JPS61250138A - Titanium alloy excelling in cold workability - Google Patents

Titanium alloy excelling in cold workability

Info

Publication number
JPS61250138A
JPS61250138A JP8984785A JP8984785A JPS61250138A JP S61250138 A JPS61250138 A JP S61250138A JP 8984785 A JP8984785 A JP 8984785A JP 8984785 A JP8984785 A JP 8984785A JP S61250138 A JPS61250138 A JP S61250138A
Authority
JP
Japan
Prior art keywords
cold workability
titanium alloy
less
hardness
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8984785A
Other languages
Japanese (ja)
Other versions
JPH0699765B2 (en
Inventor
Toshiyuki Watanabe
敏幸 渡辺
Yuzo Taiho
大宝 雄蔵
Hisao Kamiya
神谷 久夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP60089847A priority Critical patent/JPH0699765B2/en
Priority to EP86303107A priority patent/EP0202791A1/en
Publication of JPS61250138A publication Critical patent/JPS61250138A/en
Publication of JPH0699765B2 publication Critical patent/JPH0699765B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium

Abstract

PURPOSE:To obtain a beta single phase-type Ti alloy having improved cold workability by incorporating, as principal components, specific amounts of V, Al, Cr, Fe and Mn to Ti. CONSTITUTION:The Ti alloy consists of, by weight, 8-25% V, 0.5-5% Al, <1.0% Cr, <=1.0% Fe, <=1.0% Mn and the balance essentially Ti, whose hardness after solution heat treatment is limited to <=HrC25. In this way, cold workability can be improved. Moreover, if necessary, when 0.01-3.0% REM and <=5%, in total, of >=1 kind among 0.01-1.0%, each, of Ca, S, Se, Te, Pb and Bi are incorporated to the above composition, machinability can be improved besides cold workability. This Ti alloy can be used in various fields such as material for space planes, automobile material, material for machine structural use, biomaterial, material for general civilian goods, and the like.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は、宇宙航空機用材料、自動車用材料、a械構
造部品用材料、生体材料、一般民需用材料などとして使
用される冷間加工性に優れたチタン合金に関するもので
ある。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) This invention can be used as materials for spacecraft, automobiles, mechanical structural parts, biological materials, materials for general civilian use, etc. This invention relates to a titanium alloy with excellent cold workability.

(従来の技術) チタン合金は、鋼と同等の強度をもち、しかも軽量であ
るため、従来から宇宙航空機用材料としてよく使用され
ている。また、最近では、自動車用材料9機械構造部品
用材料、生体材料、一般民需用材料などとしても使用さ
れ始めている。
(Prior Art) Titanium alloys have the same strength as steel and are lightweight, so they have been commonly used as materials for spacecraft. In addition, recently, it has begun to be used as a material for automobiles, a material for mechanical structural parts, a biomaterial, a material for general civilian use, etc.

チタン合金としては従来より種々の化学組成からなるも
のが開発されているが、これらのうち。
Among the titanium alloys that have been developed in the past, those with various chemical compositions.

Ti−6A見−4V合金は、機械的性質が安定しており
、使いやすい合金であるため、最も多く使用されている
チタン合金である。しかしながら、このチタン合金は、
変形能の小さい六方晶の結晶構造を持つα相を80%程
度含有するため、25%以上の冷間加工は困難である。
Ti-6A-4V alloy is the most commonly used titanium alloy because it has stable mechanical properties and is easy to use. However, this titanium alloy
Since it contains approximately 80% α phase having a hexagonal crystal structure with low deformability, cold working of 25% or more is difficult.

このため、冷間加工性のよい体心立方晶の結晶構造をも
つβ相単相型のチタン合金が注目されている。このβ相
単相型のチタン合金としては、例えばTi −11,5
%M o −6%Zr−4,5%Sn。
For this reason, single-phase β-phase titanium alloys having a body-centered cubic crystal structure with good cold workability are attracting attention. As this β phase single phase type titanium alloy, for example, Ti-11,5
%Mo-6%Zr-4,5%Sn.

Ti−13%v−11%Cr−3%AJL、Ti−10
%V−2%Fe−3%Alなどがある。
Ti-13%v-11%Cr-3%AJL, Ti-10
%V-2%Fe-3%Al, etc.

(発明が解決しようとする問題点) しかしながら、上記例示した従来のβ相単相型のチタン
合金は、70%程度までの冷間加工は可能であるが、硬
さが約HRC30以上とかなり高いため、冷間鍛造を行
う場合には金型寿命が短く、冷間伸線や冷間圧延を行う
場合にはダイスやロールとの焼付きが起きやすいという
問題点があった。
(Problems to be Solved by the Invention) However, although the conventional β-phase single-phase titanium alloy exemplified above can be cold-worked up to about 70%, its hardness is quite high at about HRC 30 or more. Therefore, when cold forging is performed, the life of the mold is short, and when cold wire drawing or cold rolling is performed, seizure with dies and rolls is likely to occur.

この発明は、このような従来の問題点に着目してなされ
たもので、溶体化処理後の硬さが約HRC25以下とか
なり低く、冷間鍛造を行う場合に金型寿命が長く、また
冷間伸線や冷間圧延を行う場合にダイスやロールとの焼
付きが生じがたく、冷間加工性に優れたβ相単相型のチ
タン合金を提供することを目的としている。
This invention was made by focusing on these conventional problems, and the hardness after solution treatment is quite low, approximately HRC25 or less, and when cold forging is performed, the life of the mold is long, and the hardness is very low. The object of the present invention is to provide a β-phase single-phase titanium alloy that is less likely to seize with dies or rolls during wire drawing or cold rolling, and has excellent cold workability.

[発明の構成〕 (問題点を解決するための手段) この発明によるβ相単相型のチタン合金は、重量%で、
V:8〜25%、Al : 0.5〜5%、Cr:1.
0%未満、Fe:1.0%以下、Mn:1.0%以下、
ならびに必要に応じて、0.01〜3.0%のREMお
よび0.O2N2.0%のCa、S、Ss、Te、Pb
、Biのうちの1種または2種以上を合計で5%以下、
残部実質的にTiよりなることを特徴とし、冷間加工性
に優れたβ相単相型のチタン合金であることを特徴とし
ている。
[Structure of the Invention] (Means for Solving the Problems) The β-phase single-phase titanium alloy according to the present invention has, in weight%,
V: 8-25%, Al: 0.5-5%, Cr: 1.
less than 0%, Fe: 1.0% or less, Mn: 1.0% or less,
and 0.01-3.0% REM and 0.01% as required. O2N2.0% Ca, S, Ss, Te, Pb
, a total of 5% or less of one or more of Bi,
The remaining portion is substantially composed of Ti, and is characterized by being a β-phase single-phase titanium alloy with excellent cold workability.

以下に、この発明による冷間加工性に優れたβ相単相型
チタン合金の成分範囲(重量%)の限定理由について説
明する。
The reasons for limiting the component range (wt%) of the β-phase single-phase titanium alloy excellent in cold workability according to the present invention will be explained below.

v : 8〜25% ■は本発明において最も重要な元素である。v: 8-25% (2) is the most important element in the present invention.

チタン合金においては、その冷間加工性を良くするため
には、本質的にβ相単相組織とする必要があるが、この
ようなβ相単相組織はβ安定化元素を添加することによ
って達成される。このβ安定化元素としては、’ M 
o 、 V 、 T a 。
In order to improve the cold workability of titanium alloys, it is essentially necessary to form a single-phase β-phase structure, but such a single-phase β-phase structure can be improved by adding β-stabilizing elements. achieved. As this β stabilizing element, ' M
o, V, Ta.

Nb、Fe、Cr、Mnなどの金属元素があるが、これ
らの中で強度の低いβ相単相合金となるのはMoとVを
添加した場合だけであり、他の元素でβ相単相組織とし
た場合には硬さがHRC25よりも大きくなって冷間加
工性が低下する。また、MOは融点が高いため製造性が
良くないことおよび高価であることから実用性にとぼし
い。
There are metal elements such as Nb, Fe, Cr, and Mn, but among these, a β-phase single-phase alloy with low strength is formed only when Mo and V are added; other elements create a β-phase single-phase alloy. When it is made into a microstructure, the hardness becomes larger than HRC25 and cold workability decreases. Furthermore, MO has a high melting point, so it is not easy to manufacture and is expensive, making it impractical.

そこで1本発明者は、これら多くのβ安定化元素につい
て数多くの実験を行った結果、■のみが硬さを高くする
ことなく冷間加工性を改善できる元素であることを見い
出した。これらの実験においては、例えば、Ti合全中
へのV添加量と溶体化処理後の硬さとの関係を調べた。
Therefore, the inventor of the present invention conducted numerous experiments on many of these β-stabilizing elements, and as a result found that only (2) is an element that can improve cold workability without increasing hardness. In these experiments, for example, the relationship between the amount of V added during Ti synthesis and the hardness after solution treatment was investigated.

すなわち、ボタンアーク溶解によってT i −4+ 
5%/1l−0,3%CrをベースとしかつV含有量を
変化させた各種のチタン合金を溶製し、100gのイン
ゴットを作成したのち圧延加工によって直径10mmの
直棒とし、これらの直棒に対して、900”OXo、5
時間加熱後水冷の条件で溶体化処理を施し、この溶体化
処理後の硬さおよび冷間加工性を調べた。
That is, by button arc melting, T i −4+
Various titanium alloys based on 5%/1l-0.3%Cr and varying the V content were melted into 100g ingots, which were then rolled into straight bars with a diameter of 10mm. For the bar, 900”OXo, 5
Solution treatment was performed under the condition of heating for a time and then cooling with water, and the hardness and cold workability after the solution treatment were examined.

第1図に、Ti−4,5%A1−0.3%Cr合金中へ
のVの添加量と溶体化処理後の硬さとの関係を示した。
FIG. 1 shows the relationship between the amount of V added to the Ti-4,5%A1-0.3%Cr alloy and the hardness after solution treatment.

第1図に示すように、■の添加量が多くなるに従って硬
さが低下し、添加量が8%以上となると目標である硬さ
HRC25以下となる。そして、硬さの低下はV添加量
が約20%まで継続し、これ以上では飽和する。
As shown in FIG. 1, the hardness decreases as the amount of () added increases, and when the amount added exceeds 8%, the hardness falls below the target HRC of 25. The decrease in hardness continues until the amount of V added is about 20%, and becomes saturated above this point.

また、第2図に、直径6 m m X長さ11.5mm
の試験片を用いて行った圧縮試験の結果を示す、第2図
において、縦軸の限界圧縮率は、試験片表面に割れが発
生した時の歪(JLn[初期高さくho)/圧縮後高さ
くh)])であり、この値が大きいほど冷間加工で割れ
が生じにくいことを示している。
Also, in Figure 2, the diameter is 6 mm x length 11.5 mm.
In Figure 2, which shows the results of a compression test conducted using a specimen of The height is h)]), and the larger this value is, the less likely it is that cracks will occur during cold working.

第2図に示すように、Ti−4゜5%A文中へのV添加
量を増大するにしたがって冷間加工性が向上しているこ
とがわかる。
As shown in FIG. 2, it can be seen that as the amount of V added to the Ti-4°5%A composition increases, the cold workability improves.

第1図および第2図に示すように、チタン合金における
V添加量は、溶体化処理後の硬さを低くし、冷間加工性
を向上させることができるようにする観点から定められ
るが、この■のより望ましい添加量はβ安定化元素であ
るCrの含有量によって定められ、この発明によるチタ
ン合金では8〜25%の範囲とした。すなわち、上述か
らも明らかなように、■が8%よりも少ないと1合金中
にα相が残って冷間加工性が悪くなり、25重量%を超
えると、時効硬化しないために使用時に高強度が得られ
ない。
As shown in FIGS. 1 and 2, the amount of V added to the titanium alloy is determined from the viewpoint of lowering the hardness after solution treatment and improving cold workability. A more desirable addition amount of (1) is determined by the content of Cr, which is a β-stabilizing element, and is set in the range of 8 to 25% in the titanium alloy according to the present invention. In other words, as is clear from the above, if ■ is less than 8%, α phase remains in the alloy, resulting in poor cold workability, and if it exceeds 25%, age hardening does not occur, resulting in a high temperature during use. Strength cannot be obtained.

A文=0.5〜5% β相単相型のチタン合金は1通常の場合、溶体化処理後
に冷間加工し、次いで時効硬化処理を行って使用するが
、AQの添加は前記時効処理後の延性を高くする。そし
て、この効果は0.5〜3.5%でとくに良好に認めら
れる。
A = 0.5 to 5% β-phase single-phase titanium alloys are normally used by cold working after solution treatment and then age hardening treatment, but the addition of AQ requires the aging treatment. Increases later ductility. This effect is particularly well observed at 0.5 to 3.5%.

一方、チタン合金の硬さに及ぼすAl添加の影響を調べ
た。すなわち、ボタンアーク溶解によってTi−18%
V−0,3%CrをベースとしかつAi添加量を変化さ
せた各種のチタン合金を溶製し、100gのインゴット
を作成したのち圧延加工によって直径10mmの直棒と
し、これらの直棒に対して700℃×0.5時間加熱後
水冷の条件で溶体化処理を施し、この溶体化処理後の硬
さを調べた。この結果を第3図に示す。
On the other hand, the effect of Al addition on the hardness of titanium alloy was investigated. That is, Ti-18% by button arc melting
Various titanium alloys based on V-0.3% Cr and varying amounts of Ai were melted into 100g ingots, which were then rolled into straight bars with a diameter of 10mm. Solution treatment was performed under conditions of heating at 700° C. for 0.5 hour and cooling with water, and the hardness after the solution treatment was examined. The results are shown in FIG.

第3図に示すようにAl含有量が多くなると硬さが増大
することが明らかである。したがって。
As shown in FIG. 3, it is clear that the hardness increases as the Al content increases. therefore.

Al添加量が多すぎると硬さのみが高くなって延性の向
上が見られなくなる。
If the amount of Al added is too large, only the hardness increases and no improvement in ductility is observed.

ところで、β相単相型チタン合金を安価に提供するため
には、Ti−6%AR−4%Vのスクラップを原料とし
て使用することが有効である。
By the way, in order to provide a β-phase single-phase titanium alloy at a low cost, it is effective to use Ti-6%AR-4%V scrap as a raw material.

そこで、上記したAl添加による延性の向上。Therefore, the ductility is improved by adding Al as described above.

硬さの増大ならびに製造コスト等の関係から。Due to increased hardness and manufacturing costs.

Al添加量は0.5〜5%の範囲とした。The amount of Al added was in the range of 0.5 to 5%.

Cr:1.05未満 Crはβ安定化元素であり、基地の結晶構造を体心立方
晶にするのに効果があるが、溶体化処理後の硬さを低く
するためにはできるだけ少ない方が望ましい、しかし、
上記のようにβ相を安定にする効果を有しているので、
1.0%未満までは許容できる。
Cr: less than 1.05 Cr is a β-stabilizing element and is effective in changing the crystal structure of the base to a body-centered cubic crystal, but in order to lower the hardness after solution treatment, it is better to use as little as possible. desirable, but
As mentioned above, it has the effect of stabilizing the β phase, so
It is acceptable up to less than 1.0%.

Fe:1.0%以下、 Mn:1.0%以下、 FeおよびMnはいずれもβ安定化元素であり、基地の
結晶構造を体心立方晶にするのに効果があるが、溶体化
処理後の硬さを低くするためにはできるだけ少ない方が
好ましい、しかし、上記のようにβ相を安定にする効果
は、■を1とした場合に、Mnは2.4.Feは4.3
であッテいずれもVより大きく、しかも安価であるので
複合添加することにより経済的な効果が大きいため。
Fe: 1.0% or less, Mn: 1.0% or less, Fe and Mn are both β-stabilizing elements and are effective in changing the crystal structure of the base to a body-centered cubic crystal, but solution treatment In order to reduce the subsequent hardness, it is preferable to reduce the amount as much as possible.However, as mentioned above, the effect of stabilizing the β phase is as follows: When ■ is 1, Mn is 2.4. Fe is 4.3
This is because both of them are larger than V and are also cheaper, so adding them in combination has a great economic effect.

各々1.0%までは許容できる。Up to 1.0% of each is acceptable.

REM (希土類元素の1種または2種以上=0.01
〜3.0% Ca、S、Se、Te、Pb、Biの1種または2種以
上:0.01〜1.0% REM、Ca、S、Se、Te、Pb、Biの合計:5
%以下 REM、Ca、S、Se、Te、Pb、Biはいずれも
チタン合金の被削性を改善するのに有効な元素である。
REM (One or more rare earth elements = 0.01
~3.0% One or more of Ca, S, Se, Te, Pb, Bi: 0.01~1.0% Total of REM, Ca, S, Se, Te, Pb, Bi: 5
% or less REM, Ca, S, Se, Te, Pb, and Bi are all effective elements for improving the machinability of titanium alloys.

これらのうち希土類元素REM (とくにSc。Among these, rare earth elements REM (especially Sc.

Yおよびランタニド系(原子番号57〜71)のもの)
は、S、Se、Teなどと安定な化合物をつくり、介在
物を粒状にし、靭延性を改善し、被削性を向上させる効
果がある。そしてこのような効果を得るためには必要に
応じて0.01%以上含有させる。しかしながら、多量
に含有するとチタン合金の耐食性および強度を低下させ
るので。
Y and lanthanide series (atomic numbers 57-71)
has the effect of forming stable compounds with S, Se, Te, etc., making inclusions granular, improving toughness and ductility, and improving machinability. In order to obtain such an effect, it is contained in an amount of 0.01% or more as necessary. However, if it is contained in a large amount, it will reduce the corrosion resistance and strength of the titanium alloy.

3.0%以下とする必要がある。また、CaはS、Se
、Teなどと安定な化合物をつくり、介在物の形態を制
御し、チタン合金の靭延性ならびに被削性を改善するの
に有効であるので、このような効果を得るためには必要
に応じて0.01%以上含有させる。しかしながら、多
量に含有するとチタン合金の耐食性や疲労強度を低下さ
せるので、1.0%以下とする必要がある。さらに、S
、Se、Te、Pb、Biは前述のようにチタン合金の
被削性を向上させる元素であり、このような効果を得る
ためには必要に応じて0.015以上含有させる。しか
し、多すぎるとチタン合金の熱間加工性を著しく低下さ
せるので、各々1.0%以下とした。そして、これらの
被削性改善元素であるREM、Ca、S、Se、Te。
It needs to be 3.0% or less. Also, Ca is S, Se
It is effective in creating stable compounds with Te, Te, etc., controlling the morphology of inclusions, and improving the toughness and machinability of titanium alloys. Contain 0.01% or more. However, if it is contained in a large amount, the corrosion resistance and fatigue strength of the titanium alloy will be reduced, so it is necessary to keep it at 1.0% or less. Furthermore, S
, Se, Te, Pb, and Bi are elements that improve the machinability of titanium alloy as described above, and in order to obtain such an effect, they are contained in an amount of 0.015 or more as necessary. However, if the content is too large, the hot workability of the titanium alloy will be significantly reduced, so each content is set at 1.0% or less. These machinability improving elements are REM, Ca, S, Se, and Te.

Pb、Biの合計量が多すぎると、チタン合金の耐食性
9強度、熱間加工性等を低下させるので、これらの合計
量を5%以下とする必要がある。
If the total amount of Pb and Bi is too large, the corrosion resistance, strength, hot workability, etc. of the titanium alloy will be reduced, so the total amount of these must be 5% or less.

(実施例) 箪1夷に千手&受虐公^羊々ソΔ為ルppr(Plas
ma     Progressivecasting
)炉で溶製し、造塊後直径50mmの丸棒に鍛造したの
ち溶体化処理(800℃×0.5時間加熱保持後水冷)
を施して供試材を作成した。
(Example) Kan 1 Yi senju & tortured prince ^ Yotsuso Δtameru ppr (Plas
ma Progressive casting
) Smelted in a furnace, forged into a round bar with a diameter of 50 mm after ingot formation, and then solution treated (heated at 800°C for 0.5 hour and then water cooled)
The test material was prepared by applying the following steps.

次いで、各々の供試材の溶体化処理後の硬さを測定する
と共に、被削性を評価するための被削性試験および冷間
加工性を評価するための圧縮試験を行った。これらのう
ち、硬さの測定はロックウェルCスケールにより行った
。また、被削性試験は第2表に示す条件で行ない、この
条件下での1000mm寿命速度を求め、従来材である
6%Al−4%V−Ti合金の値を100としたときの
比、すなわちドリル寿命速度比で評価した。さらに、圧
縮試験は、第4図に示すように、直径6 m m 、高
さくha)11.5mmの試験片を高さくh)まで圧縮
するときの変形抵抗を求めて冷間加工性を評価した。
Next, the hardness of each sample material after solution treatment was measured, and a machinability test for evaluating machinability and a compression test for evaluating cold workability were conducted. Among these, the hardness was measured using the Rockwell C scale. In addition, the machinability test was conducted under the conditions shown in Table 2, and the 1000mm life speed under these conditions was determined, and the comparison was made when the value of the conventional material 6% Al-4% V-Ti alloy was set as 100. In other words, the drill life speed ratio was evaluated. Furthermore, in the compression test, as shown in Figure 4, the cold workability was evaluated by determining the deformation resistance when compressing a specimen with a diameter of 6 mm and a height of 11.5 mm to a height of h). did.

硬さ測定および被削性試験の結果を第1表に示し、比1
I11試験の結果を第5図に示す。
The results of hardness measurement and machinability test are shown in Table 1, and the ratio 1
The results of the I11 test are shown in FIG.

第  2  表 第1表に赤すように、この発明によるチタン合金(No
、  1〜11)はいずれも溶体化処理後の硬さがHR
C25以下であり、第5図の圧縮試験結果によれば、こ
の発明によるチタン合金(No、  1〜3)は従来材
であるT i −6All −4V CNo。
Table 2 As shown in red in Table 1, the titanium alloy according to the present invention (No.
, 1 to 11), the hardness after solution treatment is HR
C25 or less, and according to the compression test results shown in FIG. 5, the titanium alloys (Nos. 1 to 3) according to the present invention are conventional materials Ti-6All-4V CNo.

12) おJ:びTi−13V−11Cr−3Al(N
o、13)に比較して変形抵抗がかなり小さく、かつ表
面に割れが著しく発生しにくいことを示している。すな
わち、この発明によるチタン合金(No、 1〜3)は
冷間加工性がすこぶる良好であると共に、第1表に示す
ようにドリル寿命速度比が低く、被削性にも優れたもの
である。また、この発明によるチタン合金において、R
EM。
12) OJ: and Ti-13V-11Cr-3Al(N
This shows that the deformation resistance is considerably lower than that of 13), and cracks are less likely to occur on the surface. That is, the titanium alloys (Nos. 1 to 3) according to the present invention have extremely good cold workability, and as shown in Table 1, have a low drill life speed ratio and excellent machinability. . Further, in the titanium alloy according to the present invention, R
E.M.

Ca、S、Se、Te、Pb、Bi(7)うちの1種以
上を添加した合金(No。4〜11)の場合には、第5
図に示したように表面の割れかやへ発生しやすくなるも
のの、それでも従来材であるTi−6A旦−4V (N
o、 l 2)よりも割れが発生しに<<、シかも従来
材(No、12.13)に比べてドリル寿命速度比がか
なり高くなり、冷間加工性のみならず被削性にも著しく
優れたものである。
In the case of alloys (No. 4 to 11) containing one or more of Ca, S, Se, Te, Pb, and Bi (7), the fifth
As shown in the figure, surface cracks and haze are more likely to occur, but the conventional material Ti-6A-4V (N
The drill life speed ratio is considerably higher than the conventional material (No. 12.13), which improves not only cold workability but also machinability. It is extremely excellent.

次に、第1表のNo、 7に示したチタン合金の時効硬
化特性を調べた。この結果を第6図に示す。
Next, the age hardening characteristics of the titanium alloys shown in No. 7 in Table 1 were investigated. The results are shown in FIG.

第6図に示すように、このチタン合金は700℃以上で
、溶体化処理した後時効処理を施すことによって硬さが
高くなり、時効温度が400℃の時に硬さの増加は最も
大きく、例えば溶体化処理温度が900℃の場合はHR
C16のものがHRC34になり、溶体化処理後の冷間
加工性に優れていると共に、時効処理後に高強度が得ら
れるものであることが確かめられた。そして、溶体化処
理後冷間加工した場合は、冷間加工で硬くなった分だけ
さらに時効処理後の硬さは高くなることが確認された。
As shown in Figure 6, the hardness of this titanium alloy increases when it is subjected to solution treatment and then aging treatment at temperatures above 700°C, and the increase in hardness is greatest when the aging temperature is 400°C. If the solution treatment temperature is 900℃, HR
It was confirmed that the C16 material had an HRC of 34 and had excellent cold workability after solution treatment, as well as high strength after aging treatment. It was also confirmed that when cold working was performed after solution treatment, the hardness after aging treatment was further increased by the amount of hardness due to cold working.

[発明の効果] 以上説明してきたように、この発明によるβ相単相型の
チタン合金は、重量%で、v:8〜25%、、Jl:0
.5〜5%、Cr:1.05未満。
[Effects of the Invention] As explained above, the β-phase single-phase titanium alloy according to the present invention has v: 8 to 25%, Jl: 0 in weight%.
.. 5-5%, Cr: less than 1.05.

Fe:1.0%以下、Mn:1.0%以下、ならびに必
要に応じて、0.01〜3.0%のREMおよび0.0
1−1.0%のCa、s、se。
Fe: 1.0% or less, Mn: 1.0% or less, and if necessary, 0.01 to 3.0% REM and 0.0%
1-1.0% Ca, s, se.

T e 、 P b 、 B iのうちの1種または2
種以上を合計で5%以下、残部実質的にTiよりなるも
のであるから、現用のTi−6AJL−4Vに比べて冷
間加工性に著しく優れているものであり、冷間加工を行
う場合に金型寿命が長く、また、冷間伸線や冷間圧延を
行う場合にダイスやロールとの焼付きが生じがたく、部
品や製品の製造性に著しく優れたものである。それゆえ
、チタン合金の軽量、耐食性、高強度などの特長を生か
すことによって、宇宙航空機用材料、自動車用材料9機
械構造用材料、生体材料、一般民需用材料等々の幅広い
分野において使用できるようになり、例えば、より具体
的には、自動車エンジンのバルブ。
One or two of T e , P b , B i
Since it is composed of less than 5% Ti in total and the remainder is substantially Ti, it has significantly superior cold workability compared to the currently used Ti-6AJL-4V, and when cold worked. It has a long mold life, is less likely to seize with dies and rolls during cold wire drawing or cold rolling, and is extremely superior in the manufacturability of parts and products. Therefore, by taking advantage of titanium alloy's features such as light weight, corrosion resistance, and high strength, it can be used in a wide range of fields such as aerospace materials, automobile materials, mechanical structural materials, biomaterials, and materials for general civilian use. For example, more specifically, a valve in an automobile engine.

バルブリテーナ−、バルブスプリングや、めがねフレー
ムなどに適用することによって、軽量でかつ強靭である
ことによる使用上のメリットと、製造性が良好なことに
よるコストメリットとを得ることができ、るという非常
に優れた効果がもたらされる。
By applying it to valve retainers, valve springs, eyeglass frames, etc., it is possible to obtain the advantages of being lightweight and strong, and the cost advantages of good manufacturability. has excellent effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はTi−4,5%AJI−0,3%
Crをベースとしたチタン合金のV含有量と硬さおよび
限界圧縮率との関係を調べた結果の一例を示すグラフ、
第3図はTi−18%V−0,3%Crをベースとした
チタン合金のAfL含有量と硬さとの関係を調べた結果
の一例を示すグラフ、第4図(a)Cb)は圧縮試験に
おいて用いた試験片の各々圧縮試験前後の形状を示す説
明図、第5図は圧縮試験により求めた各試験片の変形抵
抗および変形限界を示すグラフ、第6図は時効処理温度
による硬さへの影響を調べた結果の一例を示すグラフで
ある。 特許出願人  大同特殊鋼株式会社 代理人弁理士 小  塩   豊 第4図 (a)     (b) 第5図
Figures 1 and 2 are Ti-4,5%AJI-0,3%
A graph showing an example of the results of investigating the relationship between V content, hardness, and critical compressibility of a Cr-based titanium alloy,
Figure 3 is a graph showing an example of the relationship between the AfL content and hardness of a titanium alloy based on Ti-18%V-0.3%Cr. An explanatory diagram showing the shape of each test piece used in the test before and after the compression test, Figure 5 is a graph showing the deformation resistance and deformation limit of each test piece determined by the compression test, and Figure 6 is the hardness depending on the aging temperature. 3 is a graph showing an example of the results of investigating the influence on Patent applicant Daido Steel Co., Ltd. Representative Patent Attorney Yutaka Oshio Figure 4 (a) (b) Figure 5

Claims (1)

【特許請求の範囲】 (1)重量%で、V:8〜25%、Al: 0.5〜5%、Cr:1.0%未満、Fe:1.0%以
下、Mn:1.0%以下、残部実質的にTiよりなるこ
とを特徴とする冷間加工性に優れたチタン合金。 (2)溶体化処理後の硬さがH_RC25以下である特
許請求の範囲第(1)項記載の冷間加工性に優れたチタ
ン合金。 (3)重量%で、V:8〜25%、Al: 0.5〜5%、Cr:1.0%未満、Fe:1.0%以
下、Mn:1.0%以下、ならびに0.01〜3.0%
のREMおよび0.01〜1.0%のCa、S、Se、
Te、Pb、Biのうちの1種または2種以上を合計で
5%以下、残部実質的にTiよりなることを特徴とする
被削性および冷間加工性に優れたチタン合金。 (4)溶体化処理後の硬さがH_RC25以下である特
許請求の範囲第(3)項記載の被削性および冷間加工性
に優れたチタン合金。
[Claims] (1) In weight%, V: 8 to 25%, Al: 0.5 to 5%, Cr: less than 1.0%, Fe: 1.0% or less, Mn: 1.0 % or less, and the remainder substantially consists of Ti. A titanium alloy with excellent cold workability. (2) A titanium alloy with excellent cold workability according to claim (1), which has a hardness of H_RC25 or less after solution treatment. (3) In weight%, V: 8 to 25%, Al: 0.5 to 5%, Cr: less than 1.0%, Fe: 1.0% or less, Mn: 1.0% or less, and 0. 01-3.0%
of REM and 0.01-1.0% of Ca, S, Se,
A titanium alloy having excellent machinability and cold workability, characterized in that the total content of one or more of Te, Pb, and Bi is 5% or less, and the remainder is substantially composed of Ti. (4) A titanium alloy with excellent machinability and cold workability according to claim (3), which has a hardness of H_RC25 or less after solution treatment.
JP60089847A 1985-04-25 1985-04-25 Titanium alloy with excellent cold plastic workability Expired - Fee Related JPH0699765B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60089847A JPH0699765B2 (en) 1985-04-25 1985-04-25 Titanium alloy with excellent cold plastic workability
EP86303107A EP0202791A1 (en) 1985-04-25 1986-04-24 Titanium alloys

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60089847A JPH0699765B2 (en) 1985-04-25 1985-04-25 Titanium alloy with excellent cold plastic workability

Publications (2)

Publication Number Publication Date
JPS61250138A true JPS61250138A (en) 1986-11-07
JPH0699765B2 JPH0699765B2 (en) 1994-12-07

Family

ID=13982160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60089847A Expired - Fee Related JPH0699765B2 (en) 1985-04-25 1985-04-25 Titanium alloy with excellent cold plastic workability

Country Status (2)

Country Link
EP (1) EP0202791A1 (en)
JP (1) JPH0699765B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999049091A1 (en) * 1998-03-23 1999-09-30 Horikawa Inc. Ti-V-Al BASED SUPERELASTICITY ALLOY
JP2006002181A (en) * 2004-06-15 2006-01-05 Daido Steel Co Ltd FREE-CUTTING beta-TYPE Ti ALLOY
JP2017508886A (en) * 2014-02-13 2017-03-30 テイタニウム メタルス コーポレイシヨンTitanium Metals Corporation High strength alpha-beta titanium alloy

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9306864D0 (en) * 1993-04-01 1993-05-26 Secr Defence Titanium alloy
GB9306867D0 (en) * 1993-04-01 1993-05-26 Sec Dep For Devence The Improved near beta-phase titanium alloy
DE69630336T2 (en) * 1995-06-16 2004-07-22 Daido Tokushuko K.K., Nagoya Titanium alloy, workpiece made of titanium alloy and method for producing a workpiece made of titanium alloy
CN105463251A (en) * 2015-12-15 2016-04-06 毛培 Preparing method for rare earth enhanced titanium alloy material
CN105483433A (en) * 2015-12-15 2016-04-13 毛培 Rare earth titanium-alloy-doped material
CN105506370A (en) * 2015-12-15 2016-04-20 毛培 Ce and Nd reinforced titanium alloy material
CN105463252A (en) * 2015-12-15 2016-04-06 毛培 Preparing method for La and Nd doping titanium alloy materials
RU2625148C1 (en) * 2016-10-10 2017-07-11 Юлия Алексеевна Щепочкина Alloy

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4837643A (en) * 1971-09-15 1973-06-02
JPS5521823A (en) * 1978-07-31 1980-02-16 Matsushita Electric Works Ltd Fluorescent lamp

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2864697A (en) * 1956-01-23 1958-12-16 Mallory Sharon Metals Corp Titanium-vanadium-aluminum alloys
US3147115A (en) * 1958-09-09 1964-09-01 Crucible Steel Co America Heat treatable beta titanium-base alloys and processing thereof
GB1124962A (en) * 1965-05-22 1968-08-21 Imp Metal Ind Kynoch Ltd Improvements in or relating to titanium alloys

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4837643A (en) * 1971-09-15 1973-06-02
JPS5521823A (en) * 1978-07-31 1980-02-16 Matsushita Electric Works Ltd Fluorescent lamp

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999049091A1 (en) * 1998-03-23 1999-09-30 Horikawa Inc. Ti-V-Al BASED SUPERELASTICITY ALLOY
US6319340B1 (en) 1998-03-23 2001-11-20 Mikio Takeuchi Ti-V-A1 based superelasticity alloy and process for preparation thereof
JP2006002181A (en) * 2004-06-15 2006-01-05 Daido Steel Co Ltd FREE-CUTTING beta-TYPE Ti ALLOY
JP4524584B2 (en) * 2004-06-15 2010-08-18 大同特殊鋼株式会社 Free-cutting β-type Ti alloy
JP2017508886A (en) * 2014-02-13 2017-03-30 テイタニウム メタルス コーポレイシヨンTitanium Metals Corporation High strength alpha-beta titanium alloy

Also Published As

Publication number Publication date
EP0202791A1 (en) 1986-11-26
JPH0699765B2 (en) 1994-12-07

Similar Documents

Publication Publication Date Title
US6053993A (en) Titanium-aluminum-vanadium alloys and products made using such alloys
CA2442068C (en) Ultra-high-strength precipitation-hardenable stainless steel and elongated strip made therefrom
US5376192A (en) High strength, high toughness aluminum-copper-magnesium-type aluminum alloy
CA2485122C (en) Alpha-beta ti-al-v-mo-fe alloy
KR102356191B1 (en) high strength titanium alloy
EP0091897B1 (en) Strain hardening austenitic manganese steel and process for the manufacture thereof
US20030168138A1 (en) Method for processing beta titanium alloys
CN110144496A (en) Titanium alloy with improved performance
JP2012528932A (en) High-strength near β-type titanium alloy and method for producing the same
EP0405134B1 (en) Gamma titanium aluminum alloys modified by chromium and silicon and method of preparation
DE2827440A1 (en) NITROGEN-CONTAINING COBALT-CHROME-MOLYBDAEN ALLOY AND ITS USES
US5160554A (en) Alpha-beta titanium-base alloy and fastener made therefrom
JP3873313B2 (en) Method for producing high-strength titanium alloy
US20070175552A1 (en) Beta-titanium alloy, method for the production of a hot-rolled product from an alloy of this type, and uses thereof
JPH01252747A (en) High strength titanium material having excellent ductility and its manufacture
JPS61250138A (en) Titanium alloy excelling in cold workability
US3306787A (en) Forged metal shapes, their production, and articles made therefrom
WO2005106060A1 (en) Excellent cold-workability exhibiting high-strength steel wire or steel bar, or high-strength shaped article and process for producing them
JP4581425B2 (en) β-type titanium alloy and parts made of β-type titanium alloy
US5417779A (en) High ductility processing for alpha-two titanium materials
JP2669004B2 (en) Β-type titanium alloy with excellent cold workability
JP2006200008A (en) beta-TYPE TITANIUM ALLOY AND PARTS MADE FROM beta-TYPE TITANIUM ALLOY
JP4263987B2 (en) High-strength β-type titanium alloy
JPS61250139A (en) Titanium alloy excelling in cold workability
JP3216837B2 (en) Iron-based super heat-resistant alloy for heat-resistant bolts

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees