combination.

このように、本発明のチタン合金から部品を製造する方法には、つぎのようなさまざまな工程が可能である。
・鍛造または圧延
・鍛造または圧延−固溶化熱処理
・鍛造または圧延−時効処理
・鍛造または圧延−固溶化熱処理−時効処理
・鍛造または圧延−冷間加工
・鍛造または圧延−冷間加工−時効処理
・鍛造または圧延−固溶化熱処理−冷間加工
・鍛造または圧延−冷間加工−固溶化熱処理
・鍛造または圧延−固溶化熱処理−冷間加工
・鍛造または圧延−固溶化熱処理−冷間加工−時効処理
・鍛造または圧延−冷間加工−固溶化熱処理−時効処理
Thus, the following various processes are possible for the method of manufacturing a part from the titanium alloy of the present invention.
-Forging or rolling-Forging or rolling-solution heat treatment-Forging or rolling-aging treatment-Forging or rolling-solution heat treatment-aging treatment-Forging or rolling-cold work-Forging or rolling-cold work-aging treatment- Forging or rolling-Solution heat treatment-Cold working / forging or rolling-Cold working-Solution heat treatment / Forging or rolling-Solution heat treatment-Cold working / forging or rolling-Solution heat treatment-Cold working-Aging treatment・ Forging or rolling-cold working-solution heat treatment-aging treatment

本発明のチタン合金は溶接性にすぐれ、共材を使用して溶接した場合にも、溶接部の外観や硬さに異常はみられない。 The titanium alloy of the present invention is excellent in weldability, and there is no abnormality in the appearance and hardness of the welded part even when welding is performed using a common material.

合金製造例Alloy production example

スポンジチタン(純度99.8%)、純鉄(純度99.9%)、純クロム(純度99.3%)、低炭素フェロクロム2号、純Ni(純度99.9%)およびSUS304鋼屑を原料とし、プラズマ積層凝固炉を用いて種々の合金組成のチタン合金を溶製して、直径190mm、長さ700mmのインゴットを得た。それらを真空アーク再溶解炉(VAR)を用いて二次溶解し、直径240mm、長さ500mmのインゴットにした。それぞれの合金組成を、表1に示す。発明合金1〜9は本発明に従った合金組成を有するものであり、比較合金A〜Cは、Crが不足であるか、またはFe量が過大な合金組成のものである。 Sponge titanium (purity 99.8%), pure iron (purity 99.9%), pure chromium (purity 99.3%), low carbon ferrochrome No. 2, pure Ni (purity 99.9%) and SUS304 steel scrap Titanium alloys having various alloy compositions were melted as raw materials using a plasma lamination solidification furnace to obtain ingots having a diameter of 190 mm and a length of 700 mm. They were secondarily melted using a vacuum arc remelting furnace (VAR) to form an ingot having a diameter of 240 mm and a length of 500 mm. Table 1 shows the respective alloy compositions. Inventive alloys 1 to 9 have an alloy composition according to the present invention, and comparative alloys A to C have an alloy composition in which Cr is insufficient or the amount of Fe is excessive.

Figure 2005060821
Figure 2005060821

上記のチタン合金のインゴットを950℃に加熱し、熱間鍛造を行なって直径20mmの丸棒とした。別に、直径85mmの鍛造材を850℃で熱間圧延し、直径12.5mmの線材とし、コイルに巻き取った。上記の丸棒に対し、表2に示す固溶化熱処理を施したものを、サンプルとした。各サンプルから、機械加工によって、ASTM E8に規定される3号引張試験片(直径6.25mm、標点距離25mm)を用意した。引張試験は、インストロン型引張試験機を用い、クロスヘッド速度5×10-5m/sとして引張強さを測定した。引張強さを、硬さとともに表2に示す。表2にみるとおり、比較合金はコイルの巻取り過程で折損が発生しているのに対し、発明合金は硬すぎず、製造性が良好である。
















The titanium alloy ingot was heated to 950 ° C. and hot forged into a round bar having a diameter of 20 mm. Separately, a forged material having a diameter of 85 mm was hot-rolled at 850 ° C. to obtain a wire material having a diameter of 12.5 mm, which was wound around a coil. A sample obtained by subjecting the above round bar to solution heat treatment shown in Table 2 was used as a sample. From each sample, a No. 3 tensile test piece (diameter 6.25 mm, gauge distance 25 mm) defined by ASTM E8 was prepared by machining. In the tensile test, an tensile strength was measured using an Instron type tensile tester at a crosshead speed of 5 × 10 −5 m / s. Table 2 shows the tensile strength together with the hardness. As seen in Table 2, the comparative alloy is broken during the winding process of the coil, whereas the inventive alloy is not too hard and the manufacturability is good.
















Figure 2005060821
Figure 2005060821

さらに、上記サンプルに500℃×8時間の時効処理を施したものから試験片をつくり、引張試験をした。その結果は表3に示すとおりであって、いっそうの強度向上が認められた。 Further, a test piece was prepared from the sample subjected to aging treatment at 500 ° C. for 8 hours, and a tensile test was performed. The results are as shown in Table 3, and a further improvement in strength was observed.

Figure 2005060821
Figure 2005060821

実施例1で製造した発明合金1〜9の直径20mmの丸棒に対し、さまざまな加工率で冷間加工を行なって、加工後の引張強さおよび硬さを測定した。その結果を、表4に実施例3−1〜3−9として示す。比較のため、発明合金1〜9のサンプルについて、冷間加工を行なわなかった場合の引張強さと硬さとを測定して、比較例3−1〜3−9として、表4に併記した。冷間加工後の引張強さおよび硬さは熱間圧延後の製品をしのぎ、時効処理を施した場合とほぼ同等であることが、表4のデータを表2および表3のデータと対比することにより理解される。 The 20 mm diameter round bars of the inventive alloys 1 to 9 produced in Example 1 were cold worked at various working rates, and the tensile strength and hardness after working were measured. The results are shown in Table 4 as Examples 3-1 to 3-9. For comparison, the samples of Invention Alloys 1-9 were measured for tensile strength and hardness when not cold worked, and are shown in Table 4 as Comparative Examples 3-1 to 3-9. Contrast the data in Table 4 with the data in Table 2 and Table 3 that the tensile strength and hardness after cold working are almost the same as when the product after hot rolling is overtaken and subjected to aging treatment. Is understood.

Figure 2005060821
Figure 2005060821

実施例1で製造した発明合金1〜9の直径20mmの丸棒に対し、加工率50%の冷間加工を行ない、ついで実施例1と同じ条件(500℃×8時間)の時効処理を施した。時効処理後の引張強さおよび硬さを測定した結果を、表5に示す。






The 20 mm diameter round bars of Inventive Alloys 1-9 manufactured in Example 1 were cold worked at a processing rate of 50%, and then subjected to aging treatment under the same conditions (500 ° C. × 8 hours) as in Example 1. did. Table 5 shows the results of measuring the tensile strength and hardness after aging treatment.






Figure 2005060821
Figure 2005060821

実施例1で製造した発明合金1〜9の直径20mmの丸棒に対し、加工率50%の冷間加工を行ない、ついで実施例1と同じ条件(900℃×1時間→空冷)の固溶化熱処理を施した。固溶化熱処理後の引張強さおよび硬さを測定した結果を、表6に示す。 The 20 mm diameter round bars of Inventive Alloys 1 to 9 manufactured in Example 1 were cold worked at a processing rate of 50%, and then solid solutiond under the same conditions as in Example 1 (900 ° C. × 1 hour → air cooling). Heat treatment was applied. Table 6 shows the results of measuring the tensile strength and hardness after the solution heat treatment.

Figure 2005060821
Figure 2005060821

実施例1で製造した発明合金1〜9の直径20mmの丸棒に対し、実施例1と同じ条件(900℃×1時間→空冷)の固溶化熱処理を施したのち、加工率50%の冷間加工を行ない、ついで実施例1と同じ条件(500℃×8時間)の時効処理を施した。時効処理後の引張強さおよび硬さを測定した結果を、表7に示す。







The 20 mm diameter round bars of inventive alloys 1 to 9 manufactured in Example 1 were subjected to a solution heat treatment under the same conditions as in Example 1 (900 ° C. × 1 hour → air cooling), and then cooled at a processing rate of 50%. Then, an aging treatment was performed under the same conditions as in Example 1 (500 ° C. × 8 hours). Table 7 shows the results of measurement of tensile strength and hardness after aging treatment.







Figure 2005060821
Figure 2005060821

本発明のβ型チタン合金は、強度および靭延性にすぐれ、かつ低コストであるから、自動車エンジン用のコンロッド、バルブおよびスプリング、航空機エンジン用のブレードおよびディスクのように、軽量で高強度を要求される各種の機械部品の材料として好適に使用される。本発明のβ型チタン合金はまた、釣り具やゴルフクラブヘッドなどのレジャー用品、めがねフレーム、アタッシェケースなどの生活用品に使用されるほか、パソコン、デジタルカメラ、携帯電話などのOA機器、車椅子などの医療福祉機器の構造部材、さらには、ビル、橋、道路などの建築材料として有用である。 Since the β-type titanium alloy of the present invention has excellent strength and toughness and is low in cost, it requires light weight and high strength such as connecting rods, valves and springs for automobile engines, blades and disks for aircraft engines. It is suitably used as a material for various machine parts. The β-type titanium alloy of the present invention is also used for leisure goods such as fishing gear and golf club heads, daily goods such as eyeglass frames and attache cases, OA equipment such as personal computers, digital cameras and mobile phones, and wheelchairs. It is useful as a structural member for medical welfare equipment, and further as a building material for buildings, bridges, roads and the like.

Claims (12)

質量%で、Cr:10〜20%およびFe:5%以下を含有し、残部がTiおよび不可避な不純物からなる合金組成を有するβ型チタン合金。 A β-type titanium alloy having an alloy composition containing, by mass%, Cr: 10 to 20% and Fe: 5% or less, with the balance being Ti and inevitable impurities. 合金が、さらにNi:7%以下を含有する請求項1のβ型チタン合金。 The β-type titanium alloy according to claim 1, wherein the alloy further contains Ni: 7% or less. 合金が、さらにAl:6%以下を含有する請求項1または2のβ型チタン合金。 The β-type titanium alloy according to claim 1 or 2, wherein the alloy further contains Al: 6% or less. 請求項1ないし3のいずれかに記載のβ型チタン合金を用いたゴルフクラブのヘッド。 A golf club head using the β-type titanium alloy according to any one of claims 1 to 3. 請求項1ないし3のいずれかに記載のβ型チタン合金に、βトランザス以上であって1100℃以下の温度で鍛造または圧延を行なって部品としたβ型チタン合金製の部品。 A β-type titanium alloy part made by forging or rolling the β-type titanium alloy according to any one of claims 1 to 3 at a temperature not lower than β transus and not higher than 1100 ° C. 鍛造または圧延を行なった後、固溶化熱処理を施して結晶粒を再結晶化させた請求項5のβ型チタン合金製の部品。 The part made of β-type titanium alloy according to claim 5, wherein the crystal grains are recrystallized by performing a solution heat treatment after forging or rolling. 鍛造または圧延を行なった後、時効処理を施した請求項5のβ型チタン合金製の部品。 The β-type titanium alloy part according to claim 5, which has been subjected to aging treatment after forging or rolling. 鍛造または圧延を行なった後、固溶化熱処理を施して結晶粒を再結晶化させ、ついで時効処理を施した請求項5のβ型チタン合金製の部品。 The part made of β-type titanium alloy according to claim 5, wherein after forging or rolling, a solution heat treatment is performed to recrystallize the crystal grains, and then an aging treatment is performed. 請求項1ないし3のいずれかに記載のβ型チタン合金に、βトランザス以上であって1100℃以下の温度で鍛造または圧延を行なった後、冷間加工を行なって部品としたβ型チタン合金製の部品。 The β-type titanium alloy according to any one of claims 1 to 3, wherein the β-type titanium alloy is subjected to forging or rolling at a temperature not lower than β transus and not higher than 1100 ° C, and then cold-worked to form a part. Made parts. 鍛造または圧延を行なった後、冷間加工に続いて、時効処理を施した請求項9のβ型チタン合金製の部品。 The part made of β-type titanium alloy according to claim 9, which is subjected to aging treatment after forging or rolling and subsequent to cold working. 鍛造または圧延を行なった後、固溶化熱処理を施して結晶粒を再結晶化させ、この固溶化熱処理の前および(または)後に冷間加工を行なって部品とした請求項9のβ型チタン合金製の部品。 The β-type titanium alloy according to claim 9, wherein after forging or rolling, a solution heat treatment is performed to recrystallize the crystal grains, and cold working is performed before and / or after the solution heat treatment to obtain a part. Made parts. 鍛造または圧延を行なった後、固溶化熱処理を施して結晶粒を再結晶化させ、この固溶化熱処理の前および(または)後に冷間加工を行なって部品とし、さらに時効処理を施した請求項9のβ型チタン合金製の部品。 Claims in which after forging or rolling, a solution heat treatment is performed to recrystallize the crystal grains, and before and / or after this solution heat treatment, a cold working is performed to obtain a part, and further an aging treatment is performed. 9 β-type titanium alloy parts.
JP2004052790A 2003-07-25 2004-02-27 β-type titanium alloy and parts made of β-type titanium alloy Expired - Fee Related JP4581425B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004052790A JP4581425B2 (en) 2003-07-25 2004-02-27 β-type titanium alloy and parts made of β-type titanium alloy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003280044 2003-07-25
JP2004052790A JP4581425B2 (en) 2003-07-25 2004-02-27 β-type titanium alloy and parts made of β-type titanium alloy

Publications (2)

Publication Number Publication Date
JP2005060821A true JP2005060821A (en) 2005-03-10
JP4581425B2 JP4581425B2 (en) 2010-11-17

Family

ID=34380096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004052790A Expired - Fee Related JP4581425B2 (en) 2003-07-25 2004-02-27 β-type titanium alloy and parts made of β-type titanium alloy

Country Status (1)

Country Link
JP (1) JP4581425B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006308027A (en) * 2005-04-28 2006-11-09 Yamaha Motor Co Ltd Connecting rod, manufacturing method thereof, internal combustion engine, automobile
WO2008050892A1 (en) 2006-10-26 2008-05-02 Nippon Steel Corporation Beta titanium alloy
GB2457998A (en) * 2007-12-19 2009-09-09 Gen Electric A method of working titanium alloys
JP2009270163A (en) * 2008-05-08 2009-11-19 Daido Steel Co Ltd Titanium alloy
JP2010279581A (en) * 2009-06-05 2010-12-16 Japan Lifeline Co Ltd Guide wire
CN102400013A (en) * 2010-09-09 2012-04-04 北京正安广泰新材料科技有限公司 Low-cost beta titanium alloy
DE102007031508B4 (en) 2006-07-27 2019-03-28 Denso Corporation Engine and wiper device containing the engine
CN111647835A (en) * 2020-06-01 2020-09-11 南京理工大学 Method for improving mechanical heat treatment of beta-type titanium alloy
KR102434519B1 (en) * 2021-12-29 2022-08-22 한국재료연구원 Method of manufacturing high strength titanium alloy using ferrochrome and high strength titanium alloy
CN115386819A (en) * 2022-08-09 2022-11-25 中国第二重型机械集团德阳万航模锻有限责任公司 Aging temperature-punching control method for ultrahigh-strength titanium alloy

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0361341A (en) * 1989-07-28 1991-03-18 Amano Masuo High strength titanium alloy having excellent workability
JPH03134126A (en) * 1989-10-19 1991-06-07 Agency Of Ind Science & Technol Titanium alloy excellent in erosion resistance and production thereof
JP2002235133A (en) * 2001-02-08 2002-08-23 Daido Steel Co Ltd beta TYPE TITANIUM ALLOY

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0361341A (en) * 1989-07-28 1991-03-18 Amano Masuo High strength titanium alloy having excellent workability
JPH03134126A (en) * 1989-10-19 1991-06-07 Agency Of Ind Science & Technol Titanium alloy excellent in erosion resistance and production thereof
JP2002235133A (en) * 2001-02-08 2002-08-23 Daido Steel Co Ltd beta TYPE TITANIUM ALLOY

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006308027A (en) * 2005-04-28 2006-11-09 Yamaha Motor Co Ltd Connecting rod, manufacturing method thereof, internal combustion engine, automobile
DE102007031508B4 (en) 2006-07-27 2019-03-28 Denso Corporation Engine and wiper device containing the engine
US9816158B2 (en) 2006-10-26 2017-11-14 Nippon Steel & Sumitomo Metal Corporation β-type titanium alloy
US9822431B2 (en) 2006-10-26 2017-11-21 Nippon Steel & Sumitomo Metal Corporation β-type titanium alloy
US10125411B2 (en) 2006-10-26 2018-11-13 Nippon Steel & Sumitomo Metal Corporation β-type titanium alloy
WO2008050892A1 (en) 2006-10-26 2008-05-02 Nippon Steel Corporation Beta titanium alloy
GB2457998A (en) * 2007-12-19 2009-09-09 Gen Electric A method of working titanium alloys
JP2009270163A (en) * 2008-05-08 2009-11-19 Daido Steel Co Ltd Titanium alloy
JP2010279581A (en) * 2009-06-05 2010-12-16 Japan Lifeline Co Ltd Guide wire
CN102400013A (en) * 2010-09-09 2012-04-04 北京正安广泰新材料科技有限公司 Low-cost beta titanium alloy
CN111647835A (en) * 2020-06-01 2020-09-11 南京理工大学 Method for improving mechanical heat treatment of beta-type titanium alloy
KR102434519B1 (en) * 2021-12-29 2022-08-22 한국재료연구원 Method of manufacturing high strength titanium alloy using ferrochrome and high strength titanium alloy
WO2023128356A1 (en) * 2021-12-29 2023-07-06 한국재료연구원 Method for manufacturing high-strength titanium alloy by using ferrochrome, and high-strength titanium alloy
CN115386819A (en) * 2022-08-09 2022-11-25 中国第二重型机械集团德阳万航模锻有限责任公司 Aging temperature-punching control method for ultrahigh-strength titanium alloy

Also Published As

Publication number Publication date
JP4581425B2 (en) 2010-11-17

Similar Documents

Publication Publication Date Title
JP5287062B2 (en) Low specific gravity titanium alloy, golf club head, and method for manufacturing low specific gravity titanium alloy parts
JP5315888B2 (en) α-β type titanium alloy and method for melting the same
JP7223121B2 (en) High-strength fastener material by forged titanium alloy and its manufacturing method
JP5477519B1 (en) Resource-saving titanium alloy member excellent in strength and toughness and manufacturing method thereof
JP2004010963A (en) HIGH STRENGTH Ti ALLOY AND ITS PRODUCTION METHOD
JP2010275606A (en) Titanium alloy
JP2016183407A (en) α-β TYPE TITANIUM ALLOY
JP4581425B2 (en) β-type titanium alloy and parts made of β-type titanium alloy
JP5144269B2 (en) High-strength Co-based alloy with improved workability and method for producing the same
JP4507094B2 (en) Ultra high strength α-β type titanium alloy with good ductility
JP2006200008A (en) beta-TYPE TITANIUM ALLOY AND PARTS MADE FROM beta-TYPE TITANIUM ALLOY
JP2005076098A (en) HIGH-STRENGTH alpha-beta TITANIUM ALLOY
JP2012126944A (en) α-β TYPE TITANIUM ALLOY HAVING LOW YOUNG&#39;S MODULUS OF &lt;75 GPa, AND METHOD FOR PRODUCING THE SAME
JPS61250138A (en) Titanium alloy excelling in cold workability
JP5064356B2 (en) Titanium alloy plate having high strength and excellent formability, and method for producing titanium alloy plate
JP5021873B2 (en) Titanium plate excellent in ductility and manufacturing method thereof
EP3112483A1 (en) Welded pipe of + titanium alloy with excellent strength and rigidity in pipe-length direction, and process for producing same
JP2007231313A (en) beta-TYPE TITANIUM ALLOY
JP4263987B2 (en) High-strength β-type titanium alloy
JP5476175B2 (en) Titanium coil with high strength and excellent strength stability
JP2009270163A (en) Titanium alloy
JP4528109B2 (en) Low elastic β-titanium alloy having an elastic modulus of 65 GPa or less and method for producing the same
JP2007239030A (en) Alpha plus beta type titanium alloy with high specific strength, and its manufacturing method
JP5929251B2 (en) Iron alloy
JP2003013159A (en) Fastener material of titanium alloy and manufacturing method therefor

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050121

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100816

R150 Certificate of patent or registration of utility model

Ref document number: 4581425

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees