JP4492959B2 - Heat resistant titanium alloy and engine valve formed thereby - Google Patents

Heat resistant titanium alloy and engine valve formed thereby Download PDF

Info

Publication number
JP4492959B2
JP4492959B2 JP2005101541A JP2005101541A JP4492959B2 JP 4492959 B2 JP4492959 B2 JP 4492959B2 JP 2005101541 A JP2005101541 A JP 2005101541A JP 2005101541 A JP2005101541 A JP 2005101541A JP 4492959 B2 JP4492959 B2 JP 4492959B2
Authority
JP
Japan
Prior art keywords
titanium alloy
temperature
scale
resistant titanium
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005101541A
Other languages
Japanese (ja)
Other versions
JP2006283062A (en
Inventor
公輔 小野
英人 大山
勇治 丸井
尚也 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Kobe Steel Ltd
Original Assignee
Honda Motor Co Ltd
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Kobe Steel Ltd filed Critical Honda Motor Co Ltd
Priority to JP2005101541A priority Critical patent/JP4492959B2/en
Publication of JP2006283062A publication Critical patent/JP2006283062A/en
Application granted granted Critical
Publication of JP4492959B2 publication Critical patent/JP4492959B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Forging (AREA)

Description

本発明は、熱間加工が容易であり、高温強度に優れかつ酸化スケールが剥離し難いα−β型耐熱チタン合金に関する。   The present invention relates to an α-β type heat-resistant titanium alloy that is easy to hot work, excellent in high temperature strength, and difficult to peel off oxide scale.

チタン合金は軽量で、耐食性に優れ、高強度のものが容易に得られるため、種々の分野で用いられている。航空機や自動車のエンジンなどの高温環境で使用される耐熱構造部品の分野では、特に高温強度が求められる。このような高温用チタン合金として、Nearα合金(Ti−5.5Al−4Sn−4Zr−1Nb−0.5Si−0.06C合金。元素に添えられた数値は同元素の含有量mass%を示す。以下同様。)が知られている。   Titanium alloys are used in various fields because they are lightweight, excellent in corrosion resistance, and easily obtained in high strength. In the field of heat-resistant structural parts used in high-temperature environments such as aircraft and automobile engines, high-temperature strength is particularly required. As such a high temperature titanium alloy, Nearα alloy (Ti-5.5Al-4Sn-4Zr-1Nb-0.5Si-0.06C alloy. The numerical value attached to the element indicates the mass% of the element. The same shall apply hereinafter).

このNearα合金は、耐用温度が600℃程度以下であるが、近年、より耐熱性を向上させたチタン合金が提案されている。例えば、特許第3049767号公報(特許文献1)には、Al:4.7〜7.0%、Sn:3.0〜5.0%、Zr:2.5〜6.0%、Mo:1.0%超〜7.0%、Si:0.05〜0.5%、Nb:3%以下、残部実質的にTiからなる耐熱チタン合金が、特許3303641号公報(特許文献2)には、Al:5.0〜7.0%、Sn:2.0〜5.0%、Zr:2.0〜5.0%、Nb:0.1〜1.5%、Mo:0.1〜2.0%、Si:0.1〜0.6%、B:0.3〜2.5%、Hf:0.1〜3.0%及び/又はTa:0.1〜3.0%、残部Ti及び不可避的不純物からなるチタン合金が記載されている。   This Nearα alloy has a durable temperature of about 600 ° C. or less, but recently, a titanium alloy with further improved heat resistance has been proposed. For example, in Japanese Patent No. 3049767 (Patent Document 1), Al: 4.7 to 7.0%, Sn: 3.0 to 5.0%, Zr: 2.5 to 6.0%, Mo: A heat-resistant titanium alloy composed of more than 1.0% to 7.0%, Si: 0.05 to 0.5%, Nb: 3% or less, and the balance substantially consisting of Ti is disclosed in Japanese Patent No. 3303641 (Patent Document 2). Are Al: 5.0-7.0%, Sn: 2.0-5.0%, Zr: 2.0-5.0%, Nb: 0.1-1.5%, Mo: 0.00. 1-2.0%, Si: 0.1-0.6%, B: 0.3-2.5%, Hf: 0.1-3.0% and / or Ta: 0.1-3. A titanium alloy consisting of 0%, balance Ti and inevitable impurities is described.

前記Nearα合金や特許文献1、2に開示のチタン合金は、高温強度に優れたものであるが、高温での変形抵抗が高いため、熱間での鍛造や圧延での加工性が悪く、加工過程で割れや疵が発生し易い。このような課題に対しては、チタン合金の製造過程で加熱と加工とを繰り返して行う方法もあるが、製造コストが高くなるという新たな課題が生じる。このため、熱間加工性を改善したチタン合金が特開平2003−201530号公報(特許文献3)で提案されている。このチタン合金は、Al:3〜7%、C:0.08〜0.25%、下記式で示されるMo当量が3.0〜10%の範囲でMo、V、Cr、Feを含むものである。
Mo当量=[Mo]+[V]/1.5+1.25[Cr]+2.5[Fe]
但し、[元素]は当該元素の含有量(mass%)を示す。
特許第3049767号公報 特許第3303641号公報 特開2003−201530号公報
Although the Nearα alloy and the titanium alloy disclosed in Patent Documents 1 and 2 are excellent in high-temperature strength, they have high deformation resistance at high temperatures, so the workability in hot forging and rolling is poor, Cracks and wrinkles are likely to occur during the process. For such a problem, there is a method of repeatedly performing heating and processing in the production process of the titanium alloy, but a new problem arises that the production cost increases. For this reason, a titanium alloy with improved hot workability has been proposed in Japanese Patent Laid-Open No. 2003-201530 (Patent Document 3). This titanium alloy contains Mo, V, Cr, and Fe in the range of Al: 3 to 7%, C: 0.08 to 0.25%, and the Mo equivalent represented by the following formula is 3.0 to 10%. .
Mo equivalent = [Mo] + [V] /1.5+1.25 [Cr] +2.5 [Fe]
However, [element] indicates the content (mass%) of the element.
Japanese Patent No. 3049767 Japanese Patent No. 3303641 JP 2003-201530 A

しかし、特許文献3に記載されたチタン合金は、熱間加工性が良好であるものの、十分な高温強度が得られないという課題がある。さらに、チタン合金は高温で長時間曝露されると、表面の酸化が進み、酸化スケールが形成されるが、自動車等のエンジンバルブのような高温で機械的負荷が長時間繰り返し作用する環境下では、酸化スケールが剥離する。剥離した酸化スケールは異物としてエンジンを構成する他の部品に悪影響を及ぼす。このため、従来の耐熱チタン合金製のエンジンバルブでは、表面に耐酸化処理を施してスケールの生成を抑制する必要があった。このような処理は製造コスト高の要因となる。
本発明はかかる課題に鑑みなされたもので、熱間加工性が良好で、高温強度及び高温クリープ特性に優れ、しかも高温における耐スケール剥離性に優れた耐熱チタン合金を提供することを目的とする。
However, although the titanium alloy described in Patent Document 3 has good hot workability, there is a problem that sufficient high-temperature strength cannot be obtained. Furthermore, when titanium alloys are exposed to high temperatures for a long time, oxidation of the surface proceeds and oxide scales are formed, but in environments where mechanical loads repeatedly operate at high temperatures, such as engine valves for automobiles, etc. The oxide scale peels off. The peeled oxide scale adversely affects other parts constituting the engine as foreign matter. For this reason, in a conventional engine valve made of a heat-resistant titanium alloy, the surface has to be subjected to an oxidation resistance treatment to suppress the generation of scale. Such a process becomes a factor of high manufacturing cost.
The present invention has been made in view of such a problem, and an object of the present invention is to provide a heat-resistant titanium alloy having good hot workability, excellent high-temperature strength and high-temperature creep characteristics, and excellent resistance to scale peeling at high temperatures. .

本発明の耐熱チタン合金は、mass%(以下、単に「%」と表示する。)で、
Al:6.0〜8.0%、
Mo:1.0〜3.0%、
Si:0.05〜0.40%、
C:0.08〜0.25%を含み、残部がTi及び不可避不純物からなるものである。
The heat-resistant titanium alloy of the present invention is mass% (hereinafter simply referred to as “%”).
Al: 6.0 to 8.0%,
Mo: 1.0-3.0%,
Si: 0.05-0.40%,
C: It contains 0.08 to 0.25%, and the balance consists of Ti and inevitable impurities.

このチタン合金によると、主として、α相強化元素であるAlを適量添加することで、高温で優れた強度、クリープ特性を確保し、またSi及びMoを所定量添加することで、高温特性を過度に劣化させることなく酸化スケールの剥離を抑制することができ、さらにCを適量添加することによって、高温特性を損なうことなく、β変態点を上昇させ、これによってα−β域での加工温度を上昇させることで、良好な熱間加工性を得ることができる。このため、熱間加工性は勿論、高温強度および高温クリープ特性、さらに優れた耐スケール剥離性が要求される航空機や自動車等のエンジンバルブ用素材として好適に利用される。   According to this titanium alloy, an appropriate amount of Al, which is an α-phase strengthening element, is added to ensure excellent strength and creep characteristics at high temperatures, and a predetermined amount of Si and Mo is added to excessively increase high temperature characteristics. Exfoliation of the oxide scale can be suppressed without deteriorating, and by adding an appropriate amount of C, the β transformation point can be increased without impairing the high temperature characteristics, thereby increasing the processing temperature in the α-β region. By raising the temperature, good hot workability can be obtained. For this reason, not only hot workability but also high temperature strength and high temperature creep properties, and further suitable for use as a material for engine valves for aircraft and automobiles that require excellent scale peeling resistance.

前記チタン合金において、Tiの一部に代えて、さらに、Nb:0.40%以下、あるいはさらに、V,Cr,Feの1種以上の元素を下記Mo当量が4.0%以下の範囲で含む成分とすることができる。
Mo当量=[Mo]+[V]/1.5+1.25[Cr]+2.5[Fe]
但し、[元素]は当該元素の含有量(mass%)を示す。以下同様。
In the titanium alloy, in place of a part of Ti, Nb: 0.40% or less, or further, one or more elements of V, Cr, Fe are added within a range where the following Mo equivalent is 4.0% or less. It can be a component to be included.
Mo equivalent = [Mo] + [V] /1.5+1.25 [Cr] +2.5 [Fe]
However, [element] indicates the content (mass%) of the element. The same applies below.

本発明の耐熱チタン合金は、Al:6.0〜8.0%、Mo:1.0〜3.0%、Si:0.05〜0.40%、C:0.08〜0.25%を含み、残部がTi及び不可避不純物からなるものである。以下、成分限定理由を説明する。   The heat-resistant titanium alloy of the present invention has Al: 6.0-8.0%, Mo: 1.0-3.0%, Si: 0.05-0.40%, C: 0.08-0.25 %, And the balance consists of Ti and inevitable impurities. Hereinafter, the reason for component limitation will be described.

Al:6.0〜8.0%
Alは、α安定化元素であり、高温で高い強度とクリープ特性を得るために必須の元素である。6.0%未満ではかかる作用が過小であるので、Al量の下限を6.0%、好ましくは6.5%とする。一方、Alが過多に添加されると、高温で曝露したときに金属間化合物のTi3Al を生成し、材質が脆化する。一般的にチタン合金は下記式で表されるAl当量が9.0%以上になると、高温で曝露したときに脆化を起こすことが知られており、通常、不可避不純物元素として酸素が約0.1%含有されるため、[Al]+1/3[Sn]+1/6[Zr]の値が8.0%以下になるように、Al量の上限を8.0%、好ましくは7.5%とする。
なお、Al当量は当業者にとって周知事項であり、例えば、チタン合金ハンドブック(Rodney Boyer, Gerhard Welsch, E.W.Collings, Materials Properties Handbook Titanium Alloys (1994), P77)に記載されている。
Al当量=[Al]+1/3[Sn]+1/6[Zr]+10[O]
Al: 6.0 to 8.0%
Al is an α-stabilizing element and is an essential element for obtaining high strength and creep characteristics at high temperatures. If the content is less than 6.0%, this effect is too small. Therefore, the lower limit of the Al content is 6.0%, preferably 6.5%. On the other hand, when Al is added excessively, Ti 3 Al which is an intermetallic compound is generated when exposed at a high temperature, and the material becomes brittle. Generally, titanium alloys are known to cause embrittlement when exposed to high temperatures when the Al equivalent represented by the following formula is 9.0% or more. Usually, oxygen is about 0 as an inevitable impurity element. Therefore, the upper limit of the amount of Al is 8.0%, preferably 7.% so that the value of [Al] +1/3 [Sn] +1/6 [Zr] is 8.0% or less. 5%.
The Al equivalent is well known to those skilled in the art and is described, for example, in a titanium alloy handbook (Rodney Boyer, Gerhard Welsch, EW Collings, Materials Properties Handbook Titanium Alloys (1994), P77).
Al equivalent = [Al] +1/3 [Sn] +1/6 [Zr] +10 [O]

Mo:1.0〜3.0%
Moは酸化スケールを緻密化する作用を有し、形成されるスケールの密着性が増すため、高温に暴露された後でのスケールの耐剥離性が大きく向上する。1.0%未満ではかかる作用が過小であり、一方3.0%を超えると、β安定型元素であるMoが過多となり、高温強度が却って低下するようになる。このため、Mo量の下限を1.0%、望ましくは1.5%とし、その上限を3.0%、望ましくは2.5%とする。
Mo: 1.0-3.0%
Mo has the effect of densifying the oxide scale, and the adhesion of the scale to be formed is increased. Therefore, the peel resistance of the scale after being exposed to a high temperature is greatly improved. If it is less than 1.0%, such an action is too small. On the other hand, if it exceeds 3.0%, Mo which is a β-stable element becomes excessive, and the high-temperature strength decreases instead. For this reason, the lower limit of the Mo amount is 1.0%, preferably 1.5%, and the upper limit is 3.0%, preferably 2.5%.

Si:0.05〜0.40%
Siは、酸化スケールを緻密化し、スケールの耐剥離性を向上させる作用を有し、また高温でのクリープ特性を向上させる。0.05%未満ではかかる作用が過小であり、一方0.40%を超えるとTiとSiの金属間化合物が析出し、常温での延性が低下するようになる。このため、本発明ではSi量の下限を0.05%、好ましくは0.10%とし、その上限を0.40%、好ましくは0.30%とする。
Si: 0.05-0.40%
Si has the effect of densifying the oxide scale, improving the peel resistance of the scale, and improving the creep characteristics at high temperatures. If it is less than 0.05%, such action is too small. On the other hand, if it exceeds 0.40%, an intermetallic compound of Ti and Si is precipitated, and the ductility at room temperature is lowered. Therefore, in the present invention, the lower limit of the Si amount is 0.05%, preferably 0.10%, and the upper limit is 0.40%, preferably 0.30%.

C:0.08〜0.25%
チタン合金の最終熱間加工は、加工性を確保するため、等軸結晶粒にすべく、β変態点未満のα−β域で実施する必要があるが、α−β域での加工時、オーバーヒートを起こさず、できるだけ高い温度で加工を行うべく、通常、(変態点−50)℃程度に加熱され、熱間加工が施される。このため、α−β域での熱間加工時の加熱温度はβ変態点によって決まり、β変態点が高い方が熱間加工性が向上する。Cはβ変態点を上昇させる作用を有し、1000℃以上のα−β域での加工を可能にするには、C量を少なくとも0.08%、好ましくは0.10%添加することが必要である。これによって、加工中の割れが大きく低減し、再加熱の回数も少なくすることができ、生産性が向上する。一方、過多に添加すると、TiCが多量に析出して疲労特性が低下するので、C量の上限を0.25%、望ましくは0.20%とする。なお、Nearα合金のTi−8Al−1Mo−1V合金は、その変態点は1040℃であり、通常990℃程度のα−β域に加熱され、熱間加工されるが、この程度の温度でも高温強度が高いため、熱間加工性が非常に悪く、材料温度が少しでも下がるとすぐに割れが発生してしまう。このため、現状では、繰り返して再加熱し、鍛造等の熱間加工を施している。
C: 0.08 to 0.25%
The final hot working of the titanium alloy needs to be performed in the α-β region below the β transformation point in order to obtain equiaxed crystal grains in order to ensure workability. In order to perform processing at as high a temperature as possible without causing overheating, it is usually heated to about (transformation point −50) ° C. and subjected to hot processing. For this reason, the heating temperature at the time of hot working in the α-β region is determined by the β transformation point, and the higher the β transformation point, the better the hot workability. C has the effect of increasing the β transformation point, and in order to enable processing in the α-β region of 1000 ° C. or higher, the amount of C should be added at least 0.08%, preferably 0.10%. is necessary. As a result, cracks during processing can be greatly reduced, the number of reheating can be reduced, and productivity is improved. On the other hand, if added excessively, a large amount of TiC precipitates and fatigue characteristics are lowered, so the upper limit of the C content is 0.25%, preferably 0.20%. The near α alloy Ti-8Al-1Mo-1V alloy has a transformation point of 1040 ° C. and is usually heated to an α-β region of about 990 ° C. and hot-worked. Since the strength is high, the hot workability is very poor, and cracking occurs as soon as the material temperature drops even a little. For this reason, at present, reheating is repeatedly performed and hot working such as forging is performed.

本発明のチタン合金は、上記基本成分を含み、残部がTi及び不可避的不純物からなるが、本発明合金の特性を害しない範囲で、特性を向上させる元素等をさらに含有することができる。例えば、Tiの一部に代えてNbを0.40%以下、V,Cr,Feの1種以上をMo当量([Mo]+[V]/1.5+1.25[Cr]+2.5[Fe])で4.0%以下を含有することができ、下記組成(残部Ti及び不可避的不純物)とすることができる。
(1) 基本成分、Nb
(2) 基本成分、V,Cr,Feの内から1種以上
(3) 基本成分、Nb、及びV,Cr,Feの内から1種以上
The titanium alloy of the present invention contains the above basic components, and the balance is composed of Ti and unavoidable impurities, but can further contain elements that improve the characteristics within a range that does not impair the characteristics of the alloy of the present invention. For example, instead of a part of Ti, Nb is 0.40% or less and at least one of V, Cr, and Fe is Mo equivalent ([Mo] + [V] /1.5+1.25 [Cr] +2.5 [ Fe]) can contain 4.0% or less, and can have the following composition (remainder Ti and inevitable impurities).
(1) Basic component, Nb
(2) One or more of the basic components V, Cr, Fe
(3) One or more of the basic components, Nb, and V, Cr, Fe

Nb:0.40%以下
Nbは高温暴露後の酸化スケールの脱落を抑え、また高温強度と高温でのクリープ特性を向上させる作用を有することが見出された。このような作用を有する理由は定かではないが、Nbを添加することで表面に生成した酸化スケール中の酸素の拡散が抑えられ、その結果、スケールの成長が抑えられるためスケールの剥離が抑制され、また母材への酸素の拡散も抑えられるのでクリープ転位が入りにくくなり、クリープ特性が向上するものと推察される。このような作用を有効に発現させるには、0.1%以上の添加が好ましい。一方、Nbは非常に高価な元素であるため、Nb量の上限を0.4%、望ましくは0.3%とする。
Nb: 0.40% or less It has been found that Nb has an action of suppressing the dropping of the oxide scale after exposure to high temperature, and improving the high temperature strength and creep characteristics at high temperature. The reason for this effect is not clear, but the addition of Nb suppresses the diffusion of oxygen in the oxide scale formed on the surface, and as a result, the growth of the scale is suppressed, so that the scale peeling is suppressed. In addition, since it is possible to suppress the diffusion of oxygen to the base material, it is presumed that creep dislocation does not easily occur and the creep characteristics are improved. Addition of 0.1% or more is preferable in order to effectively exhibit such action. On the other hand, since Nb is a very expensive element, the upper limit of the amount of Nb is set to 0.4%, preferably 0.3%.

V、Cr、Feの1種以上:Mo当量で4.0%以下
V、Cr、Feはβ安定化元素であり、高温強度およびβ変態点を低下させるが、熱間加工性が向上し、熱間加工時の割れが低減するため、歩留りを向上させることができる。高い高温強度と変態点をある程度維持しつつ、熱間加工性を向上させる適切なβ安定化元素の添加量を検討した結果、Mo当量が4.0%超では、高温での強度及び変態点が著しく低下することが知見された。このため、上記元素をMo当量で4.0%以下、好ましくは3.5%以下、より好ましくは3.25%以下添加する。これにより、高温強度とより良好な熱間加工性とを両立させることができる。
One or more of V, Cr, and Fe: Mo equivalent is 4.0% or less. V, Cr, and Fe are β-stabilizing elements that reduce high temperature strength and β transformation point, but improve hot workability, Since cracks during hot working are reduced, the yield can be improved. As a result of investigating an appropriate amount of β-stabilizing element to improve hot workability while maintaining high high-temperature strength and transformation point to some extent, when Mo equivalent exceeds 4.0%, strength and transformation point at high temperature Was found to be significantly reduced. For this reason, the above element is added in Mo equivalent of 4.0% or less, preferably 3.5% or less, more preferably 3.25% or less. Thereby, both high temperature strength and better hot workability can be achieved.

次に、本発明のチタン合金の一般的な製造方法について説明する。まず所定成分を有するチタン合金を溶解し、鋳塊を得る。この鋳塊を1100〜1200℃に加熱した後、60%以上の圧下率で圧延、鍛造などの熱間加工を施す。その後1000℃から1100℃に加熱して、α+β域で60%以上の圧下率で圧延、鍛造などの熱間加工を施して、棒材や線材などの中間形状に加工する。熱間加工後、一般的には、応力除去、加工組織の回復、再結晶を目的として焼鈍を施す。この焼鈍により組織の安定化、機械的性質の向上などが図られる。焼鈍は、典型的には例えば600℃〜800℃で1〜10hr程度保持することによって行う。この焼鈍後、仕上加工を施し、必要に応じて900〜1200℃で5〜120min保持する溶体化処理を施した後、時効処理、あるいは前記焼鈍と同様の条件の焼鈍を施し、所期の機械的特性を発現させる。
以下、実施例を挙げて、本発明をより具体的に説明するが、本発明はかかる実施例によって限定的に解釈されるものではない。
Next, the general manufacturing method of the titanium alloy of this invention is demonstrated. First, a titanium alloy having a predetermined component is melted to obtain an ingot. After heating this ingot to 1100 to 1200 ° C., hot working such as rolling and forging is performed at a rolling reduction of 60% or more. Thereafter, it is heated from 1000 ° C. to 1100 ° C., and subjected to hot working such as rolling and forging at a reduction ratio of 60% or more in the α + β region, and processed into an intermediate shape such as a bar or wire. After hot working, annealing is generally performed for the purpose of removing stress, recovering the work structure, and recrystallization. This annealing can stabilize the structure and improve the mechanical properties. Annealing is typically performed by holding at, for example, 600 ° C. to 800 ° C. for about 1 to 10 hours. After this annealing, finish processing is performed and, if necessary, solution treatment is performed at 900 to 1200 ° C. for 5 to 120 minutes, followed by aging treatment or annealing under the same conditions as the above annealing, and the desired machine To develop a characteristic.
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated more concretely, this invention is not limitedly interpreted by this Example.

表1に示す各種化学成分のチタン合金を、アーク溶解法により溶製して直径50mm×長さ15mmの鋳塊(120g)を得た。鋳塊をそれぞれ1200℃に加熱し、φ20mmの丸棒に熱間鍛造した。その後、1000℃に加熱した後、φ10まで鍛造した。その後、一旦、β域に加熱保持(1200℃で5min保持)して溶体化処理を施し、室温まで空冷した。その後800℃で2hr保持する焼鈍を行った後、空冷した。   Titanium alloys having various chemical components shown in Table 1 were melted by an arc melting method to obtain an ingot (120 g) having a diameter of 50 mm and a length of 15 mm. Each ingot was heated to 1200 ° C. and hot forged into a round bar of φ20 mm. Then, after heating to 1000 ° C., forging to φ10. Thereafter, the solution was once heated and held in the β region (held at 1200 ° C. for 5 minutes) to perform solution treatment, and then air-cooled to room temperature. Thereafter, annealing was performed at 800 ° C. for 2 hours, followed by air cooling.

以上のようにして得られたチタン合金試料について以下の要領で機械的性質、スケール剥離性を調べた。調査結果を表1に併せて示す。
(1) 高温引張強さ:800℃において高温引張試験を行い、同温度での引張強度を測定した。
(2) クリープ試験:温度:760℃、応力:28MPa、時間:100hrの条件で実施し、クリープ伸びを測定した。
(3) スケール剥離性:試料表面を鏡面研磨した後、750℃で50hrおよび100hr大気焼鈍を施し、表面スケールの剥離の有無を目視観察し、100hrの焼鈍でも剥離のないものを優(表中「◎」で表示)、100hrの焼鈍では一部剥離したが、50hrの焼鈍では剥離がなかったものを良(表中「○」で表示)、50hrの焼鈍で剥離が生じたものを不可(表中「×」で表示)と評価した。
The titanium alloy samples obtained as described above were examined for mechanical properties and scale peelability in the following manner. The survey results are also shown in Table 1.
(1) High temperature tensile strength: A high temperature tensile test was performed at 800 ° C., and the tensile strength at the same temperature was measured.
(2) Creep test: Temperature: 760 ° C., stress: 28 MPa, time: 100 hr. The creep elongation was measured.
(3) Scale peelability: After the sample surface is mirror-polished, it is subjected to atmospheric annealing at 750 ° C. for 50 hours and 100 hours, and the presence or absence of peeling of the surface scale is visually observed. (Indicated by “◎”), partly peeled after 100 hr annealing, but not peeled after 50 hr annealing (indicated by “◯” in the table), not acceptable when peeling occurred after 50 hr annealing ( It was evaluated as “x” in the table).

表1より、発明例の試料No. 1〜17では800℃での高温強度が250MPa程度以上であり、クリープ試験後の伸びも2%以下に収まっており、非常にクリープ特性に優れていることがわかる。また、750℃、50hrの保持ではスケールの剥離は皆無である。これに対して、比較例の試料No. 21〜29では、高温強度、高温でのクリープ性、耐スケール性を兼備しているものは皆無である。   From Table 1, Sample Nos. 1 to 17 of the inventive example have a high-temperature strength at 800 ° C. of about 250 MPa or more, an elongation after creep test of 2% or less, and extremely excellent creep characteristics. I understand. Further, there is no peeling of the scale at 750 ° C. and 50 hours. On the other hand, none of the sample Nos. 21 to 29 of the comparative example has high temperature strength, creep property at high temperature, and scale resistance.

Figure 0004492959
Figure 0004492959

Ti−7Al−2Mo−0.2Si−0.2Nb合金をベース合金とし、表2に示す種々のC量を有する合金をアーク溶解法により溶製して、直径50mm×長さ15mmの鋳塊(120g)を得た。それぞれの鋳塊を1200℃に加熱し、φ24mmの丸棒に鍛造した。その後、(β変態点−50)℃の加工上限温度に加熱し、(β変態点−50)℃〜900℃のα−β域の加工温度範囲で熱間加工を行うように適宜再加熱しながらα−β域でφ14まで熱間鍛造し、加熱回数、鍛造後の表面性状を観察して割れ発生状況を調べた。その結果を表2に示す。割れが皆無のものを優(表中「◎」で表示)、小さな割れが生じたものを良(表中「○」で表示)、割れが多発したものを不可(表中「×」で表示)と評価した。   An alloy having a base alloy of Ti-7Al-2Mo-0.2Si-0.2Nb and having various C contents shown in Table 2 is melted by an arc melting method, and an ingot having a diameter of 50 mm and a length of 15 mm ( 120 g) was obtained. Each ingot was heated to 1200 ° C. and forged into a round bar of φ24 mm. Then, it heats to the processing upper limit temperature of ((beta) transformation point-50) (degreeC), and reheats suitably so that hot processing may be performed in the processing temperature range of ((beta) transformation point-50) (degreeC) -900 (degreeC) alpha-beta range. However, hot forging was performed up to φ14 in the α-β region, and the number of heating times and the surface properties after forging were observed to examine the occurrence of cracks. The results are shown in Table 2. Excellent with no cracks (indicated by “◎” in the table), good with small cracks (indicated by “O” in the table), and not frequently cracked (indicated by “x” in the table) ).

鍛造後、β域に加熱保持(1200℃で5min保持)して溶体化処理を施し、室温まで空冷した。その後、800℃で2hr保持する焼鈍を行った後、空冷した。得られた試料から、平行部の径が6.0mmの疲労試験片を採取し、応力400MPa、回転速度3600rpmの条件で、小野式回転曲げ疲労試験を実施し、破断までの回転数を調べた、但し、回転数は1.0×107 回までとした。試験結果を表2に併せて示す。 After forging, the solution was heated and held in the β region (held at 1200 ° C. for 5 minutes), subjected to a solution treatment, and air-cooled to room temperature. Thereafter, annealing was performed at 800 ° C. for 2 hours, followed by air cooling. A fatigue test piece having a parallel part diameter of 6.0 mm was collected from the obtained sample, and subjected to an Ono-type rotary bending fatigue test under the conditions of a stress of 400 MPa and a rotational speed of 3600 rpm, and the number of revolutions until fracture was examined. However, the number of rotations was up to 1.0 × 10 7 times. The test results are also shown in Table 2.

表2より、実質的にC無添加の試料No. 1(比較例)は、加工上限温度が975℃と通常の耐熱チタン合金と大差なく、加工温度範囲を維持するのに加熱が2回必要であった。しかも、鍛造後の試料は、割れが多発していた。一方、C量が0.11%以上添加されたNo. 32〜35は、加工上限温度が1030℃以上となり、通常のチタン合金と比べより高温で熱間加工することができ、加熱回数も1回で済んだ。鍛造後の試料を見ても、C:0.11%の試料No. 32は若干小さな割れが見られたが、Cを0.15%以上添加した試料では割れの発生は皆無であった。
また、疲労特性については、C添加量が発明範囲内の0.11%、0.15%の試料No. 32,33(発明例)では、回転数が1.0×107 回以上では試験片が破断せず、非常に良好な疲労特性を示した。また、C添加量が0.23%の試料No. 34(発明例)でも破断までの回転数が7.8×106 回であり、良好な疲労特性を示した。一方、C添加量が0.30%の試料No. 35(比較例)は回転数7.6×104 回で破断し、疲労特性が急激に劣化した。
From Table 2, the sample No. 1 (Comparative Example) with substantially no C added is not much different from a normal heat-resistant titanium alloy with a processing upper limit temperature of 975 ° C., and heating is required twice to maintain the processing temperature range. Met. In addition, the forged sample was frequently cracked. On the other hand, Nos. 32-35 added with C amount of 0.11% or more have a working upper limit temperature of 1030 ° C. or higher, can be hot-worked at a higher temperature than ordinary titanium alloys, and the number of heating is also 1 I'm done with times. Looking at the sample after forging, sample No. 32 with C: 0.11% showed slightly small cracks, but the sample with 0.15% or more of C added had no cracks.
In addition, regarding fatigue characteristics, the sample numbers 32 and 33 (invention examples) with 0.11% and 0.15% of C addition within the scope of the invention were tested when the rotation speed was 1.0 × 10 7 times or more. The piece did not break and showed very good fatigue properties. Sample No. 34 (invention example) with a C addition amount of 0.23% also had a good fatigue characteristic with a rotation speed of up to 7.8 × 10 6 times. On the other hand, Sample No. 35 (Comparative Example) with a C addition amount of 0.30% was broken at a rotational speed of 7.6 × 10 4 times, and the fatigue characteristics deteriorated rapidly.

Figure 0004492959
Figure 0004492959

Claims (4)

mass%で、
Al:6.0〜8.0%、
Mo:1.0〜3.0%、
Si:0.05〜0.40%、
C:0.08〜0.25%
を含み、残部がTi及び不可避不純物からなる耐熱チタン合金。
mass%
Al: 6.0 to 8.0%,
Mo: 1.0-3.0%,
Si: 0.05-0.40%,
C: 0.08 to 0.25%
A heat-resistant titanium alloy comprising the balance of Ti and inevitable impurities.
さらに、Nb:0.40%以下を含む、請求項1に記載した耐熱チタン合金。   Furthermore, the heat-resistant titanium alloy according to claim 1 containing Nb: 0.40% or less. さらに、V,Cr,Feの1種以上の元素を下記Mo当量が4.0%以下の範囲で含む、請求項1又は2に記載した耐熱チタン合金。
Mo当量=[Mo]+[V]/1.5+1.25[Cr]+2.5[Fe]
但し、[元素]は当該元素の含有量(mass%)を示す。
The heat-resistant titanium alloy according to claim 1 or 2, further comprising one or more elements of V, Cr, and Fe in a range where the following Mo equivalent is 4.0% or less.
Mo equivalent = [Mo] + [V] /1.5+1.25 [Cr] +2.5 [Fe]
However, [element] indicates the content (mass%) of the element.
請求項1から3のいずれか1項に記載したチタン合金によって形成された、エンジンバルブ。

An engine valve formed of the titanium alloy according to any one of claims 1 to 3.

JP2005101541A 2005-03-31 2005-03-31 Heat resistant titanium alloy and engine valve formed thereby Active JP4492959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005101541A JP4492959B2 (en) 2005-03-31 2005-03-31 Heat resistant titanium alloy and engine valve formed thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005101541A JP4492959B2 (en) 2005-03-31 2005-03-31 Heat resistant titanium alloy and engine valve formed thereby

Publications (2)

Publication Number Publication Date
JP2006283062A JP2006283062A (en) 2006-10-19
JP4492959B2 true JP4492959B2 (en) 2010-06-30

Family

ID=37405277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005101541A Active JP4492959B2 (en) 2005-03-31 2005-03-31 Heat resistant titanium alloy and engine valve formed thereby

Country Status (1)

Country Link
JP (1) JP4492959B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5858417B2 (en) * 2011-03-24 2016-02-10 国立大学法人大阪大学 Ti alloy joint, Ti alloy processing method and structure
US10119178B2 (en) 2012-01-12 2018-11-06 Titanium Metals Corporation Titanium alloy with improved properties
JP5952683B2 (en) * 2012-08-31 2016-07-13 本田技研工業株式会社 Method for manufacturing titanium valve for internal combustion engine
CA2947981C (en) 2014-05-15 2021-10-26 General Electric Company Titanium alloys and their methods of production

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003201530A (en) * 2001-10-22 2003-07-18 Kobe Steel Ltd High-strength titanium alloy with excellent hot workability
JP2005320570A (en) * 2004-05-07 2005-11-17 Kobe Steel Ltd alpha-beta TITANIUM ALLOY WITH EXCELLENT MACHINABILITY

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3395443B2 (en) * 1994-08-22 2003-04-14 住友金属工業株式会社 High creep strength titanium alloy and its manufacturing method
JP3590430B2 (en) * 1995-02-09 2004-11-17 石川島播磨重工業株式会社 Ti alloy disc with excellent heat resistance
JP3959766B2 (en) * 1996-12-27 2007-08-15 大同特殊鋼株式会社 Treatment method of Ti alloy with excellent heat resistance

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003201530A (en) * 2001-10-22 2003-07-18 Kobe Steel Ltd High-strength titanium alloy with excellent hot workability
JP2005320570A (en) * 2004-05-07 2005-11-17 Kobe Steel Ltd alpha-beta TITANIUM ALLOY WITH EXCELLENT MACHINABILITY

Also Published As

Publication number Publication date
JP2006283062A (en) 2006-10-19

Similar Documents

Publication Publication Date Title
JP5287062B2 (en) Low specific gravity titanium alloy, golf club head, and method for manufacturing low specific gravity titanium alloy parts
US11718897B2 (en) Precipitation hardenable cobalt-nickel base superalloy and article made therefrom
JP4157891B2 (en) Titanium alloy with excellent high-temperature oxidation resistance and engine exhaust pipe
JP5328694B2 (en) Automotive engine valve made of titanium alloy with excellent heat resistance
US5032357A (en) Tri-titanium aluminide alloys containing at least eighteen atom percent niobium
JP7250811B2 (en) high temperature titanium alloy
WO2005098063A1 (en) HIGH-STRENGTH α+β-TYPE TITANIUM ALLOY
AU2022224763B2 (en) Creep resistant titanium alloys
JPH05117791A (en) High strength and high toughness cold workable titanium alloy
JP4492959B2 (en) Heat resistant titanium alloy and engine valve formed thereby
JP2009041065A (en) Titanium alloy for heat resistant member having excellent high temperature fatigue strength and creep resistance
JPH0931572A (en) Heat resistant titanium alloy excellent in high temperature fatigue strength
JP2005076098A (en) HIGH-STRENGTH alpha-beta TITANIUM ALLOY
JP5228708B2 (en) Titanium alloy for heat-resistant members with excellent creep resistance and high-temperature fatigue strength
JP2024534121A (en) Alpha-beta titanium alloy with improved high temperature properties
JP2008144202A (en) Heat-resistant spring and manufacturing method therefor
JP4528109B2 (en) Low elastic β-titanium alloy having an elastic modulus of 65 GPa or less and method for producing the same
JP2021011601A (en) METHOD FOR PRODUCING Ni-BASED SUPERALLOY
JPH08134615A (en) Production of high strength titanium alloy excellent in characteristic of balance of mechanical property
JP5533352B2 (en) β-type titanium alloy
RU2772153C1 (en) Creep-resistant titanium alloys
JP2022178435A (en) titanium alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100331

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100401

R150 Certificate of patent or registration of utility model

Ref document number: 4492959

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250