JP2005076098A - HIGH-STRENGTH alpha-beta TITANIUM ALLOY - Google Patents

HIGH-STRENGTH alpha-beta TITANIUM ALLOY Download PDF

Info

Publication number
JP2005076098A
JP2005076098A JP2003309775A JP2003309775A JP2005076098A JP 2005076098 A JP2005076098 A JP 2005076098A JP 2003309775 A JP2003309775 A JP 2003309775A JP 2003309775 A JP2003309775 A JP 2003309775A JP 2005076098 A JP2005076098 A JP 2005076098A
Authority
JP
Japan
Prior art keywords
titanium alloy
strength
ductility
hot
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003309775A
Other languages
Japanese (ja)
Inventor
Kimisuke Ono
公輔 小野
Soichiro Kojima
壮一郎 小島
Hideto Oyama
英人 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2003309775A priority Critical patent/JP2005076098A/en
Publication of JP2005076098A publication Critical patent/JP2005076098A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Forging (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-strength α-β titanium alloy which achieves high strength through ageing treatment and shows no deterioration of ductility, even when used at an elevated temperature. <P>SOLUTION: The high-strength α-β titanium alloy comprises 3.0-7.0% Al and 0.08-0.25% C as α stabilizing elements, 0.5-3.5% Cr and 0.3-1.0% Fe as β stabilizing elements, 2.0-3.5% (Mo+0.66V) and the balance being Ti and unavoidable impurities and, if required, may further contain at least one element chosen from the group consisting of ≤5% Sn, ≤5% Zr and ≤0.8% Si. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、実用領域で高強度を示すと共に高温時の変形抵抗が小さくて熱間加工性(熱間圧延性や熱間鍛造性)に優れ、あるいは更に時効処理によって高強度化しても延性の低下がなく、且つ高温使用時においても延性の低下がない高強度α−β型チタン合金に関するものである。また、このチタン合金は、その特性を活かして、例えば航空機分野、自動車分野、船舶分野などに幅広く利用できるものである。   The present invention exhibits high strength in a practical range, has low deformation resistance at high temperatures and is excellent in hot workability (hot rollability and hot forgeability), or is ductile even if the strength is increased by aging treatment. The present invention relates to a high-strength α-β type titanium alloy that does not deteriorate and does not deteriorate ductility even when used at high temperatures. In addition, this titanium alloy can be widely used in the fields of aircraft, automobiles, ships, etc., taking advantage of its characteristics.

Ti−6Al−4V合金に代表されるα−β型合金は、軽量且つ高強度で優れた耐食性を有していることから、航空機や自動車、船舶分野を始めとする様々な分野で、鉄鋼材料に変わる構造材や外板材等として実用化が積極的に進められている。   Since α-β type alloys represented by Ti-6Al-4V alloy are lightweight and have high strength and excellent corrosion resistance, steel materials are used in various fields including aircraft, automobiles, and ships. Practical use is being actively promoted as structural materials and skin materials that will be replaced by

しかしながら、高強度のチタン合金はα−β温度領域、即ち熱間加工温度域での変形抵抗が大きくて加工性や2次加工性が悪いため、汎用化を進める上で大きな障害となっている。こうしたことから、熱間加工時の加工回数と加熱回数を増やし、製品歩留まりを犠牲にして十分な余肉をつけた状態で熱間加工を行っているのが実状であり、熱間プレス加工を行うにしても、適用可能なプレス能力の限界サイズに甘んじている。また棒状や線状に熱間加工する場合でも、高速圧延を採用すると大きな変形抵抗に起因して大きな加工発熱を生じ組織不良を招くので低速で圧延せざるを得ず、生産性を高める上で大きな障害となっている。   However, a high-strength titanium alloy has a large deformation resistance in the α-β temperature region, that is, a hot working temperature region, and has poor workability and secondary workability. . For this reason, it is the actual situation that hot working is performed with a sufficient surplus at the expense of product yield by increasing the number of times and the number of heating during hot working. Even if you do it, you are bound by the limit size of applicable press capacity. Also, even when hot working in a rod shape or wire shape, if high speed rolling is adopted, large processing heat is generated due to a large deformation resistance, resulting in a defective structure. It has become a major obstacle.

一方、α−β型やβ型のチタン合金では、時効処理を行ってより高強度化を図ることも採用されているが、こうした処理を行った場合でも延性の劣化を招くことのないような特性が要求されることになる。また、チタン合金では、例えばチタン材を用いたインペラーの様に、高温環境下(例えば500℃程度の温度範囲)で使用したいという要求があり、時効処置した後の高温使用によっても延性が劣化しないことが望まれている。   On the other hand, in α-β type and β type titanium alloys, it is also adopted to increase the strength by performing an aging treatment, but even if such a treatment is performed, the ductility is not deteriorated. Characteristics will be required. In addition, titanium alloys are required to be used in a high-temperature environment (for example, a temperature range of about 500 ° C.) like an impeller using a titanium material, and ductility does not deteriorate even when used at a high temperature after aging treatment. It is hoped that.

本発明はこうした状況の下になされたものであって、その目的は、実用領域で高強度を示すと共に高温時の変形抵抗が小さくて熱間圧延性や熱間鍛造性等の熱間加工性に優れ、あるいは更に時効処理によって高強度を達成しても延性が低下することなく、しかも高温で使用しても延性が低下することがないような高強度α−β型チタン合金を提供することにある。   The present invention has been made under such circumstances, and its purpose is to exhibit high strength in a practical range and low deformation resistance at high temperatures, and hot workability such as hot rollability and hot forgeability. A high-strength α-β type titanium alloy that does not deteriorate ductility even when high strength is achieved by aging treatment, and does not decrease ductility even when used at high temperatures. It is in.

上記の目的を達成し得た本発明の高強度α−β型チタン合金とは、α安定化元素としてAl:3.0〜7.0%およびC:0.08〜0.25%、β安定化元素としてCr:0.5〜3.5%およびFe:0.3〜1.0%を夫々含有し、且つ(Mo+0.66V):2.0〜3.5%を含み、残部がTiおよび不可避不純物からなるものである点に要旨を有するものである。   The high-strength α-β type titanium alloy of the present invention capable of achieving the above-mentioned object is Al: 3.0 to 7.0% and C: 0.08 to 0.25%, β as an α stabilizing element. As stabilizing elements, Cr: 0.5 to 3.5% and Fe: 0.3 to 1.0%, respectively, and (Mo + 0.66V): 2.0 to 3.5%, the balance being It has a gist in that it consists of Ti and inevitable impurities.

本発明のチタン合金においては、必要によって、Sn:5%以下、Zr:5%以下およびSi:0.8%以下よりなる群から選択される1種以上の元素を含むものであっても良く、これらの元素の添加はチタン合金の耐熱性向上に寄与する。   The titanium alloy of the present invention may contain one or more elements selected from the group consisting of Sn: 5% or less, Zr: 5% or less, and Si: 0.8% or less, if necessary. The addition of these elements contributes to improving the heat resistance of the titanium alloy.

本発明は以上の様に構成されており、α安定化元素としてAlとC、β安定化元素としてCr、Fe、MoおよびVを適量含有させることにより、実用領域で高強度を示すと共に高温時の変形抵抗が小さくて熱間加工性に優れ、あるいは更に時効処理によって高強度を達成しても延性が低下することなく、しかも高温で使用しても延性が低下することがないような高強度α−β型チタン合金が提供し得ることとなった。   The present invention is configured as described above, and by including appropriate amounts of Al and C as α-stabilizing elements and Cr, Fe, Mo and V as β-stabilizing elements, it exhibits high strength in a practical range and at high temperatures. High deformation strength with low deformation resistance and excellent hot workability, or even when high strength is achieved by aging treatment, ductility does not decrease, and ductility does not decrease even when used at high temperatures An α-β type titanium alloy could be provided.

本発明者らは、上記目的を達成するために、特に合金組成を中心に研究を進めてきた。ところで、常温〜約500℃程度の実用温度域ではTi−6Al−4V合金に匹敵し、或はこれを上回る強度を有しつつ、卓越した熱間加工性を有するチタン合金が開発されており、その技術的意義が認められたので同一出願人によって先に出願している(特願2002−257053号)。   In order to achieve the above-mentioned object, the present inventors have made researches focusing on the alloy composition. By the way, a titanium alloy having excellent hot workability has been developed while having a strength comparable to or exceeding that of Ti-6Al-4V alloy in a practical temperature range from room temperature to about 500 ° C. Since its technical significance was recognized, it was filed earlier by the same applicant (Japanese Patent Application No. 2002-257053).

このチタン合金は、α安定化元素としてAlを3〜7%、Cを0.08〜0.25%含有し、且つβ安定化元素としてCrを2.0〜6.0%、Feを0.3〜1.0%含有するものであるが、この合金では高温強度や熱間加工性の点では優れているものの、時効処理したときの延性劣化や高温使用時における延性劣化が生じることがあるという問題があった。   This titanium alloy contains 3 to 7% Al and 0.08 to 0.25% C as an α stabilizing element, 2.0 to 6.0% Cr as a β stabilizing element, and 0 Fe. Although this alloy is excellent in terms of high-temperature strength and hot workability, it may cause ductile deterioration when subjected to aging treatment or ductility deterioration during high-temperature use. There was a problem that there was.

本発明者らは、先に開発された上記チタン合金を基本とし、この合金のおける時効特性や延性を改善するべく、更に検討を進めた。その結果、上記の化学成分組成のうちβ安定化元素であるCrをできるだけ低減すると共に、MoとVを適量含有させれば、上記目的に適うチタン合金が実現できることを見出し、本発明を完成した。   The inventors of the present invention have further studied to improve the aging characteristics and ductility of the alloy based on the previously developed titanium alloy. As a result, the present inventors have found that a titanium alloy suitable for the above purpose can be realized by reducing Cr as a β-stabilizing element in the chemical component composition as much as possible and containing appropriate amounts of Mo and V, thereby completing the present invention. .

本発明のチタン合金において、上記各元素の含有量の範囲を定めた理由は下記の通りである。まずAl含有量は、Ti−6Al−4V相当の強度を確保するためにその下限値を定め、その上限値については、熱間加工条件下において変形抵抗の上昇と熱間加工性の低下を抑えることのできる許容限として定めた。即ち、Al含有量が3.0%未満ではTi−6Al−4V相当の強度を確保することができず、7.0%を超えると熱間加工性が劣化する。またC量についても、Ti−6Al−4V相当の強度を確保するために下限値を規定し、また上限値については、TiCの多量析出により熱間加工性や疲労特性を劣化することのない許容限として定めている。   In the titanium alloy of the present invention, the reason why the range of the content of each element is determined is as follows. First, the Al content is set to a lower limit for securing the strength equivalent to Ti-6Al-4V, and the upper limit suppresses an increase in deformation resistance and a decrease in hot workability under hot working conditions. It was defined as the allowable limit. That is, when the Al content is less than 3.0%, strength equivalent to Ti-6Al-4V cannot be ensured, and when it exceeds 7.0%, hot workability deteriorates. Also, for the amount of C, a lower limit is defined to ensure the strength equivalent to Ti-6Al-4V, and the upper limit is an allowable value that does not deteriorate hot workability and fatigue characteristics due to a large amount of TiC precipitation. As a limit.

一方、CrとFeは、β安定化元素であり、このβ安定化元素は一般的に強度および変形抵抗を上昇させるが、遷移元素であるCrとFeは、Ti中で高速拡散するため高温での強化にはあまり寄与しない。従って、これらの元素の添加量を適切に制御すれば、常温〜500℃レベルの実用温度域では高強度を確保しつつ、高温の加工条件下での変形抵抗は少なく、優れた熱間加工性を与えるものと考えられる。即ち、CrとFeの下限を定めたのは、同様にTi−6Al−4V相当の強度を確保するためであり、上限値については、熱間加工時の変形抵抗を上昇させず且つβ変態点を下げ過ぎないための要件として定めている。但し、Crについては、その含有量が多くなると時効処理後の延性の劣化および高温使用時における延性劣化を招くので、その上限を3.5%と定めた。   On the other hand, Cr and Fe are β-stabilizing elements, and these β-stabilizing elements generally increase the strength and deformation resistance, but the transition elements Cr and Fe diffuse at high speed in Ti, so It does not contribute much to strengthening. Therefore, if the addition amount of these elements is appropriately controlled, high strength is ensured in a practical temperature range from room temperature to 500 ° C., and deformation resistance under high temperature processing conditions is small, and excellent hot workability. It is thought that gives. In other words, the lower limit of Cr and Fe is set in order to ensure the strength equivalent to Ti-6Al-4V, and the upper limit value does not increase the deformation resistance during hot working and the β transformation point. Is set as a requirement not to lower the level too much. However, as the Cr content increases, ductility deterioration after aging treatment and ductility deterioration at high temperature use are caused, so the upper limit was set to 3.5%.

本発明のチタン合金では、MoやVを必須成分として含むものである。これらの元素は上記Crと同じくβ安定化元素であるが、Crと異なり、時効硬化現象の発現および時効硬化後の良好な延性の確保、並びに高温使用時の延性劣化抑制に寄与する。こうした効果を発揮させるためには、(Mo+0.66V)で2.0%含有させる必要があるが、過剰に含有されると変態点が下がるため、3.5%以下とすべきである。尚、「0.66」の数値は、Mo当量と呼ぶべきものであり、MoとVとの作用の程度を均一化させるための係数である。   The titanium alloy of the present invention contains Mo and V as essential components. These elements are β-stabilizing elements like Cr, but unlike Cr, they contribute to the development of age-hardening phenomena, ensuring good ductility after age-hardening, and suppressing ductility deterioration during high-temperature use. In order to exert such an effect, it is necessary to contain 2.0% at (Mo + 0.66V), but if it is excessively contained, the transformation point is lowered, so it should be 3.5% or less. The numerical value of “0.66” should be called Mo equivalent, and is a coefficient for making the degree of action of Mo and V uniform.

本発明のチタン合金における基本的な化学成分組成は上記の通りであり、残部は実質的にTiからなるものであるが、必要により所定量のSn,Zr,Si等を含有させることも有効である。これらの元素は、チタン合金の耐熱性を更に向上するのに有効であるが、常温〜500℃レベルの温度域での高強度と熱間加工性を阻害しないように、Sn,Zrは各々5%程度以下、Siについては0.8%程度以下に抑えるのがよい。   The basic chemical component composition in the titanium alloy of the present invention is as described above, and the balance is substantially made of Ti, but it is also effective to contain a predetermined amount of Sn, Zr, Si, etc. if necessary. is there. These elements are effective in further improving the heat resistance of the titanium alloy, but Sn and Zr are each 5 in order not to impede high strength and hot workability in a temperature range from room temperature to 500 ° C. It is better to keep it to about 0.8% or less and Si about 0.8% or less.

本発明のチタン合金の製造条件も特に限定されないが、好ましい条件としては、前記成分組成の好ましい要件を満たすチタン合金を、常法に従って溶製した後、該鋳造塊を常法よりやや低い温度域、好ましくは当該チタン合金のβ変態点(Tβ)を基準にしてTβ〜(Tβ+200℃)、より好ましくはTβ〜(Tβ+100℃)に加熱してから、70〜80%程度の加工率で荒加工し、次いで、好ましくは(Tβ−50℃)〜800℃程度の温度域で、60%以上の加工率で仕上げ圧延加工を施す方法である。該仕上げ加工の後は、必要により700〜800℃×120分程度で焼鈍することも有効である。また、本発明のチタン合金は、その後時効処理して使用されることを想定したものであるが、この時効処理条件は、通常の条件で行えばよく、例えば450〜600℃で2〜10時間程度である。   The production conditions of the titanium alloy of the present invention are not particularly limited, but preferred conditions include a titanium alloy satisfying the preferred requirements of the above component composition, after melting in accordance with a conventional method, and then the cast ingot in a temperature range slightly lower than that of the conventional method. Roughing is preferably performed at a processing rate of about 70 to 80% after heating to Tβ to (Tβ + 200 ° C.), more preferably Tβ to (Tβ + 100 ° C.) based on the β transformation point (Tβ) of the titanium alloy. Then, it is a method in which finish rolling is preferably performed at a processing rate of 60% or more in a temperature range of about (Tβ-50 ° C.) to 800 ° C. After the finishing, it is also effective to anneal at about 700 to 800 ° C. for about 120 minutes if necessary. The titanium alloy of the present invention is assumed to be used after aging treatment. The aging treatment conditions may be performed under normal conditions, for example, at 450 to 600 ° C. for 2 to 10 hours. Degree.

尚、チタン合金の変態点については、熱間加工途中で被加工材が降温した場合でも、熱間加工を安定して継続可能にするための特性として、最低でも850℃以上の加熱温度を確保して熱間加工を行うには、β変態点は850℃よりも高いことが好ましく、より好ましくは900℃以上である。ちなみにβ変態点が850℃以下のものでは、等軸組織を得るのに加熱温度を850℃(β変態点)以下の比較的低温にしなければならず、如何なる組織であれ加工性が著しく劣化し、加工時に割れなどを引き起こし易くなる。   As for the transformation point of titanium alloy, a minimum heating temperature of 850 ° C or higher is secured as a characteristic for enabling stable hot working even when the workpiece temperature drops during hot working. In order to perform hot working, the β transformation point is preferably higher than 850 ° C., more preferably 900 ° C. or higher. By the way, when the β transformation point is 850 ° C or lower, the heating temperature must be relatively low at 850 ° C (β transformation point) or lower to obtain an equiaxed structure, and the workability is remarkably deteriorated in any structure. It becomes easy to cause a crack etc. at the time of processing.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらは何れも本発明の技術的範囲に含まれる。    EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. It is also possible to implement, and they are all included in the technical scope of the present invention.

下記表1に示す各種化学成分組成のチタン合金を、アーク溶解法により溶製して直径:50mm×長さ:15mmの棒状の鋳塊(120g)を製造し、その後の処理に供した。   Titanium alloys having various chemical composition shown in Table 1 below were melted by an arc melting method to produce a rod-shaped ingot (120 g) having a diameter of 50 mm × length of 15 mm, and subjected to subsequent processing.

上記各試験片に対して、1200℃に加熱した後、厚さ10mmまで熱延した。そして900℃で60%の熱延を行い、4×50×80(mm)の形状にした。次いで、700×2時間加熱→空冷で焼鈍を施した後、880℃で1時間加熱後水焼入れ(WQ)する溶体化処理し、引き続き500℃×8時間→空冷(AC)の時効処理を施した。   Each of the above test pieces was heated to 1200 ° C. and then hot-rolled to a thickness of 10 mm. And it hot-rolled 60% at 900 degreeC, and it was set as the shape of 4x50x80 (mm). Next, after heating for 700 × 2 hours → annealing with air cooling, solution treatment is performed by heating at 880 ° C. for 1 hour followed by water quenching (WQ), followed by aging treatment of 500 ° C. for 8 hours → air cooling (AC). did.

Figure 2005076098
Figure 2005076098

上記各種時効処理材を用いて、室温での機械的適性(降伏応力YS、引張強度TS、伸びElおよび絞りRA)をASTM E8に準拠して測定した。その結果を、下記表2に示す。またこのうち、チタン合金中の[Mo+0.66V]含有量がチタン合金の引張強度TSおよび伸びElに与える影響を図1に示す。これらの結果から明らかなように、MoとVを所定の割合で含有することによって、時効処理後における良好な伸びElが確保できていることが分かる。   Using the various aging treatment materials, mechanical suitability (yield stress YS, tensile strength TS, elongation El, and drawing RA) at room temperature was measured in accordance with ASTM E8. The results are shown in Table 2 below. Of these, the influence of the [Mo + 0.66V] content in the titanium alloy on the tensile strength TS and elongation El of the titanium alloy is shown in FIG. As is clear from these results, it can be seen that by containing Mo and V at a predetermined ratio, a good elongation El after the aging treatment can be secured.

Figure 2005076098
Figure 2005076098

上記表1に示したチタン合金Dの他、Ti−4.5Al−4Cr−0.5Fe−0.2C合金(チタン合金I)および従来のTi−6Al−4V合金について、実施例1と同様にして得られた熱延材(時効処理せず)を用い、室温〜500℃までの引張特性(ASTM E8に準拠)を測定した。このときの歪速度は0.2%/minである。また、各鍛造材を大気雰囲気に700〜1000℃で5分間加熱し、その直後に、高速引張試験(富士電波工機社:商品名「サーメックマスターZ」)を用いて、歪速度:20%/minで高速引張試験を行い、引張特性を測定した。   In addition to the titanium alloy D shown in Table 1, the Ti-4.5Al-4Cr-0.5Fe-0.2C alloy (titanium alloy I) and the conventional Ti-6Al-4V alloy were the same as in Example 1. The tensile properties (based on ASTM E8) from room temperature to 500 ° C. were measured using the hot-rolled material obtained without aging treatment. The strain rate at this time is 0.2% / min. In addition, each forged material was heated to 700 to 1000 ° C. for 5 minutes in an air atmosphere, and immediately after that, using a high-speed tensile test (Fuji Electric Koki Co., Ltd .: trade name “Cermec Master Z”), strain rate: 20 A high speed tensile test was conducted at% / min to measure tensile properties.

その結果を、図2に示す。尚、図2には、高速引張試験の例として純チタン(JIS 2種)を用いた場合の結果についても示した。   The result is shown in FIG. In addition, in FIG. 2, the result at the time of using pure titanium (JIS 2 types) as an example of a high-speed tension test was also shown.

この結果から明らかなように、代表的な高強度チタンであるTi−6Al−4V合金は、常温〜500℃の実用温度域で高強度を有している反面、熱間加工温度である700〜1000℃の高温でもかなりの高強度を維持しており、変形抵抗が大きいために熱間加工性に欠ける。   As is clear from this result, the Ti-6Al-4V alloy, which is a typical high-strength titanium, has high strength in a practical temperature range of room temperature to 500 ° C., but has a hot working temperature of 700- Even at a high temperature of 1000 ° C., a considerably high strength is maintained, and since the deformation resistance is large, the hot workability is lacking.

これに対して、本発明のチタン合金Dおよびさきに開発されたチタン合金Iでは、常温〜500℃での実用温度域では従来のTi−6Al−4V合金を上回る高強度を有しており、しかも熱間加工が想定される800〜1000℃の高温域での変形抵抗は、易加工性の純チタンと同程度に低く、熱間加工性において非常に優れたものであることが分かる。   On the other hand, the titanium alloy D of the present invention and the titanium alloy I developed earlier have higher strength than the conventional Ti-6Al-4V alloy in the practical temperature range from room temperature to 500 ° C., In addition, it can be seen that the deformation resistance in the high temperature range of 800 to 1000 ° C. where hot working is assumed is as low as that of pure titanium, which is easy to work, and is very excellent in hot workability.

実施例2におけるチタン合金D(本発明材)およびチタン合金Iを用い、実施例1と同様にして熱延、焼鈍および溶体化処理した試験片を得、引き続き500℃×8時間→空冷(AC)の時効処理を施したときの引張特性(降伏応力YS、伸びEl、絞りRA)について調査した。   Using the titanium alloy D (material of the present invention) and the titanium alloy I in Example 2, a test piece subjected to hot rolling, annealing and solution treatment in the same manner as in Example 1 was obtained, and subsequently, 500 ° C. × 8 hours → air cooling (AC ) Was examined for tensile properties (yield stress YS, elongation El, drawing RA).

その結果を、図3に示す。この結果から明らかなように、MoやVを含まないチタン合金I(Ti−4.5Al−4Cr−0.5Fe−0.2C合金)では、500℃の時効処理によって延性(伸びElおよび絞りRA)が極端に低下するが、本発明のチタン合金Dでは延性が低下していないことが分かる。   The result is shown in FIG. As is clear from this result, in the titanium alloy I (Ti-4.5Al-4Cr-0.5Fe-0.2C alloy) containing no Mo or V, ductility (elongation El and drawing RA) is obtained by aging treatment at 500 ° C. However, the ductility of the titanium alloy D of the present invention is not lowered.

実施例2におけるチタン合金D(本発明材)を用い、実施例1と同様にして圧延、焼鈍および溶体化処理した試験片を得、引き続き480〜570℃の温度範囲で8時間→空冷(AC)の時効処理を施したときの引張特性(引張強度TS、降伏応力YS、伸びEl、絞りRA)について調査した。   Using titanium alloy D (material of the present invention) in Example 2, a test piece rolled, annealed and solution treated in the same manner as in Example 1 was obtained, and subsequently in the temperature range of 480 to 570 ° C. for 8 hours → air cooling (AC ) Was subjected to tensile properties (tensile strength TS, yield stress YS, elongation El, drawing RA).

その結果を、図4に示す。この結果から明らかなように、所定量のMoやVを含む本発明のチタン合金Dでは、時効処理によって良好な強度−延性バランスが得られていることが分かる。   The result is shown in FIG. As is clear from this result, it can be seen that in the titanium alloy D of the present invention containing a predetermined amount of Mo or V, a good strength-ductility balance is obtained by the aging treatment.

チタン合金中の[Mo+0.66V]含有量がチタン合金の引張強度TSおよび伸びElに与える影響を示したグラフである。It is the graph which showed the influence which [Mo + 0.66V] content in a titanium alloy has on the tensile strength TS and elongation El of a titanium alloy. 各種チタン合金における室温〜高温での引張特性を示すグラフである。It is a graph which shows the tensile characteristics in room temperature-high temperature in various titanium alloys. 各チタン合金について時効処理による延性に与える影響を示すグラフである。It is a graph which shows the influence which it has on the ductility by aging treatment about each titanium alloy. 時効処理温度は引張特性(引張強度TS、降伏応力YS、伸びEl、絞りRA)に与える影響を示すグラフである。The aging treatment temperature is a graph showing the effect on tensile properties (tensile strength TS, yield stress YS, elongation El, drawing RA).

Claims (2)

α安定化元素としてAl:3.0〜7.0%(化学成分の場合は質量%を表わす、以下同じ)およびC:0.08〜0.25%、β安定化元素としてCr:0.5〜3.5%およびFe:0.3〜1.0%を夫々含有し、且つ(Mo+0.66V):2.0〜3.5%を含み、残部がTiおよび不可避不純物からなるものであることを特徴とする高強度α−β型チタン合金。   Al as the α-stabilizing element: 3.0 to 7.0% (in the case of chemical components, mass%, the same applies hereinafter) and C: 0.08 to 0.25%, Cr as the β-stabilizing element: 0.0. 5 to 3.5% and Fe: 0.3 to 1.0%, respectively, and (Mo + 0.66V): 2.0 to 3.5%, with the balance being Ti and inevitable impurities A high-strength α-β type titanium alloy characterized by being. 更に他の元素として、Sn:5%以下、Zr:5%以下およびSi:0.8%以下よりなる群から選択される1種以上の元素を含むものである請求項1に記載の高強度α−β型チタン合金。   The high-strength α- according to claim 1, further comprising at least one element selected from the group consisting of Sn: 5% or less, Zr: 5% or less, and Si: 0.8% or less as another element. β-type titanium alloy.
JP2003309775A 2003-09-02 2003-09-02 HIGH-STRENGTH alpha-beta TITANIUM ALLOY Pending JP2005076098A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003309775A JP2005076098A (en) 2003-09-02 2003-09-02 HIGH-STRENGTH alpha-beta TITANIUM ALLOY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003309775A JP2005076098A (en) 2003-09-02 2003-09-02 HIGH-STRENGTH alpha-beta TITANIUM ALLOY

Publications (1)

Publication Number Publication Date
JP2005076098A true JP2005076098A (en) 2005-03-24

Family

ID=34411832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003309775A Pending JP2005076098A (en) 2003-09-02 2003-09-02 HIGH-STRENGTH alpha-beta TITANIUM ALLOY

Country Status (1)

Country Link
JP (1) JP2005076098A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007084915A (en) * 2005-09-23 2007-04-05 Taifu Chin Low density alloy for golf club head
JP2007084865A (en) * 2005-09-21 2007-04-05 Kobe Steel Ltd alpha-beta TYPE TITANIUM ALLOY SUPERIOR IN MACHINABILITY AND HOT WORKABILITY
JP2007084864A (en) * 2005-09-21 2007-04-05 Kobe Steel Ltd alpha-beta TYPE TITANIUM ALLOY SUPERIOR IN MACHINABILITY AND HOT WORKABILITY
CN102304633A (en) * 2011-08-29 2012-01-04 西部钛业有限责任公司 Manufacturing method of TA18 titanium alloy ingots
CN103045978A (en) * 2012-11-19 2013-04-17 中南大学 Preparation method of TCl8 titanium alloy plate
JP2013534964A (en) * 2010-04-30 2013-09-09 ケステック イノベーションズ エルエルシー Titanium alloy
CN103495834A (en) * 2013-09-12 2014-01-08 宝鸡鑫诺新金属材料有限公司 Method for manufacturing medical TC20 titanium alloy plates for surgical implants
CN106555076A (en) * 2017-01-09 2017-04-05 北京工业大学 A kind of resistance to 650 DEG C of high-temperature titanium alloy materials and preparation method thereof
CN107378215A (en) * 2017-08-22 2017-11-24 沈阳钛成科技合伙企业(普通合伙) A kind of wear-resistant coating of titanium alloy cutter and preparation method thereof
CN112680630A (en) * 2020-12-04 2021-04-20 中国航发北京航空材料研究院 Vacuum heat treatment method for ultra-high-toughness, medium-strength and high-plasticity TC32 titanium alloy part
US11780003B2 (en) 2010-04-30 2023-10-10 Questek Innovations Llc Titanium alloys

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007084865A (en) * 2005-09-21 2007-04-05 Kobe Steel Ltd alpha-beta TYPE TITANIUM ALLOY SUPERIOR IN MACHINABILITY AND HOT WORKABILITY
JP2007084864A (en) * 2005-09-21 2007-04-05 Kobe Steel Ltd alpha-beta TYPE TITANIUM ALLOY SUPERIOR IN MACHINABILITY AND HOT WORKABILITY
JP4493028B2 (en) * 2005-09-21 2010-06-30 株式会社神戸製鋼所 Α-β type titanium alloy with excellent machinability and hot workability
JP4493029B2 (en) * 2005-09-21 2010-06-30 株式会社神戸製鋼所 Α-β type titanium alloy with excellent machinability and hot workability
JP2007084915A (en) * 2005-09-23 2007-04-05 Taifu Chin Low density alloy for golf club head
US10471503B2 (en) 2010-04-30 2019-11-12 Questek Innovations Llc Titanium alloys
JP2013534964A (en) * 2010-04-30 2013-09-09 ケステック イノベーションズ エルエルシー Titanium alloy
US11780003B2 (en) 2010-04-30 2023-10-10 Questek Innovations Llc Titanium alloys
CN102304633A (en) * 2011-08-29 2012-01-04 西部钛业有限责任公司 Manufacturing method of TA18 titanium alloy ingots
CN103045978A (en) * 2012-11-19 2013-04-17 中南大学 Preparation method of TCl8 titanium alloy plate
CN103495834A (en) * 2013-09-12 2014-01-08 宝鸡鑫诺新金属材料有限公司 Method for manufacturing medical TC20 titanium alloy plates for surgical implants
CN106555076A (en) * 2017-01-09 2017-04-05 北京工业大学 A kind of resistance to 650 DEG C of high-temperature titanium alloy materials and preparation method thereof
CN107378215A (en) * 2017-08-22 2017-11-24 沈阳钛成科技合伙企业(普通合伙) A kind of wear-resistant coating of titanium alloy cutter and preparation method thereof
CN112680630A (en) * 2020-12-04 2021-04-20 中国航发北京航空材料研究院 Vacuum heat treatment method for ultra-high-toughness, medium-strength and high-plasticity TC32 titanium alloy part

Similar Documents

Publication Publication Date Title
JP5287062B2 (en) Low specific gravity titanium alloy, golf club head, and method for manufacturing low specific gravity titanium alloy parts
JP6104164B2 (en) High strength and ductile alpha / beta titanium alloy
JP3959766B2 (en) Treatment method of Ti alloy with excellent heat resistance
US20030168138A1 (en) Method for processing beta titanium alloys
CN112105751B (en) High strength titanium alloy
WO2012032610A1 (en) Titanium material
CA3109173C (en) Creep resistant titanium alloys
JP2005076098A (en) HIGH-STRENGTH alpha-beta TITANIUM ALLOY
JP4507094B2 (en) Ultra high strength α-β type titanium alloy with good ductility
JP4581425B2 (en) β-type titanium alloy and parts made of β-type titanium alloy
JP4715048B2 (en) Titanium alloy fastener material and manufacturing method thereof
JP2006034414A (en) Spike for shoe
JP2541042B2 (en) Heat treatment method for (α + β) type titanium alloy
JP4528109B2 (en) Low elastic β-titanium alloy having an elastic modulus of 65 GPa or less and method for producing the same
JP4492959B2 (en) Heat resistant titanium alloy and engine valve formed thereby
JP2006200008A (en) beta-TYPE TITANIUM ALLOY AND PARTS MADE FROM beta-TYPE TITANIUM ALLOY
JP4371201B2 (en) β-type titanium alloy and method for producing the same
JP2004277873A (en) Titanium alloy incorporated with boron added
JP2008106317A (en) beta-TYPE TITANIUM ALLOY
JP5382518B2 (en) Titanium material
JP2005154850A (en) High strength beta-type titanium alloy
JP2004183079A (en) Titanium alloy and method for manufacturing titanium alloy material
JP2001158943A (en) Heat resistant bolt
JP2003201530A (en) High-strength titanium alloy with excellent hot workability
JP4632239B2 (en) Beta titanium alloy material for cold working

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20051221

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A02 Decision of refusal

Effective date: 20080805

Free format text: JAPANESE INTERMEDIATE CODE: A02