JP2541042B2 - Heat treatment method for (α + β) type titanium alloy - Google Patents

Heat treatment method for (α + β) type titanium alloy

Info

Publication number
JP2541042B2
JP2541042B2 JP3219557A JP21955791A JP2541042B2 JP 2541042 B2 JP2541042 B2 JP 2541042B2 JP 3219557 A JP3219557 A JP 3219557A JP 21955791 A JP21955791 A JP 21955791A JP 2541042 B2 JP2541042 B2 JP 2541042B2
Authority
JP
Japan
Prior art keywords
heat treatment
titanium alloy
type titanium
transformation point
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3219557A
Other languages
Japanese (ja)
Other versions
JPH0559509A (en
Inventor
修 久保山
正和 新倉
千秋 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP3219557A priority Critical patent/JP2541042B2/en
Publication of JPH0559509A publication Critical patent/JPH0559509A/en
Application granted granted Critical
Publication of JP2541042B2 publication Critical patent/JP2541042B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は優れた強度、靭性およ
び延性を得るための(α+β)型チタン合金の熱処方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat treatment method for an (α + β) type titanium alloy for obtaining excellent strength, toughness and ductility.

【0002】[0002]

【従来の技術】一般的に、(α+β)型チタン合金の熱
処理方法として(α+β)域熱処理とβ域熱処理があ
る。(α+β)熱処理の特徴としては等軸αとβ変態組
織からなり強度、延性のバランスや、疲労特性に優れて
いることがよく知られている。
2. Description of the Related Art Generally, heat treatment methods for (α + β) type titanium alloys include (α + β) region heat treatment and β region heat treatment. It is well known that the characteristic of the (α + β) heat treatment is that it is composed of equiaxed α and β transformation structures and is excellent in balance of strength and ductility and fatigue characteristics.

【0003】また、特に高強度化をはかる熱処理として
溶体化時効処理がある。これは、一段目の熱処理である
溶体化時効処理をβ変態点以下の(α+β)域加熱保持
後、室温まで冷水等の速い速度で冷却を行なうもので、
二段目の熱処理である時効処理を450℃〜600℃前
後で行うものである。例えば、代表的な(α+β)型チ
タン合金であるTi−6Al−4Vの熱処理方法は米国
規格AMS4911Eや4965Eに規定してある。こ
れによると720±15℃に20分間保持後、空冷する
方法や、溶体化時効処理として溶体化処理を955±1
5℃で1〜2時間保持後水冷し、時効処理を485〜6
20℃で4〜8時間保持後、空冷を行う方法となってい
る。
[0003] Further, as a heat treatment for achieving particularly high strength, there is solution aging treatment. This is because the solution aging treatment, which is the first heat treatment, is heated and held in the (α + β) region below the β transformation point, and then cooled to room temperature at a high speed such as cold water.
The aging treatment, which is the second stage heat treatment, is performed at around 450 ° C to 600 ° C. For example, a heat treatment method for Ti-6Al-4V, which is a typical (α + β) type titanium alloy, is specified in American Standards AMS4911E and 4965E. According to this, after keeping at 720 ± 15 ° C. for 20 minutes, air-cooling or solution treatment as solution aging treatment is 955 ± 1
Hold at 5 ° C for 1 to 2 hours, then cool with water and subject to aging treatment of 485 to 6
After holding at 20 ° C. for 4 to 8 hours, it is a method of performing air cooling.

【0004】一方β域熱処理の特徴として針状αとβ変
態組織からなり破壊靭性値やクリ−プ特性に優れている
ことが知られている。
On the other hand, it is known that the heat treatment in the β region is characterized by having needle-like α and β transformation structures and excellent in fracture toughness and creep characteristics.

【0005】しかし、加熱時にβ粒径が粗大になり粒界
に針状αの析出を生じることにより、延性が大きく低下
してしまう。
However, the β-particle size becomes coarse during heating, and needle-shaped α precipitates at the grain boundaries, resulting in a large decrease in ductility.

【0006】この問題を解決する方法として、特開昭6
3−223155号公報ではTi−6Al−4VやTi
−6Al−4V−2Sn合金をβ変態点以上、β変態点
+150℃に加熱後押出し比10以上の押出し加工を行
ない、引続き5℃/s以上で冷却後700〜850℃の
温度で焼鈍を行なうことにより、微細なβ粒を有する組
織とし、強度、靭性及び延性を向上させることを提案し
ている。
As a method for solving this problem, Japanese Unexamined Patent Publication No.
In Japanese Patent Laid-Open No. 3-223155, Ti-6Al-4V or Ti is used.
After heating the -6Al-4V-2Sn alloy to a β transformation point or higher and a β transformation point + 150 ° C, extrusion is performed at an extrusion ratio of 10 or higher, followed by cooling at 5 ° C / s or higher and then annealing at a temperature of 700 to 850 ° C. Therefore, it is proposed that the structure has fine β grains and that the strength, toughness, and ductility be improved.

【0007】[0007]

【発明が解決しようとする課題】しかし、上述した技術
ではβ域で塑性加工を行なわなければ延性のある組織が
得られず、鍛造等の塑性加工の領域が不均一になるもの
にまで適用可能なものではない。
However, in the above-mentioned technique, a ductile structure cannot be obtained unless plastic working is performed in the β region, and it is possible to apply it to a non-uniform plastic working region such as forging. It's not something.

【0008】本発明は上記のような問題点の解決を図っ
たものであり、塑性加工を伴わないβ域熱処理により高
強度、高靭性および高延性を得ることの出来る(α+
β)型チタン合金の熱処理方法を提供することを目的と
する。
The present invention is intended to solve the above-mentioned problems, and high strength, high toughness and high ductility can be obtained by heat treatment in the β region without plastic working (α +
An object of the present invention is to provide a heat treatment method for β) type titanium alloy.

【0009】[0009]

【課題を解決するための手段及び作用】上記目的を達成
するために、本発明者等は溶体化の加熱速度、温度、時
間および冷却速度さらに時効温度を検討した結果、上記
特性を達成可能と見出した。
In order to achieve the above object, the present inventors have examined the heating rate, temperature, time and cooling rate of solution heat treatment and the aging temperature, and as a result, the above characteristics can be achieved. I found it.

【0010】即ち、本発明による熱処理方法は、前組織
として等軸組織をもつ合金組成が以下の条件を満たすこ
とを特徴とするα+β型チタン合金を溶体化時効処理を
施す際に、合金組成(重量%)が下記の(1)〜(6)
式の条件を満たし、残部がTiおよび不可避不純物から
なる組成を有する(α+β)型チタン合金を溶体化時効
処理を施す際に、溶体化処理温度をβ変態点(Tβ)以
上β変態点(Tβ)+100℃未満に2℃/s以上の加
熱速度で加熱し、5分以内保持後2℃/s以上で冷却す
る(α+β)型チタン合金の熱処理方法とするものであ
る。
That is, the heat treatment method according to the present invention is characterized in that the alloy composition having an equiaxed structure as a pre-structure satisfies the following conditions, and when the solution aging treatment is performed on the α + β type titanium alloy, the alloy composition ( (% By weight) is the following (1) to (6)
When solution hardening aging treatment is performed on an (α + β) type titanium alloy having a composition that satisfies the condition of the formula and the balance is Ti and unavoidable impurities, the solution treatment temperature is not less than β transformation point (Tβ) and β transformation point (Tβ). ) It is a heat treatment method for an (α + β) type titanium alloy, which is heated to less than + 100 ° C at a heating rate of 2 ° C / s or more, held for 5 minutes or more, and cooled at 2 ° C / s or more.

【0011】3.0≦Al≦5.0 (1) 2.1≦V≦3.7 (2) 0.85≦Fe≦3.15 (3) 0.85≦Mo≦3.15 (4) 0.06≦O≦0.20 (5) を含有し、且つ 80≦20x(Fe)+13x(V)+10x(Mo)≦130 (6) 又、上記熱処理した(α+β)型チタン合金を更に、時
効処理を400〜750℃で行う(α+β)型チタン合
金の熱処理方法とするものである。
3.0 ≦ Al ≦ 5.0 (1) 2.1 ≦ V ≦ 3.7 (2) 0.85 ≦ Fe ≦ 3.15 (3) 0.85 ≦ Mo ≦ 3.15 (4) ) 0.06 ≦ O ≦ 0.20 (5) and 80 ≦ 20x (Fe) + 13x (V) + 10x (Mo) ≦ 130 (6) Further, the heat treated (α + β) type titanium alloy is further added. The aging treatment is performed at 400 to 750 ° C. for the heat treatment of the (α + β) type titanium alloy.

【0012】まず、加熱温度について説明する。本合金
組成ではTi−6Al−4Vに比べ、β安定化元素が多
いため、溶体化を行う前はβ中にこれらのβ安定化元素
が濃化する一方、α中にはほとんど含まれない。このた
めに、この合金の平衡的なβ変態点に比べ、初析αその
もののβ変態点は100℃以上高くなっていることが判
明した。従って、本合金をβ変態点〜β変態点+100
℃に加熱しても、すぐに全体がβ組織となるわけではな
く、α相は粒界からの拡散により変態していくので、β
粒径は粗大化しない。
First, the heating temperature will be described. Since the present alloy composition has more β-stabilizing elements than Ti-6Al-4V, these β-stabilizing elements are concentrated in β before solution treatment, but are hardly contained in α. Therefore, it was found that the β transformation point of pro-eutectoid α itself is 100 ° C. or more higher than the equilibrium β transformation point of this alloy. Therefore, the present alloy is converted from β transformation point to β transformation point +100
Even if heated to ℃, the entire structure does not immediately become β structure, and α phase is transformed by diffusion from the grain boundary.
The particle size does not become coarse.

【0013】次に、加熱速度限定理由について説明す
る。上記加熱温度に到達するまでに2℃/s未満で加熱
を行うと加熱中に拡散が進みα相が小さくなり、β変態
点以上になると容易にβ化し粒の粗大化を生じ延性が
下する。
Next, the reason for limiting the heating rate will be described. If heating is performed at less than 2 ° C./s before reaching the above heating temperature, diffusion progresses during heating and the α phase becomes small, and if the β transformation point or higher is reached, β is easily formed and grain coarsening occurs and ductility decreases. br />

【0014】また、加熱時間および冷却速度に関して
は、保持を5分以上行なうとあるいは冷却を2℃/s以
下で行うと同様にβ粒径の粗大化を生じるからである。
Further, regarding the heating time and the cooling rate, the β particle size is coarsened similarly to the case where the holding is carried out for 5 minutes or more or the cooling is carried out at 2 ° C./s or less.

【0015】次に時効温度限定理由について説明する。
時効温度が400℃以下では温度が低すぎて強度が上昇
せず、750℃を超えると強度が上昇してもすぐに軟化
してしまう。このために、最適な時効温度と400℃以
上500℃以下とした。
Next, the reason for limiting the aging temperature will be described.
If the aging temperature is 400 ° C. or lower, the temperature is too low to increase the strength, and if it exceeds 750 ° C., the strength is increased and the strength is immediately softened. Therefore, the optimum aging temperature and 400 ° C. or more and 500 ° C. or less are set.

【0016】最後に、本発明における合金成分限定理由
について説明する。Al:Alはα+β型チタン合金の
強度を上昇させる基本成分であり3%未満では十分な強
度が得られず、逆に5%を超えると金属間化合物を生じ
延性が低下してしまうため3〜5%の範囲とする。
Finally, the reasons for limiting the alloy components in the present invention will be explained. Al: Al is alpha + beta type titanium alloy strength, sufficient strength can be obtained with less than 3% be a basic component to increase the, 3 for ductile resulting intermetallic compound exceeds 5% conversely decreases The range is 5%.

【0017】β安定化元素であるV、Fe、Moはβ変
態点を低下させる効果が大きく、β変態組織中に多く存
在する。したがって、これらを添加することにより、全
体のβ変態点と熱処理前のα相のみのβ変態点に大きな
差を生じ、ある温度範囲でβ粒径の粗大化を抑制する効
果がある。
The β-stabilizing elements V, Fe and Mo have a great effect of lowering the β-transformation point and are present in large amounts in the β-transformation structure. Therefore, the addition of these causes a large difference between the entire β transformation point and the β transformation point of only the α phase before the heat treatment, and has an effect of suppressing coarsening of the β grain size in a certain temperature range.

【0018】V:Vは2.1%未満ではα+β型チタン
合金になりにくく、逆に3.7%以上では、α相中にも
固溶し初期のα相と全体のβ変態点の差がかえって小さ
くなり、加熱温度範囲が縮小する。
V: If V is less than 2.1%, it becomes difficult to form an α + β type titanium alloy. Conversely, if 3.7% or more, it forms a solid solution in the α phase and the difference between the initial α phase and the overall β transformation point. On the contrary, it becomes smaller and the heating temperature range is narrowed.

【0019】Fe:Feはβ安定度の最も大きな元素の
1つであり0.85%未満ではβ相中へのβ安定化元素
の寄与が小さく、初析αと全体のβ変態点の差が小さく
加熱温度範囲が狭い。また、拡散係数が非常に大きいの
で、3.15%以上添加すると、溶体化時にβ粒径の
大化を生じ延性を低下させる。
Fe: Fe is one of the elements having the greatest β stability, and if it is less than 0.85%, the contribution of the β stabilizing element to the β phase is small, and the difference between the pro-eutectoid α and the overall β transformation point is small. Is small and the heating temperature range is narrow. Further, since the diffusion coefficient is very large, if it is added in an amount of 3.15% or more, the β particle size becomes coarse during solution treatment, and the ductility decreases.

【0020】Mo:Moは拡散速度が遅く0.85%未
満では溶体化時にβ粒の粗大化を生じ延性を低下させ
る。また、3.15%を超えるとMoが重い元素である
ので合金密度を増大させてしまう。
Mo: Mo has a slow diffusion rate and if it is less than 0.85%, coarsens β particles during solution treatment and reduces ductility. Further, if it exceeds 3.15%, since Mo is a heavy element, the alloy density is increased.

【0021】O:Oは強度に対する効果が大きく0.0
6%未満では強度レベルが低く逆に0.2%以上では強
度が大きいが延性を低下させる。
O: O has a great effect on the strength and is 0.0
If it is less than 6%, the strength level is low. On the contrary, if it is 0.2% or more, the strength is large but the ductility is lowered.

【0022】 80≦20x(Fe)+13x(V)+10x(Mo)≦130 (6) (6)式はβ相の安定度を示し、強度及びβ変態点と密
接な関係がある。この値が80未満であるとβ相のβ安
定化度が小さく初析αと全体のβ変態点の差が小さく、
加熱温度範囲が小さくなってしまう。また、130を超
えるとβ安定化元素が初析α中にも固溶しかえって加熱
温度範囲を縮小する。
80 ≦ 20x (Fe) + 13x (V) + 10x (Mo) ≦ 130 (6) Equation (6) shows the stability of the β phase and is closely related to the strength and the β transformation point. If this value is less than 80, the β-phase β-stability is small, and the difference between the pro-eutectoid α and the overall β-transformation point is small,
The heating temperature range becomes smaller. Further, when it exceeds 130, the β-stabilizing element becomes a solid solution also in the pro-eutectoid α, and the heating temperature range is reduced.

【0023】[0023]

【実施例】(実施例1)表1にα+β域で製造され等軸
二相組織をもつ、Ti−4.5Al−3V−2Fe−2
Mo−0.1O(X=99)合金φ15mm丸棒を用い
加熱速度、温度、保持時間、冷却速度を変化させた場合
の引張特性、切り欠き引張特性は、ノッチ付引張強度
(NTS)および、ノッチ付引張強度を平滑試験片の
0.2%PSで除した値、切り欠き降伏比(NTS/
0.2%PS)で表され、NTS/0.2%PSが1.
0以上の場合靱性が高いと考える。ノッチ付引張強度
(NTS)は非切欠き部直径8.0mm、切欠き底部直
径5.66mm、切欠き形状60°V、切欠き先端R
0.1mm、応力集中係数Kt=5.42の試験片を用
いる。
EXAMPLES Example 1 In Table 1, Ti-4.5Al-3V-2Fe-2 produced in the α + β region and having an equiaxed two-phase structure.
Mo-0.1O (X = 99) alloy φ15 mm round bar was used to change the heating rate, temperature, holding time, and cooling rate. The tensile properties and notch tensile properties are notched tensile strength (NTS) and Notched tensile strength divided by 0.2% PS of smooth test piece, notch yield ratio (NTS /
0.2% PS), and NTS / 0.2% PS is 1.
It is considered that the toughness is high when 0 or more. Notched tensile strength (NTS) is non-notch diameter 8.0 mm, notch bottom diameter 5.66 mm, notch shape 60 ° V, notch tip R
A test piece having a 0.1 mm stress concentration factor Kt = 5.42 is used.

【0024】その結果、加熱速度、温度、保持時間、冷
却速度が本発明条件を満たさないところは、伸びが8.
0%未満及び切り欠き降伏比1.0未満とが小さくなっ
てしまう。また、時効を行なうと強度は低下するものの
伸び及び切り欠き降伏比は著しく増加する。
As a result, when the heating rate, temperature, holding time and cooling rate do not satisfy the conditions of the present invention, the elongation is 8.
If it is less than 0% and the notch yield ratio is less than 1.0, it becomes small. Further, when aging is performed, the strength and the notch yield ratio significantly increase, although the strength decreases.

【0025】[0025]

【表1】 [Table 1]

【0026】(実施例2)表2に示すα+β型チタン合
金をα+β型チタン合金をα+β域に加熱、圧延して製
造したφ15mmの丸棒を加熱速度2℃/s、加熱温度
1000℃、保持時間30秒、冷却速度2℃/sで熱処
理を行った場合の引張特性、切り欠き引張特性を調査し
た。
Example 2 A φ15 mm round bar manufactured by heating and rolling an α + β type titanium alloy shown in Table 2 into an α + β type titanium alloy was heated at a heating rate of 2 ° C./s, a heating temperature of 1000 ° C., and held. The tensile properties and the notch tensile properties when heat-treated at a cooling rate of 2 ° C./s for 30 seconds were investigated.

【0027】その結果、Alが3%未満、Oが0.06
%未満の場合は引張強度が低くなってしまう。20×
(Fe)+13x(V)+10x(Mo)が80未満や
130より大きいと強度はあるが、伸び及び切り欠き降
伏比が小さくなってしまうことがわかる。
As a result, Al is less than 3% and O is 0.06.
If it is less than%, the tensile strength tends to be low. 20x
It can be seen that if (Fe) + 13x (V) + 10x (Mo) is less than 80 or more than 130, the strength is obtained, but the elongation and the notch yield ratio become small.

【0028】[0028]

【表2】 [Table 2]

【0029】[0029]

【発明の効果】以上のように本発明は塑性加工を伴わな
いβ域熱処理により高強度、高靭性および高延性を得る
ことが出来る。
As described above, according to the present invention, high strength, high toughness, and high ductility can be obtained by the β region heat treatment without plastic working.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 合金組成(重量%)として下記の(1)
〜(6)式の条件を満たし、残部がTiおよび不可避不
純物からなる組成を有する(α+β)型チタン合金を溶
体化時効処理を施す際に、溶体化時効処理温度をβ変態
点(Tβ)以上β変態点(Tβ)+100℃未満に、2
℃/s以上の加熱速度で加熱し、5分以内保持後、2℃
/s以上で冷却することを特徴とする(α+β)型チタ
ン合金の熱処理方法。 3.0≦Al≦5.0 (1) 2.1≦V≦3.7 (2) 0.85≦Fe≦3.15 (3) 0.85≦Mo≦3.15 (4) 0.06≦O≦0.20 (5) を含有し、且つ 80≦20x(Fe)+13x(V)+10x(Mo)≦130 (6)
1. The alloy composition (% by weight) below (1)
When the solution hardening aging treatment is performed on the (α + β) type titanium alloy having the composition of the following formulas (6) and the balance being Ti and unavoidable impurities, the solution hardening aging treatment temperature is not less than the β transformation point (Tβ). Below β transformation point (Tβ) + 100 ° C, 2
After heating for 5 minutes or more at a heating rate of ℃ / s or more, 2 ℃
/ S or more cooling, the heat treatment method of the (α + β) type titanium alloy. 3.0 ≦ Al ≦ 5.0 (1) 2.1 ≦ V ≦ 3.7 (2) 0.85 ≦ Fe ≦ 3.15 (3) 0.85 ≦ Mo ≦ 3.15 (4) 06 ≦ O ≦ 0.20 (5) and 80 ≦ 20x (Fe) + 13x (V) + 10x (Mo) ≦ 130 (6)
【請求項2】 請求項1に記載の熱処理をした(α+β
型)チタン合金を、更に時効処理を400〜750℃で
行うことを特徴とする(α+β)型合金の熱処理方法。
2. The heat treatment according to claim 1 is performed (α + β
(Type) titanium alloy, and further aging treatment is performed at 400 to 750 ° C. (α + β) type alloy heat treatment method.
JP3219557A 1991-08-30 1991-08-30 Heat treatment method for (α + β) type titanium alloy Expired - Fee Related JP2541042B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3219557A JP2541042B2 (en) 1991-08-30 1991-08-30 Heat treatment method for (α + β) type titanium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3219557A JP2541042B2 (en) 1991-08-30 1991-08-30 Heat treatment method for (α + β) type titanium alloy

Publications (2)

Publication Number Publication Date
JPH0559509A JPH0559509A (en) 1993-03-09
JP2541042B2 true JP2541042B2 (en) 1996-10-09

Family

ID=16737379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3219557A Expired - Fee Related JP2541042B2 (en) 1991-08-30 1991-08-30 Heat treatment method for (α + β) type titanium alloy

Country Status (1)

Country Link
JP (1) JP2541042B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2988246B2 (en) * 1994-03-23 1999-12-13 日本鋼管株式会社 Method for producing (α + β) type titanium alloy superplastic formed member
JP5315888B2 (en) * 2008-09-22 2013-10-16 Jfeスチール株式会社 α-β type titanium alloy and method for melting the same
CN107513638A (en) * 2017-09-12 2017-12-26 西安庄信新材料科技有限公司 A kind of preparation method of high-intensity titanium alloy pipe
CN114182187B (en) * 2021-12-14 2022-12-23 长沙理工大学 Heat treatment method for improving toughness of titanium alloy pipe for oil gas
CN114752877B (en) * 2022-05-30 2023-03-17 西部超导材料科技股份有限公司 Preparation method of Ti6Al4V alloy bar with high sound velocity uniformity
CN115449665A (en) * 2022-07-08 2022-12-09 重庆大学 Titanium alloy and preparation method thereof
CN115852284B (en) * 2022-11-11 2024-02-02 西部超导材料科技股份有限公司 TB18 ultra-high strength and toughness titanium alloy heat treatment process

Also Published As

Publication number Publication date
JPH0559509A (en) 1993-03-09

Similar Documents

Publication Publication Date Title
JP3959766B2 (en) Treatment method of Ti alloy with excellent heat resistance
JP2606023B2 (en) Method for producing high strength and high toughness α + β type titanium alloy
US4309226A (en) Process for preparation of near-alpha titanium alloys
US20030168138A1 (en) Method for processing beta titanium alloys
JP3319195B2 (en) Toughening method of α + β type titanium alloy
EP0388527B1 (en) Improved titanium aluminide alloys
JPH0686638B2 (en) High-strength Ti alloy material with excellent workability and method for producing the same
JPH0297634A (en) Ni base superalloy and its manufacture
JPH05148599A (en) Preparation of titanium alloy part comprising improved hot processing working and obtained part
JPH10306335A (en) Alpha plus beta titanium alloy bar and wire rod, and its production
JP6307623B2 (en) High strength alpha-beta titanium alloy
JP3873313B2 (en) Method for producing high-strength titanium alloy
EP3775307B1 (en) High temperature titanium alloys
GB2337762A (en) Silicon containing titanium alloys and processing methods therefore
EP4219779A2 (en) Creep resistant titanium alloys
EP3907306A1 (en) Bar
JP2010100943A (en) METHOD FOR PRODUCING alpha+beta TYPE TITANIUM ALLOY MEMBER HAVING TENSILE STRENGTH OF 1,000 MPA CLASS OR ABOVE
JPS6046358A (en) Preparation of alpha+beta type titanium alloy
JP2541042B2 (en) Heat treatment method for (α + β) type titanium alloy
JP4507094B2 (en) Ultra high strength α-β type titanium alloy with good ductility
KR102332018B1 (en) High temperature titanium alloy and method for manufacturing the same
JP3252596B2 (en) Method for producing high strength and high toughness titanium alloy
JP2005076098A (en) HIGH-STRENGTH alpha-beta TITANIUM ALLOY
JP4715048B2 (en) Titanium alloy fastener material and manufacturing method thereof
JP2932914B2 (en) Method for producing (α + β) type Ti alloy forged material

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100725

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100725

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees