EP0091897B1 - Strain hardening austenitic manganese steel and process for the manufacture thereof - Google Patents
Strain hardening austenitic manganese steel and process for the manufacture thereof Download PDFInfo
- Publication number
- EP0091897B1 EP0091897B1 EP83890054A EP83890054A EP0091897B1 EP 0091897 B1 EP0091897 B1 EP 0091897B1 EP 83890054 A EP83890054 A EP 83890054A EP 83890054 A EP83890054 A EP 83890054A EP 0091897 B1 EP0091897 B1 EP 0091897B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- casting
- temperature
- manganese steel
- weight
- content
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229910000617 Mangalloy Inorganic materials 0.000 title claims description 18
- 238000000034 method Methods 0.000 title claims description 13
- 238000005482 strain hardening Methods 0.000 title claims description 9
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 238000005266 casting Methods 0.000 claims description 47
- 239000011572 manganese Substances 0.000 claims description 22
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 21
- 239000010936 titanium Substances 0.000 claims description 20
- 229910052748 manganese Inorganic materials 0.000 claims description 18
- 229910052719 titanium Inorganic materials 0.000 claims description 18
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 17
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 13
- 229910052799 carbon Inorganic materials 0.000 claims description 13
- 238000010438 heat treatment Methods 0.000 claims description 10
- 239000000155 melt Substances 0.000 claims description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 9
- 229910052720 vanadium Inorganic materials 0.000 claims description 9
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims description 8
- 229910045601 alloy Inorganic materials 0.000 claims description 6
- 239000000956 alloy Substances 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 5
- 229910052796 boron Inorganic materials 0.000 claims description 5
- 238000001816 cooling Methods 0.000 claims description 5
- 238000010079 rubber tapping Methods 0.000 claims description 5
- 229910052726 zirconium Inorganic materials 0.000 claims description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 4
- 239000004411 aluminium Substances 0.000 claims description 4
- 239000002826 coolant Substances 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- 238000004458 analytical method Methods 0.000 claims description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 2
- 229910052742 iron Inorganic materials 0.000 claims description 2
- 239000007788 liquid Substances 0.000 claims description 2
- 229910052760 oxygen Inorganic materials 0.000 claims description 2
- 239000001301 oxygen Substances 0.000 claims description 2
- 239000012535 impurity Substances 0.000 claims 1
- 238000010309 melting process Methods 0.000 claims 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 12
- 229910000831 Steel Inorganic materials 0.000 description 12
- 239000010959 steel Substances 0.000 description 12
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 9
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 8
- 239000011651 chromium Substances 0.000 description 7
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 6
- 229910052804 chromium Inorganic materials 0.000 description 6
- 238000007792 addition Methods 0.000 description 5
- 229910001566 austenite Inorganic materials 0.000 description 5
- 229910052759 nickel Inorganic materials 0.000 description 5
- 229910052698 phosphorus Inorganic materials 0.000 description 5
- 239000011574 phosphorus Substances 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 238000005275 alloying Methods 0.000 description 4
- 229910052750 molybdenum Inorganic materials 0.000 description 4
- 239000011733 molybdenum Substances 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 235000019738 Limestone Nutrition 0.000 description 3
- 238000000137 annealing Methods 0.000 description 3
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 3
- 229910001634 calcium fluoride Inorganic materials 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 238000005242 forging Methods 0.000 description 3
- 239000006028 limestone Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000002893 slag Substances 0.000 description 3
- 239000002344 surface layer Substances 0.000 description 3
- 229910052845 zircon Inorganic materials 0.000 description 3
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910000677 High-carbon steel Inorganic materials 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000010891 electric arc Methods 0.000 description 2
- 229910001562 pearlite Inorganic materials 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 229910001200 Ferrotitanium Inorganic materials 0.000 description 1
- 229910000756 V alloy Inorganic materials 0.000 description 1
- 244000052616 bacterial pathogen Species 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 235000014380 magnesium carbonate Nutrition 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000004781 supercooling Methods 0.000 description 1
- 150000003608 titanium Chemical class 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
Definitions
- the invention relates to a strain-hardening austenitic manganese steel with an elongation at break of 10 to 80% and to a method for producing the same.
- Cold-hardening austenitic manganese steels have a wide range of applications, whereby both castings and forgings as well as rolled material are used.
- the wide range of applications is particularly given by the high ductility and the good work hardenability.
- the area of application ranges from castings for hard comminution to bulletproof objects.
- the valuable properties of the manganese hard stands lie in the combination of the above-mentioned properties of the work hardening ability and its lactility.
- the work hardening occurs whenever the manganese steel is mechanically, e.g. B. is claimed by impact or shock. Hiebie is likely to convert the austenite in one surface layer into an epsilon martensite.
- Measurements of work hardening show an increase in hardness from 200 HB to up to 550 HB. There is thus an increase in hardness during use when the casting, forging or the like is subjected to mechanical stress. However, since such objects are also subject to an abrasive stress, this surface layer is continually removed, but a renewed transformation of the austenite now on the surface occurs due to renewed mechanical stress.
- the alloy located under the surface layer has a high ductility, so that the manganese steels can also withstand high mechanical impact loads without risk of breakage, even with a smaller wall thickness.
- a casting be it a molded casting or a block casting, is initially manufactured. Due to the properties of this casting, the properties of the objects made from it are then predetermined. If the structure is too coarse in the casting, the ductility of the commodity is then too low. In the case of large castings, as is known per se, this has different grain zones over its cross section. On the outside there is a thin, relatively fine-grained edge zone, which is followed by a zone with coarse stem crystals, which is followed by the center of the casting with a globular structure. Although the steel is essentially austenitic and work hardenable over the entire cross-section, due to the different structure it shows great differences in mechanical properties, in particular in ductility.
- the casting temperature be as low as possible, e.g. to keep at 1410 ° C, which increases the number of germs with increasing supercooling and a finer grain should be achieved.
- low casting temperatures lead to great difficulties in production.
- Cold welding occurs on the casting, furthermore, the rheological properties of the melt are already such that an exact shape, especially in edges, is no longer given.
- the melt solidifies on the pan lining during casting, which leads to pan shells which then have to be removed and refurbished. During the casting itself, the plug can become stuck in the spout, as a result of which the casting must be stopped.
- the economic disadvantages which have to be accepted for a non-reproducible grain refinement are so serious that the processes with such a low casting temperature could not prevail.
- Another method for grain refinement consists of a targeted heat treatment, in which the casting is annealed at a temperature between 500 and 600 ° C. for 8 to 12 hours, whereby a high proportion of the austenite is to be converted to pearlite. Austenitization annealing is then carried out at a temperature between 970 and 1110 ° C. The two-fold change in structure is said to produce a finer grain, but on the equilibrium side the cause is that the product becomes extremely brittle during the heat treatment and breaks even without deformation under less mechanical stress. Another major disadvantage is that this method requires a large amount of energy.
- Manganese steels usually have a carbon content of 0.7 to 1.7% by weight, with a manganese content of between 5 and 18% by weight to be maintained. essential for the properties of a Manganese steel is also that a ratio of carbon to manganese between 1: 4 and 1:14 is maintained. If the ratio is lower, there is no longer any austenitic steel and it can therefore no longer be work hardened, and at the same time there is less toughness. At a higher ratio, the austenite is too stable, which means that it can no longer be work hardened, so that the desired properties cannot be achieved either.
- a phosphorus content of more than 0.1% by weight causes an extreme drop in toughness, so that, as is known per se for phosphorus, a particularly low value is aimed for.
- ASTM A 128/64 describes four different types of high manganese steels, the carbon cold varying between 0.7 and 1.45% by weight and the manganese content between 11 and 14.0% by weight.
- the carbon content is changed to vary the work hardenability, which is also to be influenced by the addition of chromium.
- the chromium additives then range between 1.5 and 2.5% by weight.
- Coarse carbide deposits are to be suppressed by adding up to 2.3% molybdenum.
- the addition of up to 4.0% by weight of nickel is said to stabilize the austenite, which prevents the formation of pearlite in thick-walled castings.
- a high manganese steel has already become known which has a manganese content of approximately 5% by weight. With such steels, however, the toughness is already low. However, it has a high wear resistance.
- the present invention has set itself the goal of creating a strain-hardening austenitic manganese high-carbon steel which has an elongation at break of 10 to 80%, which has a structure that is as uniform as possible over the entire cross section and has a particularly fine grain, at the same time without any deterioration in the mechanical properties should occur.
- the ratio of carbon to manganese is between 1: 4 and 1:14 has up to 0.05 titanium, 0.05 zirconium and 0.05 vanadium as microalloying elements with the proviso that the sum of titanium and zirconium between 0.002% and 0.05%, optionally also containing vanadium as a microalloying element, the sum of these microalloying elements being up to 0.05% by weight. It was quite surprising that with such a small addition of alloying elements, grain refinement can be achieved while maintaining or increasing the mechanical properties, since additions of 0.1% and above caused the mechanical properties to deteriorate. An exact explanation for this fact has not yet been found. Zircon and vanadium are particularly effective at high casting temperatures.
- the manganese steel has an additional 0.002 to 0.008% by weight boron, an even smaller grain can be achieved.
- Grain refinement is particularly good when only 0.01 to 0.025% by weight of titanium is present as the microalloying element.
- the manganese steel has a content of 0.01 to 0.05% by weight of aluminum, the titanium content can be maintained particularly precisely.
- an insert being melted in an electric furnace after which calcareous, slag-forming additives are added to the liquid melt and the desired analysis is set and brought to a tapping temperature of 1450 to 1600 ° C. with an oxygen affinity Element is deoxidized and tapped into the ladle, consists essentially in the fact that the content of the microalloying elements titanium, zirconium and vanadium is set in the ladle, and the melt is poured at a temperature between 1420 and 1520 ° C. and again after the casting has cooled heated to austenitizing temperature from 980 to 1150 ° G and then cooled rapidly.
- microalloying elements By adding the microalloying elements in the ladle, a reproducible content of microalloying elements is achieved. A particularly high level of toughness is achieved by the heat treatment of the casting, heating to an austenitizing temperature of 980 to 1150 ° C. and then rapidly cooling.
- the susceptibility to cracking in the casting obtained can be significantly reduced.
- Manganese steel has a lower thermal conductivity than other steels (only one sixth of that of iron), so special attention must be paid to temperature compensation.
- a reliable dissolution of the grain boundary carbides even with larger cross-sections and with lower energy consumption can be achieved at a temperature between 1080 and 1100 ° C during solution annealing, whereupon the temperature is reduced to 980 to 1000 ° C and equalized and then rapidly cooled becomes.
- a casting with particularly low internal stresses can be achieved by alternately applying coolants of different thermal conductivity after heating to the austenitizing temperature. Water and air are to be used as particularly suitable coolants.
- the casting is already removed from the mold at a temperature between 800 and 1000 ° C and then placed in a heat treatment furnace in which the temperature of the casting is equalized, whereupon the temperature is immediately raised to the austenitizing temperature, a particularly energy-saving process is provided, with a build-up of high Tension in the casting is prevented, whereby pearlitization can be avoided.
- Example 2 The procedure was analogous to Example 1, with titanium in the form of ferrotitanium being added to the ladle.
- the ladle was brought to the mold and it was poured at 1460 ° C. After the casting had cooled, it was heated to 1100 ° C., at which temperature it was kept for four hours, whereupon the temperature of the furnace was lowered to 1000 ° C. After an hour, a temperature equalization in the casting was reached, followed by cooling with alternating immersion in a water bath.
- the Turas thus obtained was free from cracks. With the exception of the marginal zone, which was microcrystalline, the metallographic examination revealed a completely uniform, fine-grained structure.
- the casting had an average titanium content of 0.02% by weight.
- the mechanical properties were almost identical for the specimens removed in the center and on the edge, the tensile strength being 820 and 830 N / mm 2 and the elongation being 40 and 45%, respectively.
- Example 2 For the production of a drop-forged hammer with pin for a Gastein mill, which had a weight of 180 kg, a block was cast analogously to Example 2. This block was then cut up, and these parts were drop-forged into impact hammers at a forging temperature of 1050 ° C. These impact hammers had a perfectly fine structure in the area of the pin attachments, which was retained even after solution annealing and quenching. In the case of a hammer which was produced with an alloy according to Example 1, coarse-grained crystals appeared in the area of the pin attachments, which in some cases caused microcracks.
- Example 2 The procedure was analogous to Example 2, with boron also being added to the ladle in addition to titanium. The temperature trip was observed as in Example 2. The casting had an average titanium content of 0.02% by weight and an average boron content of 0.005% by weight. The micrographs of samples taken at analogous locations showed that there were 50 grains per millimeter in the samples containing only titanium, whereas the samples containing boron had an average of 60 grains, resulting in a decrease in the average grain diameter of 0.02 mm to 0.017 mm.
- the tensile strength or elongation at break was determined in accordance with DIN 5 D 145/1975.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
- Treatment Of Steel In Its Molten State (AREA)
- Heat Treatment Of Articles (AREA)
Description
Die Erfindung bezieht sich auf einen kaltverfestigenden austenitischen Manganhartstahl mit einer Bruchdehnung von 10 bis 80% und auf ein Verfahren zur Herstellung desselben.The invention relates to a strain-hardening austenitic manganese steel with an elongation at break of 10 to 80% and to a method for producing the same.
Kaltverfestigende austenitische Manganhartstähle haben einen breiten Einsatzbereich, wobei sowohl Guß- bzw. Schmiedestücke als auch gewalztes Material zum Einsatz kommen. Der breite Einsatzbereich ist insbesondere durch die an sich hohe Duktilität und die gute Kaltverfestigungsfähigkeit gegeben. Der Einsatzbereich liegt von Gußstücken für die Hartzerkleinerung bis zu beschußsicheren Gegenständen. Die wertvollen Eigenschaften des Manganhartständen liegen der Kombination der bereits oben angeführten Eigenschaften der Kaltverfestigungsfähigkeit und seiner Auktilität. Die Kaltverfestigungs tritt immer dann auf, wenn der Manganhartstahl mechanisch, z. B. durch Stoß oder Schlag, beansprucht wird. Hiebie dürfte sich der Austenit in einer Oberflächenschichte teilweise in einen Epsilon-Martensit umwandeln. Bei Messungen der Kaltverfestigung kann ein Anstieg der-Härte von 200 HB auf bis zu 550 HB festgestellt werden. Es tritt somit bei mechanischer Beanspruchung des Guß-,Schmiedestückes oder dergleichen eine Erhöhung der Härte während seines Gebrauchseinsatzes auf. Da derartige Gegenstände jedoch auch einer abrasiven Beanspruchung unterliegen, wird diese Oberflächenschicht ständig abgetragen, es tritt jedoch durch erneute mechanishe Beanspruchung erneute eine Umwandlung des nunmehr an der Oberfläche befindlichen Austenits auf. Die unter der Oberflächenschicht befindliche Legierung weist eine hohe Duktilität auf, sodaß die Manganhartstähle auch hohen mechanischen Schlagbeanspruchungen ohne Bruchgefahr selbst bei geringerer Wandstärke gewachsen sind.Cold-hardening austenitic manganese steels have a wide range of applications, whereby both castings and forgings as well as rolled material are used. The wide range of applications is particularly given by the high ductility and the good work hardenability. The area of application ranges from castings for hard comminution to bulletproof objects. The valuable properties of the manganese hard stands lie in the combination of the above-mentioned properties of the work hardening ability and its lactility. The work hardening occurs whenever the manganese steel is mechanically, e.g. B. is claimed by impact or shock. Hiebie is likely to convert the austenite in one surface layer into an epsilon martensite. Measurements of work hardening show an increase in hardness from 200 HB to up to 550 HB. There is thus an increase in hardness during use when the casting, forging or the like is subjected to mechanical stress. However, since such objects are also subject to an abrasive stress, this surface layer is continually removed, but a renewed transformation of the austenite now on the surface occurs due to renewed mechanical stress. The alloy located under the surface layer has a high ductility, so that the manganese steels can also withstand high mechanical impact loads without risk of breakage, even with a smaller wall thickness.
Der britischen Patentschrift 1 187 027 ist kein konkreter Stahl entnehmbar sondern es werden dort lediglich Grenzen in Gewichts- Prozent angegeben, welche eingehalten werden sollen. Die Lehre, daß ein bestimmtes Verhältnis von Kohlenstoff zu Mangan eingehalten werden soll, kann dieser Literaturstelle an keiner Stelle entnommen werden. Auch die Lehre durch einen Zusatz von Zirkon eine Kornfeinung zu erreichen und gleichzeitig eine Anhebung der mechanischen Eigenschaften zu erhalten, ist nicht entnehmbar. Dem russischen Urheberschein 581.165 ist die Lehre zu entnehmen, einen Stahl, welcher u.a. 0,9 - -1,5 Gew.-% C und 9 - 15 Gew.-% Mn enthält, mit Molybdän, Vanadium und Aluminium zu legieren. Als Grenzen für Vanadium werden 0,05 und 0,5 Gew.-% angegeben. Dem Handbuch der Sonderstahlkunde, erster Band, Seiten 510 - 515 sind verschiedene Verfahren zur Herstellung von allgemeinen Manganhartstählen zu entnehmen.No specific steel can be found in British patent specification 1 187 027, but only limits in percent by weight are given which are to be complied with. The teaching that a certain ratio of carbon to manganese should be adhered to cannot be found at any point in this reference. The teaching of achieving grain refinement by adding zircon and at the same time maintaining an increase in mechanical properties cannot be inferred. The teaching can be found in the Russian copyright certificate 581.165, a steel which among other things Contains 0.9 - 1.5% by weight of C and 9 - 15% by weight of Mn, to be alloyed with molybdenum, vanadium and aluminum. The limits for vanadium are 0.05 and 0.5% by weight. Various processes for the production of general manganese steels can be found in the handbook of special steel customers, first volume, pages 510 - 515.
Für sämtliche aus Manghartstahl zu fertigende Gegenstände ist Voraussetzung, daß ein Gußstück, sei es ein Formgußoder ein Blockgußstück, vorerst hergestellt wird. Durch die Eigenschaften dieses Gußstückes sind sodann die Eigenschaften der daraus gefertigten Gegenstände vorbestimmt. Liegt im Gußstück ein zu grobes Gefüge vor, so ist sodann die Duktilität des Gebrauchsgegenstandes zu gering. Bei großen Gußstücken weist wie an sich bekannt, dieses über seinen Querschnitt verschiedene Kornzonen auf. Außen befindet sich eine dünne, relativ feinkörnige Randzone, an welche eine Zone mit groben Stengelkristallen anschließt, auf welche das Zentrum des Gußstückes mit globulitischem Gefüge anschließt. Der Stahl ist zwar im wesentlichen über den gesamten Querschnitt austenitisch und kaltverfestigbar, weist jedoch aufgrund des unterschiedlichen Gefüges große Unterschiede in einen mechanischen Eigenschaften, insbesondere in der Duktilität, auf.For all objects to be made from manganese steel, it is a prerequisite that a casting, be it a molded casting or a block casting, is initially manufactured. Due to the properties of this casting, the properties of the objects made from it are then predetermined. If the structure is too coarse in the casting, the ductility of the commodity is then too low. In the case of large castings, as is known per se, this has different grain zones over its cross section. On the outside there is a thin, relatively fine-grained edge zone, which is followed by a zone with coarse stem crystals, which is followed by the center of the casting with a globular structure. Although the steel is essentially austenitic and work hardenable over the entire cross-section, due to the different structure it shows great differences in mechanical properties, in particular in ductility.
Um eine möglichst gleichmäßige Duktilität über den Gesamtquerschnitt zu erreichen, wurde bereits vorgeschlagen, die Gießtemperatur möglichst gering, z.B. auf 1410°C zu halten, wodurch mit der steigenden Unterkühlung die Keimzahl wächst und ein feineres Korn erreicht werden soll. Derartig niedrige Gießtemperaturen führen jedoch zu großen Schwierigkeiten bei der Produktion. So treten am Gußstück Kaltschweißen auf, weiters sind die rheologischen Eigenschaften der Schmelze bereits derart, daß eine exakte Formerfüllung, insbesondere in Kanten, nicht mehr gegeben ist. Daneben kommt es während des Gießens zum Erstarren der Schmelze an der Pfannenauskleidung, was zu Pfannsnschalen, die sodann entfernt und wieder aufgearbeitet werden müssen, führt. Beim Guß selbst kann weitere ein Kleben des Stopfens im Ausguß auftreten, wodurch der Guß abgebrochen werden muß. Wie aus diesen Ausführungen leicht entnehmbar, sind die wirtschaftlichen Nachteile, welche für eine nichtreproduzierbare Kornfeinung in Kauf genommen werden müssen, derartig schwerwiegend, daß sich die Verfahren mit einer derartig niedrigen Gießtemperatur nicht durchsetzen konnten.In order to achieve a ductility as uniform as possible over the entire cross section, it has already been proposed that the casting temperature be as low as possible, e.g. to keep at 1410 ° C, which increases the number of germs with increasing supercooling and a finer grain should be achieved. However, such low casting temperatures lead to great difficulties in production. Cold welding occurs on the casting, furthermore, the rheological properties of the melt are already such that an exact shape, especially in edges, is no longer given. In addition, the melt solidifies on the pan lining during casting, which leads to pan shells which then have to be removed and refurbished. During the casting itself, the plug can become stuck in the spout, as a result of which the casting must be stopped. As can easily be seen from these explanations, the economic disadvantages which have to be accepted for a non-reproducible grain refinement are so serious that the processes with such a low casting temperature could not prevail.
Ein anderes Verfahren zür Kornfeinung besteht in einer gezielten Wärmebehandlung, wobei das Gußstück bei einer Temperatur zwischen 500 und 600°C 8 bis 12 Stunden geglüht wird, wodurch ein hoher Anteil des Austenits in Perlit umgewandelt werden soll. Anschlisßend erfolgt ein Austenitisierungsglühen bei einer Temperatur zwischen 970 und 1110 °C. Die zweimalige Gefügeänderung soll ein feineres Korn bewirken, hat jedoch glesichzseitig zur Ursache, daß das Produkt während der Wärmebehandlung extrem spröde wird, und bei geringeren mechanischen Beanspruchungen bereits verformungslos bricht. Ein wesentlicher Nachteil besteht auch darin, daß dieses Verfahren einen hohen Energieeinsatz erfoderlich macht.Another method for grain refinement consists of a targeted heat treatment, in which the casting is annealed at a temperature between 500 and 600 ° C. for 8 to 12 hours, whereby a high proportion of the austenite is to be converted to pearlite. Austenitization annealing is then carried out at a temperature between 970 and 1110 ° C. The two-fold change in structure is said to produce a finer grain, but on the equilibrium side the cause is that the product becomes extremely brittle during the heat treatment and breaks even without deformation under less mechanical stress. Another major disadvantage is that this method requires a large amount of energy.
Aus den oben angeführten Gründen wurde auch bereits versucht, eine Kornfeinung durch Zusats von weiteren Legierungselementen zu erfeichen. Als Legierungselemente wurden beispielsweise Chrom, Titan, Zirkon und Stickstoff verwerdet Es wurden hiebei die Zusätze so gewählt, daß der Manganhartstahl Gehalte von zumindest 0,1 bzw. 0,2 Gew.-% der entsprechenden Legierungselemente aufwies. Diese Zusätze bewirken bei tiefen Gießtemperaturen auch wirklich eine Kornfeinung, allerdings tritt eine wesentliche Verschlechterung der mechanischen Eigenschaften, insbesondere der Dehnung und der Kerbschlagzähigkeit ein.For the reasons given above, attempts have already been made to achieve grain refinement by adding additional alloying elements. Chromium, titanium, zirconium and nitrogen, for example, were used as alloying elements. The additives were selected so that the manganese high-carbon steel had contents of at least 0.1 or 0.2% by weight of the corresponding alloying elements. These additives really cause grain refinement at low casting temperatures, however there is a significant deterioration in the mechanical properties, in particular the elongation and the impact strength.
Manganhartstähle weisen üblicherweise einen Kohlenstoffgehalt von 0,7 bis 1,7 Gew.-% auf, wobei ein Mangangehalt zwischen 5 und 18 Gew.-% eingahalten werden soll. wesentlich für die Eigenschaften eines Manganhartstahles ist auch, daß ein Verhältnis Kohlenstoff zum Mangan zwischen 1: 4 und 1: 14 eingehalten wird. Ist das Verhältnis geringer, so liegt kein austenitischer Stahl mehr vor, und er ist somit nicht mehr kaltverfestigbar, wobei gleichzeitig eine geringere Zähigkeit vorliegt. Bei einem höheren Verhältnis ist der Austenit zu stabil, wodurch keine Kaltverfestigbarkeit mehr vorliegt, sodaß ebenfalls die erwünschten Eigenschaften nicht erreichbar sind.Manganese steels usually have a carbon content of 0.7 to 1.7% by weight, with a manganese content of between 5 and 18% by weight to be maintained. essential for the properties of a Manganese steel is also that a ratio of carbon to manganese between 1: 4 and 1:14 is maintained. If the ratio is lower, there is no longer any austenitic steel and it can therefore no longer be work hardened, and at the same time there is less toughness. At a higher ratio, the austenite is too stable, which means that it can no longer be work hardened, so that the desired properties cannot be achieved either.
Ein Phosphorgehalt über 0,1 Gew-% bewirkt einen extremen Abfall der Zähigkeit, sodaß, wie an sich bei Phosphor hinläufig bekannt, ein besonders niedriger Wert angestrebt wird.A phosphorus content of more than 0.1% by weight causes an extreme drop in toughness, so that, as is known per se for phosphorus, a particularly low value is aimed for.
In der ASTM A 128/64 werden vier verschiedene Arten von Manganhartstählen beschrieben, wobei der Kohlenstoffgekalt zwischen 0,7 und 1,45 Gew.-% und der Mangangehalt zwischen 11 und 14,0 Gew.-% variiert sind. Der Kohlenstoffgehalt wird zur Variation der Kaltverfestigbarkeit verändert, welche ebenfalls durch Zusatz von Chrom beeinflußt werden soll. Die Chromzusätze bewegen sich dann zwischen 1,5 und 2,5 Gew.-%. Durch Zusätze bis zu 2,3 % Molybdän sollen grobe Karbidausscheidungen unterdrückt werden. Ein Zusatz von bis zu 4,0 Gew.-% Nickel soll den Austenit stabilisieren, wodurch bei dickwandigen Gußstücken die Bildung von Perlit verhindert wird.ASTM A 128/64 describes four different types of high manganese steels, the carbon cold varying between 0.7 and 1.45% by weight and the manganese content between 11 and 14.0% by weight. The carbon content is changed to vary the work hardenability, which is also to be influenced by the addition of chromium. The chromium additives then range between 1.5 and 2.5% by weight. Coarse carbide deposits are to be suppressed by adding up to 2.3% molybdenum. The addition of up to 4.0% by weight of nickel is said to stabilize the austenite, which prevents the formation of pearlite in thick-walled castings.
Weiters ist bereits ein Manganhartstahl bekanntgeworden, welcher einen Mangangehalt von ca. 5 Gew.-% aufweist. Bei derartigen Stählen ist jedoch die Zähigkeit bereits gering. Allerdings weist er eine hohe Verschleißfestigkeit auf.Furthermore, a high manganese steel has already become known which has a manganese content of approximately 5% by weight. With such steels, however, the toughness is already low. However, it has a high wear resistance.
Die vorliegende Erfindung hat sich zum Ziel gesetzt, einen kaltverfestigenden austenitischen Manganhartstahl zu schaffen, der eine Bruchdehnung von 10 bis 80 % aufweist, welcher ein möglichst gleichmäßiges Gefüge über den gesamten Querschnitt besitzt und ein besonders feines Korn aufweist, wobei gleichzeitig keine Verschlechterung der mechanischen Eigenschaften eintreten soll.The present invention has set itself the goal of creating a strain-hardening austenitic manganese high-carbon steel which has an elongation at break of 10 to 80%, which has a structure that is as uniform as possible over the entire cross section and has a particularly fine grain, at the same time without any deterioration in the mechanical properties should occur.
Der erfindungsgemäße kaltverfestigende austenitische Manganhartstahl mit einer Bruchdehnung von 10 bis 80 % gemessen nach L= 5 d oder L = 10 d mit einem Gehalt in Gew.-% von
- 0,7 bis 1,7 C
- 5,0 bis 18,0 Mn
- 0 bis 3,0 Cr
- 0 bis 4,0 Ni
- 0 bis 2,5 Mo
- 0,1 bis 0,9 Si
- max. 0,1 P
- 0.7 to 1.7 C.
- 5.0 to 18.0 Mn
- 0 to 3.0 cr
- 0 to 4.0 Ni
- 0 to 2.5 months
- 0.1 to 0.9 Si
- Max. 0.1 p
und der Maßgabe daß das Verhältnis Kohlenstoff zu Mangan zwischen 1: 4 und 1: 14 liegt, weist als Mikrolegierungselemente bis zu 0,05 Titan 0,05 Zirkon und 0,05 Vanadin mit der Maßgabe auf, daß die Summe von Titan und Zirkon zwischen 0,002% und 0,05% liegt, gegebenenfalls als Mikrolegierungselement zusätzlich Vanadium enthalten ist, wobei die Summe dieser Mikrolegierungselemente bis zu 0,05 Gew.-% beträgt. Es war durchaus überraschend, daß mit einem derartigen geringeren Zusatz von Legierungselementen eine Kornfeinung mit gleichzeitiger Beibehaltung bzw. Anhebung der mechanischen Eigenschaften erreicht werden kann, da Zusätze von 0,1 % und darüber eine Verschlachterung der mechanischen Eigenschaften bewirkten. Eine exakte Erklärung für diesen Sachverhalt konnte noch nicht gefunden werden. Zirkon und Vanadin sind insbesondere bei hohen Gießtemperaturen wirksam.and provided that the ratio of carbon to manganese is between 1: 4 and 1:14 has up to 0.05 titanium, 0.05 zirconium and 0.05 vanadium as microalloying elements with the proviso that the sum of titanium and zirconium between 0.002% and 0.05%, optionally also containing vanadium as a microalloying element, the sum of these microalloying elements being up to 0.05% by weight. It was quite surprising that with such a small addition of alloying elements, grain refinement can be achieved while maintaining or increasing the mechanical properties, since additions of 0.1% and above caused the mechanical properties to deteriorate. An exact explanation for this fact has not yet been found. Zircon and vanadium are particularly effective at high casting temperatures.
Weist der Manganhartstahl zusätzlich noch 0,002 bis 0,008 Gew.-% Bor auf, so kann ein noch kleineres Korn erreicht werden.If the manganese steel has an additional 0.002 to 0.008% by weight boron, an even smaller grain can be achieved.
Eine besonders gute Kornfeinung liegt dann vor, wenn als Mikrolegierungselement lediglich 0,01 bis 0,025 Gew.-% Titan vorgesthen sind.Grain refinement is particularly good when only 0.01 to 0.025% by weight of titanium is present as the microalloying element.
Weist der Manganhartstahl einen Gehalt von 0,01 bis 0,05 Gew.-% Aluminium auf, so kann der Titangehalt besonders genau eingehalten werden.If the manganese steel has a content of 0.01 to 0.05% by weight of aluminum, the titanium content can be maintained particularly precisely.
Bei der Herstellung eines erfindungsgemäßen Manganhartstahl-Gußstückes, wobei in einem Elektroofen ein Einsatz eingeschmolzen wird, wonach auf die flüssige Schmelze kalkhältige, schlackenbildende Zuschlagstoffe aufgegeben werden und die gewünschte Analyse eingestellt und auf eine Abstichtemperatur von 1450 bis 1600°C gebracht wird, mit einem sauerstoffaffinen Element desoxidiert und in die Gießpfanne abgestochen wird, besteht im wesentlichen darin, daß in der Gießpfanne der Gehalt an den Mikrolegierungselementen Titan, Zirkon und Vanadin eingestellt wird, und die Schmelze mit einer Temperatur zwischen 1420 und 1520°C vergossen und nach Abkühlen des Gußstückes wieder auf Austenitisierungstemperatur von 980 bis 1150° G erwärmt und sodann rasch abgekühlt wird.In the manufacture of a manganese steel casting according to the invention, an insert being melted in an electric furnace, after which calcareous, slag-forming additives are added to the liquid melt and the desired analysis is set and brought to a tapping temperature of 1450 to 1600 ° C. with an oxygen affinity Element is deoxidized and tapped into the ladle, consists essentially in the fact that the content of the microalloying elements titanium, zirconium and vanadium is set in the ladle, and the melt is poured at a temperature between 1420 and 1520 ° C. and again after the casting has cooled heated to austenitizing temperature from 980 to 1150 ° G and then cooled rapidly.
Durch die Zugabe der Mikrolegierungselemente in der Gießpfanne wird ein reproduzierbarer Gehalt an Mikrolegierungselementen erreicht. Durch die Wärmebehandlung des Gußstückes, wobei auf eine Austenitisierungstemperatur von 980 bis 1150°C erwärmt und sodann rasch abgekühlt wird, wird eine besonders hohe Zähigkeit erreicht.By adding the microalloying elements in the ladle, a reproducible content of microalloying elements is achieved. A particularly high level of toughness is achieved by the heat treatment of the casting, heating to an austenitizing temperature of 980 to 1150 ° C. and then rapidly cooling.
Wird das Gußstück nach der Erwärmung auf 1030 bis 1150°C auf eine Temperatur von 980 bis 1000°C abgesenkt, worauf nach Temperaturausgleich im Gußstück rasch abgekühlt wird, so kann dadurch die Rißanfälligkeit im erhaltenen Gußstück wesentlich herabgesetzt werden. Manganhartstahl weist eine geringere Wärmeleitfähigkeit als andere Stähle auf (nur ein Sechstel von dem des Eisens), sodaß dem Temperaturausgleich ein besonderes Augenmerk gewidmet werden.muß.If the casting is lowered to a temperature of 980 to 1000 ° C after heating to 1030 to 1150 ° C, whereupon it is cooled rapidly after temperature compensation in the casting, the susceptibility to cracking in the casting obtained can be significantly reduced. Manganese steel has a lower thermal conductivity than other steels (only one sixth of that of iron), so special attention must be paid to temperature compensation.
Eine sichere Auflösung der Korngrenzenkarbide selbst bei größeren Querschnitten und bei niedrigerem Energieverbrauch kann bei einer Temperatur zwischen 1080 und 1100°C bei der Lösungsglühung erreicht werden, worauf die Temperatur auf 980 bis 1000°C abgesenkt und ausgeglichen und dann rasch abgekühlt wird.A reliable dissolution of the grain boundary carbides even with larger cross-sections and with lower energy consumption can be achieved at a temperature between 1080 and 1100 ° C during solution annealing, whereupon the temperature is reduced to 980 to 1000 ° C and equalized and then rapidly cooled becomes.
Ein Gußstück mit besonders geringen inneren Spannungen kann dadurch erreicht werden, daß diese nach Erwärmen auf die Austenitisierungstemperatur alternierend mit Kühlmitteln unterschiedlicher Wärmeleitfähigkeit beaufschlagt wird. Als besonders geeignete Kühlmittel sind dabei Wasser und Luft zu verwenden.A casting with particularly low internal stresses can be achieved by alternately applying coolants of different thermal conductivity after heating to the austenitizing temperature. Water and air are to be used as particularly suitable coolants.
Wird das Gußstück bereits bei einer Temperatur zwischen 800 und 1000°C entformt und abschließend in einen Wärmebehandlungsofen verbracht, in welchem ein Temperaturausgleich des Gußstückes erfolgt, worauf sofort auf Austenitisierungstemperatur erwärmt wird, so ist ein besonders energiesparendes Verfahren gegeben, wobei gleichzeitig ein Aufbau von hohen Spannungen im Gußstück verhindert wird, wobei eine Perlitisierung vermeidbar ist.If the casting is already removed from the mold at a temperature between 800 and 1000 ° C and then placed in a heat treatment furnace in which the temperature of the casting is equalized, whereupon the temperature is immediately raised to the austenitizing temperature, a particularly energy-saving process is provided, with a build-up of high Tension in the casting is prevented, whereby pearlitization can be avoided.
Im folgenden wird die Erfindung anhand von Beispielen näher erläutert.The invention is explained in more detail below with the aid of examples.
In einem Lichtbogenofen wurden 15 t Manganhartstahl folgender Zusammensetzung erschmolzen:
- 1,21 Gew.-% Kohlenstoff; 12,3 Gew.-% Mangan; 0,47 Gew.-% Silizium; 0,023 Gew.-% Phosphor; 0,45 Gew.- % Chrom und Spuren von Nickel und Molybdän. Die Schmelze wurde mit einer Schlacke aus 90 Gew.% Kalkstein und 10 Gew.-% Kalziumflorid abgedeckt, worauf eine Abstichtemperatur von 1520°C eingestellt wurde. Sodann wurde eine Schlußdesoxidation mit metallischen Aluminium durchgeführt. Nach der Desoxidation wurde in die Gießpfanne abgestochen. In diese wurde eine Temperatur von 1460°C gemessen. Die Schmelze wurde in eine basische Sandgußform (Magnesit) vergossen. Das erhaltene Gußstück, ein Turas (englisch: Tumbler) Bruttogewicht 14 t - Nettogewicht 11 t, wies Wandstärken von 60 bis 180 mm auf. Das Gußstück wurde auf Raumtemperatur erkalten gelassen, sodann wurde entformt und langsam auf 1050°C erhitzt. Nach einer Haltezeit von vier Stunden wurde der Turas in Wasser getaucht und rasch abgekühlt. Das so erhaltene Gußstück wies Risse auf, die durch Schweißen mit artgleichem Material wieder geschlossen werden mußten. Die metallographische Untersuchung ergab eine extrem ausgebildete Transkristallitenzone, mit einer anschließenden globulitischen Zone. Proben aus der globulitischen Zone hatten eine Dehnung gemessen mit einer Probe L = 10 d von 8,4 %. Die Zugfestigkeit lag bei 623 N/mm2.
- 1.21 wt% carbon; 12.3% by weight of manganese; 0.47 wt% silicon; 0.023 wt% phosphorus; 0.45% by weight of chromium and traces of nickel and molybdenum. The melt was covered with a slag made of 90% by weight limestone and 10% by weight calcium fluoride, whereupon a tapping temperature of 1520 ° C. was set. Final deoxidation was then carried out with metallic aluminum. After the deoxidation, the ladle was tapped. A temperature of 1460 ° C. was measured in this. The melt was poured into a basic sand mold (magnesite). The casting obtained, a Turas (English: Tumbler) gross weight 14 t - net weight 11 t, had wall thicknesses from 60 to 180 mm. The casting was allowed to cool to room temperature, then was demolded and slowly heated to 1050 ° C. After a four hour hold, the turas was immersed in water and cooled rapidly. The casting thus obtained had cracks that had to be closed again by welding with the same type of material. The metallographic examination revealed an extremely well-developed transcrystalline zone, followed by a globulitic zone. Samples from the globulitic zone had an elongation measured with a sample L = 10 d of 8.4%. The tensile strength was 623 N / mm 2 .
Es wurde analog Beispiel 1 vorgegangen, wobei in der Gießpfanne Titan in Form von Ferrotitan zugegeben wurde. Die Gießpfanne wurde zur Form verbracht und es wurde bei 1460°C vergossen. Nach Abkühlen des Gußstückes wurde dieses auf 1100°C erwärmt, auf welcher Temperatur es vier Stunden gehalten wurde, worauf die Temperatur des Ofens auf 1000° C abgesenkt wurde. Nach einer Stunde war ein Temperaturausgleich im Gußstück erreicht, worauf eine Abkühlung unter alternierendem Tauchen im Wasserbad erfolgte. Der so erhaltene Turas war frei von Rissen. Die metallographische Untersuchung ergab mit Ausnahme der Randzone, die mikrokristallin war, ein vollkommen gleichförmiges feinkörniges Gefüge. Das Gußstück wies einen durchschnittlichen Titangehalt von 0,02 Gew.-% auf. Die mechanischen Eigenschaften waren bei den im Zentrum und am Rand entnommenen Probestücken fast ident, wobei die Zugfestigkeit bei 820 bzw. 830 N/mm2 und die Dehnung bei 40 bzw. 45 % lag.The procedure was analogous to Example 1, with titanium in the form of ferrotitanium being added to the ladle. The ladle was brought to the mold and it was poured at 1460 ° C. After the casting had cooled, it was heated to 1100 ° C., at which temperature it was kept for four hours, whereupon the temperature of the furnace was lowered to 1000 ° C. After an hour, a temperature equalization in the casting was reached, followed by cooling with alternating immersion in a water bath. The Turas thus obtained was free from cracks. With the exception of the marginal zone, which was microcrystalline, the metallographic examination revealed a completely uniform, fine-grained structure. The casting had an average titanium content of 0.02% by weight. The mechanical properties were almost identical for the specimens removed in the center and on the edge, the tensile strength being 820 and 830 N / mm 2 and the elongation being 40 and 45%, respectively.
Für die Herstellung eines gesenkgeschmiedeten Schlaghammers mit Zapfen für eine Gasteinsmühle, der ein Gewicht von 180 kg aufwies, wurde ein Block analog Beispiel 2 gegossen. Dieser Block wurde sodann zerteilt, und diese Teile bei einer Schmiedetemperatur von 1050°C im Gesenk zu Schlaghämmern geschmiedet. Diese Schlaghämmer wiesen im Bereich der Zapfenansätze ein vollkommeh feines Gefüge auf, welches selbst nach dem Lösungsglühen und Abschrecken erhalten geblieben ist. Bei einem Hammer, welcher mit einer Legierung gemäß Beispiel 1 gefertigt wurde, traten im Bereich der Zapfenansätze grobkörnige Kristalle auf, wodurch Mikrorisse teilweise bedingt waren.For the production of a drop-forged hammer with pin for a Gastein mill, which had a weight of 180 kg, a block was cast analogously to Example 2. This block was then cut up, and these parts were drop-forged into impact hammers at a forging temperature of 1050 ° C. These impact hammers had a perfectly fine structure in the area of the pin attachments, which was retained even after solution annealing and quenching. In the case of a hammer which was produced with an alloy according to Example 1, coarse-grained crystals appeared in the area of the pin attachments, which in some cases caused microcracks.
In einem Lichtbogenofen wurden 10 t Manganhartstahl folgender Zusammansetzung erschmolzen:
- 1,0 Gew.-% Kohlenstoff; 5,2 Gew -% Mangan; 0,4 Gew.-% Silizium; 1,7 Gew.-% Chrom; 1,0 Gew.-% Molybdän und 0,03 Gew.-% Phosphor. Die Schmelze wurde mit einer Schlacke aus 90 Gew-% Kalkstein und 10
- 1.0 wt% carbon; 5.2% by weight of manganese; 0.4 wt% silicon; 1.7 wt% chromium; 1.0 wt% molybdenum and 0.03 wt% phosphorus. The melt was treated with a slag made of 90% by weight limestone and 10
Es wurde analog Beispiel 2 vorgegangen, wobei in der Gießpfanne neben Titan auch Bor zugegeben wurde. Die Temperaturreise wurde analog Beispiel 2 eingehalten. Das Gußstück wies einen durchschnittlichen Titangehalt von 0,02 Gew.-% und durchschnittlichen Borgehalt von 0,005 Gew.-% auf. Die Schliffbilder ergaben bei Proben, die an analogen Stellen entnommen wurden, daß auf einem Millimeter bei den nur Titan enthaltenden Proben 50 Körner vorlagen, wohingegen bei den zusätzlich Bor aufweisenden Proban im Durchschnitt 60 Körner vorlagen, wodurch eine Abnahme das durchschnittlichen Korndurchmessers von 0,02 mm auf 0,017 mm festzustellen war.The procedure was analogous to Example 2, with boron also being added to the ladle in addition to titanium. The temperature trip was observed as in Example 2. The casting had an average titanium content of 0.02% by weight and an average boron content of 0.005% by weight. The micrographs of samples taken at analogous locations showed that there were 50 grains per millimeter in the samples containing only titanium, whereas the samples containing boron had an average of 60 grains, resulting in a decrease in the average grain diameter of 0.02 mm to 0.017 mm.
In einem Induktionsofen wurden 500 kg Manganstahl folgendar Zusammensetzung erschmolzen:
- 1,35 Gew.-% Kohlenstoff: 17,2 Gew.-% Mangan; Spuren von Nickel und Chrom und 0,02 Gew.-% Phosphor. Die Schmelze wurde mit einer Schlacke aus 90 Gew.-% Kalkstein und 10 Gew.-% Kalziumflorid abgedeckt, worauf eine Abstichtemperatur von 1600°C eingestellt wurde. Die Schlußdesoxidation wurde mit metallischem Aluminium durchgeführt, wonach in die Gießpfanne abgestochen und dieser Titan zugegeben wurde. Bei 1520°C erfolgte dann ein Gießen von Rundstäben mit einem Durchmesser von 110 mm. Die abgekühlten Rundstäbe wurden sodann entformt und auf 1030°C erwärmt und fünf Stunden auf dieser Temperatur gehalten. Danach wurde die Temperatur des Ofens auf 980°C abgesenkt und eineinhalb Stunden auf dieser Temperatur gehalten. Die Gußstücke sind sodann im Wasserbad rasch abgekühlt worden. Die Schmelzen wurden mit unterschiedlichem Titangehalt wiederholt, wobei die in der Tabelle angeführten mechanischen Werte bei den verschiedenen Probestücken, die dem Zentrum bzw. der Randzone entnommen wurden, gemessen werden konnten.
- 1.35% carbon: 17.2% manganese; Traces of nickel and chromium and 0.02% by weight phosphorus. The melt was covered with a slag made of 90% by weight limestone and 10% by weight calcium fluoride, whereupon a tapping temperature of 1600 ° C. was set. The final deoxidation was carried out with metallic aluminum, after which the ladle was tapped and this titanium was added. Round bars with a diameter of 110 mm were then cast at 1520 ° C. The cooled round bars were then removed from the mold and heated to 1030 ° C. and kept at this temperature for five hours. The temperature of the furnace was then reduced to 980 ° C and held at this temperature for one and a half hours. The castings were then quickly cooled in a water bath. The melts were repeated with different titanium contents, the mechanical values given in the table being able to be measured for the various specimens which were removed from the center or the edge zone.
Wie der Tabelle zu entnehmen, wird mit einem Zusatz von einem Zehntel Gew.-% Titan eine Verschlechterung der mechanischen Eigenschaften verursacht, wobei gleichzeitig ein relativ großer Unterschied zwischen den Rand- bzw. Zentrumsproben besteht. Bei einem Titangehalt der unter 5 Hundertstel liegt, sind einerseite die Eigenschaften der Rand- und Zentrumsproben fast ident, wobei eine Anhebung der mechanischen Eigenschaften gegenüber dem nichtmikrolegierten Manganhartstahl aufgezeigt ist.As can be seen in the table, the addition of one tenth of a% by weight of titanium causes a deterioration in the mechanical properties, at the same time there being a relatively large difference between the edge and center samples. With a titanium content of less than 5 hundredths, the properties of the edge and center samples are almost identical, whereby an increase in the mechanical properties compared to the non-microalloyed manganese steel is shown.
Die Zugfestigkeit bzw. Bruchdehnung wurde nach DIN 5 D 145/1975 bestimmt.The tensile strength or elongation at break was determined in accordance with DIN 5 D 145/1975.
Claims (7)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT0143582A AT377287B (en) | 1982-04-13 | 1982-04-13 | COLD-STRENGING AUSTENITIC MANGANIC STEEL AND METHOD FOR PRODUCING THE SAME |
AT1435/82 | 1982-04-13 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0091897A1 EP0091897A1 (en) | 1983-10-19 |
EP0091897B1 true EP0091897B1 (en) | 1986-11-26 |
Family
ID=3513837
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP83890054A Expired EP0091897B1 (en) | 1982-04-13 | 1983-04-11 | Strain hardening austenitic manganese steel and process for the manufacture thereof |
Country Status (9)
Country | Link |
---|---|
US (2) | US4512804A (en) |
EP (1) | EP0091897B1 (en) |
AT (1) | AT377287B (en) |
AU (1) | AU536111B2 (en) |
CA (1) | CA1193117A (en) |
DE (1) | DE3367939D1 (en) |
ES (1) | ES521388A0 (en) |
IN (1) | IN160010B (en) |
ZA (1) | ZA832425B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009035969A1 (en) * | 2009-08-04 | 2011-02-10 | Albert Hoffmann Gmbh | Method for manufacturing drive tumbler body of tracked vehicle, involves enclosing pre-manufactured ring by bandage, and casting part of ring of mold, where ring includes peripheral groove |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT390807B (en) * | 1983-08-05 | 1990-07-10 | Kos Bernd | AUSTENITIC MANGANIC STEEL AND METHOD FOR THE PRODUCTION THEREOF |
AT390806B (en) * | 1983-09-23 | 1990-07-10 | Kos Bernd | AUSTENITIC MANGANIC STEEL AND METHOD FOR THE PRODUCTION THEREOF |
EP0186512B1 (en) * | 1984-12-28 | 1990-08-08 | Nippon Steel Corporation | Method for controlling solidification segregation of steel |
IN165225B (en) * | 1986-03-26 | 1989-09-02 | Bruss Ti Kirova | |
EP0574582B1 (en) * | 1991-12-26 | 1998-03-25 | Mitsui Engineering and Shipbuilding Co, Ltd. | Damping alloy |
US5575829A (en) * | 1995-06-06 | 1996-11-19 | Armco Inc. | Direct use of sulfur-bearing nickel concentrate in making Ni alloyed stainless steel |
US5865385A (en) * | 1997-02-21 | 1999-02-02 | Arnett; Charles R. | Comminuting media comprising martensitic/austenitic steel containing retained work-transformable austenite |
US6572713B2 (en) | 2000-10-19 | 2003-06-03 | The Frog Switch And Manufacturing Company | Grain-refined austenitic manganese steel casting having microadditions of vanadium and titanium and method of manufacturing |
US20030154110A1 (en) * | 2001-11-20 | 2003-08-14 | Ervin Walter | Method and apparatus for wireless access to a health care information system |
FR2876711B1 (en) * | 2004-10-20 | 2006-12-08 | Usinor Sa | HOT-TEMPERATURE COATING PROCESS IN ZINC BATH OF CARBON-MANGANESE STEEL BANDS |
ITUD20040228A1 (en) * | 2004-12-06 | 2005-03-06 | F A R Fonderie Acciaierie Roia | PROCEDURE FOR OBTAINING A STEEL ALLOY IN MANGANESE, AND STEEL LEAGUE IN MANGANESE SO IT HAS OBTAINED |
CN100395370C (en) * | 2006-01-05 | 2008-06-18 | 同济大学 | Memory alloy fish bolt fastener material for railway and preparation method thereof |
WO2009046484A1 (en) * | 2007-10-08 | 2009-04-16 | Steelfinne Fabrications Pty Ltd | Austenitic manganese steel alloy and method for making same |
CN102766747B (en) * | 2012-07-09 | 2013-08-28 | 山西太钢不锈钢股份有限公司 | Manufacturing method of high-strength non-magnetic abrasion-resistant steel |
US20140261918A1 (en) * | 2013-03-15 | 2014-09-18 | Exxonmobil Research And Engineering Company | Enhanced wear resistant steel and methods of making the same |
CN104480372A (en) * | 2014-12-29 | 2015-04-01 | 芜湖金龙模具锻造有限责任公司 | Preparation method of boron-antimony alloy roller material |
JP6455333B2 (en) * | 2015-06-23 | 2019-01-23 | 新日鐵住金株式会社 | High Mn steel for high-pressure hydrogen gas and pipes, containers, valves and joints made of the steel |
JP6455342B2 (en) * | 2015-06-29 | 2019-01-23 | 新日鐵住金株式会社 | High Mn steel for high-pressure hydrogen gas and pipes, containers, valves and joints made of the steel |
US10227681B2 (en) * | 2015-10-21 | 2019-03-12 | Caterpillar Inc. | High manganese steel with enhanced wear and impact characteristics |
CN105369130B (en) * | 2015-10-27 | 2017-05-03 | 天津威尔朗科技有限公司 | Multielement alloying high-strength high-abrasion-resistance steel and manufacturing method of hot-rolled plate |
DE102017129819B4 (en) * | 2017-12-13 | 2020-04-23 | Craco Gmbh | Shredder, interior lining and manufacturing method |
US20190376168A1 (en) * | 2018-06-12 | 2019-12-12 | Mohsen Askari Paykani | High strength alloy steels and methods of making the same |
CN109440001B (en) * | 2018-10-31 | 2020-12-01 | 西安工程大学 | Nanocrystalline austenite-containing multi-element low-alloy wear-resistant cast steel and preparation method thereof |
CN109518077A (en) * | 2018-11-13 | 2019-03-26 | 南京钢铁股份有限公司 | A kind of wear-resisting steel plate and its production method of austenite and carbide duplex structure |
WO2022008956A1 (en) * | 2020-07-08 | 2022-01-13 | Arcelormittal | A method of casting a steel semi-product with high titanium content |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE141842C (en) * | ||||
GB404797A (en) * | 1932-12-02 | 1934-01-25 | Krupp Fried Grusonwerk Ag | Improvements in or relating to the heat-treatment of manganese hard steel objects |
US2221781A (en) * | 1938-04-14 | 1940-11-19 | Electro Metallurg Co | Addition agent and its use in the treatment of iron and steel |
US3113861A (en) * | 1961-05-16 | 1963-12-10 | American Metal Climax Inc | Austenitic steel alloy |
GB1187023A (en) * | 1966-05-09 | 1970-04-08 | Hadfields Ltd | Improvements in Wear-Resisting Steel. |
SU322399A1 (en) * | 1970-07-03 | 1971-11-30 | ||
SU610879A1 (en) * | 1976-05-24 | 1978-06-15 | Уральский научно-исследовательский институт черных металлов | Steel |
SU581165A1 (en) * | 1976-06-16 | 1977-11-25 | Уральский научно-исследовательский институт черных металлов | Wear-resistant steel |
JPS5353513A (en) * | 1976-10-25 | 1978-05-16 | Kobe Steel Ltd | Non-magnetic high manganese steel and production thereof |
FR2402714A1 (en) * | 1977-09-07 | 1979-04-06 | Strommen Staal As | Austenitic steel resistant to wear combined with shock - contains high percentage of manganese, plus carbon, chromium and titanium (DK 2.4.79) |
JPS558474A (en) * | 1978-07-04 | 1980-01-22 | Kobe Steel Ltd | Non-magnetic high manganese steel excellent in weldability and machinability |
-
1982
- 1982-04-13 AT AT0143582A patent/AT377287B/en not_active IP Right Cessation
- 1982-05-26 CA CA000403779A patent/CA1193117A/en not_active Expired
-
1983
- 1983-03-30 US US06/480,998 patent/US4512804A/en not_active Expired - Fee Related
- 1983-04-06 AU AU13167/83A patent/AU536111B2/en not_active Ceased
- 1983-04-07 ZA ZA832425A patent/ZA832425B/en unknown
- 1983-04-07 IN IN233/DEL/83A patent/IN160010B/en unknown
- 1983-04-11 EP EP83890054A patent/EP0091897B1/en not_active Expired
- 1983-04-11 DE DE8383890054T patent/DE3367939D1/en not_active Expired
- 1983-04-12 ES ES521388A patent/ES521388A0/en active Granted
- 1983-10-11 US US06/540,649 patent/US4531974A/en not_active Expired - Fee Related
Non-Patent Citations (3)
Title |
---|
Metal Progress, Nov.1966, S.82-86 * |
Stahl und Eisen, 87, 1967, S.1355-1368 * |
Stahleisen-Liste, 6. Auflage, 1977, S.74/75 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009035969A1 (en) * | 2009-08-04 | 2011-02-10 | Albert Hoffmann Gmbh | Method for manufacturing drive tumbler body of tracked vehicle, involves enclosing pre-manufactured ring by bandage, and casting part of ring of mold, where ring includes peripheral groove |
DE102009035969B4 (en) * | 2009-08-04 | 2014-03-06 | Albert Hoffmann Gmbh | Method for producing a drive door body, drive door body, ring and tracked vehicle |
Also Published As
Publication number | Publication date |
---|---|
ZA832425B (en) | 1983-12-28 |
ES8405079A1 (en) | 1984-05-16 |
EP0091897A1 (en) | 1983-10-19 |
IN160010B (en) | 1987-06-20 |
ATA143582A (en) | 1984-07-15 |
DE3367939D1 (en) | 1987-01-15 |
ES521388A0 (en) | 1984-05-16 |
CA1193117A (en) | 1985-09-10 |
US4512804A (en) | 1985-04-23 |
AU1316783A (en) | 1983-12-01 |
AU536111B2 (en) | 1984-04-19 |
US4531974A (en) | 1985-07-30 |
AT377287B (en) | 1985-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0091897B1 (en) | Strain hardening austenitic manganese steel and process for the manufacture thereof | |
DE69010107T2 (en) | Case hardenable, corrosion resistant steel alloy and article made therefrom. | |
DE60202598T2 (en) | ULTRA-HIGH-RESISTANCE EXTRACTOR-STAINLESS STAINLESS STEEL AND LONG-TERM STRIP MANUFACTURED THEREFROM | |
DE3018537C2 (en) | ||
DE69405375T2 (en) | Stainless carburized case-hardened steel alloy for high temperature application | |
DE3781203T2 (en) | ALLOY STEEL PRODUCT, BLOCKS AND OTHER FORGED AND CAST PIECES MADE THEREOF AND A METHOD FOR PRODUCING THIS STEEL. | |
DE69420473T2 (en) | High-tenacity and high-strength, non-tempered steel and manufacturing process for it | |
DE69901345T2 (en) | INSERT STEEL WITH HIGH TEMPERATURE, MANUFACTURING PROCESS FOR THIS STEEL AND WORKPIECES MADE OF THIS STEEL | |
DE2517275A1 (en) | ALUMINUM ALLOYS WITH IMPROVED MECHANICAL PROPERTIES AND FORMABILITY, AND THE PROCESS FOR THEIR PRODUCTION | |
DE69824419T2 (en) | HIGH-RESISTANT, DESIGN-HARDENABLE, STAINLESS STEEL WITH GOOD TOUGHNESS | |
DE2854002C2 (en) | ||
DE1483218C3 (en) | Process for producing a heat-resistant, ferritic Cr-Mo-V steel with high creep strength and improved creep elongation | |
JP4361686B2 (en) | Steel material and manufacturing method thereof | |
EP1274872B1 (en) | Method for the production of nitrogen alloyed steel, spray compacted steel | |
EP3211109B1 (en) | Method for producing a thermoforming tool and thermoforming tool made from same | |
EP0141804B1 (en) | Hadfield type manganese steel and process for the manufacture thereof | |
US4798634A (en) | Corrosion resistant wrought stainless steel alloys having intermediate strength and good machinability | |
DE3113844A1 (en) | "FERRITE-FREE, EXHAUST-RETARDABLE STAINLESS STEEL" | |
AT390806B (en) | AUSTENITIC MANGANIC STEEL AND METHOD FOR THE PRODUCTION THEREOF | |
US3128175A (en) | Low alloy, high hardness, temper resistant steel | |
DE69907896T4 (en) | COLD STEEL | |
DE69125831T2 (en) | AIR-HARDENED STEEL | |
DE60201984T2 (en) | TOOL STEEL OF HIGH TENSILE, METHOD FOR PRODUCING PARTS FROM THIS STEEL AND PARTS MANUFACTURED THEREOF | |
DE102008050152B4 (en) | High-strength, ductile cast iron alloy with nodular graphite and process for its production | |
DE69501733T2 (en) | HIGH CARBON STEEL ALLOY, THEIR MACHINING AND USE AS A WEARING PART |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): DE FR GB IT SE |
|
17P | Request for examination filed |
Effective date: 19840220 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
ITF | It: translation for a ep patent filed | ||
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT SE |
|
ET | Fr: translation filed | ||
REF | Corresponds to: |
Ref document number: 3367939 Country of ref document: DE Date of ref document: 19870115 |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
26 | Opposition filed |
Opponent name: THYSSEN EDELSTAHLWERKE AG, DUESSELDORF Effective date: 19870817 |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: VOEST-ALPINE STAHL AKTIENGESELLSCHAFT |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19920324 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19920326 Year of fee payment: 10 Ref country code: GB Payment date: 19920326 Year of fee payment: 10 Ref country code: DE Payment date: 19920326 Year of fee payment: 10 |
|
ITTA | It: last paid annual fee | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19930411 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19930412 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19930411 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19931229 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19940101 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
EUG | Se: european patent has lapsed |
Ref document number: 83890054.6 Effective date: 19931110 |
|
RDAG | Patent revoked |
Free format text: ORIGINAL CODE: 0009271 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT REVOKED |
|
27W | Patent revoked |
Effective date: 19941106 |
|
APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |