JP2669004B2 - Β-type titanium alloy with excellent cold workability - Google Patents

Β-type titanium alloy with excellent cold workability

Info

Publication number
JP2669004B2
JP2669004B2 JP63283293A JP28329388A JP2669004B2 JP 2669004 B2 JP2669004 B2 JP 2669004B2 JP 63283293 A JP63283293 A JP 63283293A JP 28329388 A JP28329388 A JP 28329388A JP 2669004 B2 JP2669004 B2 JP 2669004B2
Authority
JP
Japan
Prior art keywords
alloy
phase
titanium alloy
strength
cold workability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63283293A
Other languages
Japanese (ja)
Other versions
JPH02129331A (en
Inventor
渉 高橋
尚志 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP63283293A priority Critical patent/JP2669004B2/en
Publication of JPH02129331A publication Critical patent/JPH02129331A/en
Application granted granted Critical
Publication of JP2669004B2 publication Critical patent/JP2669004B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Forging (AREA)
  • Materials For Medical Uses (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、溶体化処理された状態で変形抵抗が低
く、優れた冷間変形能を有し、時効熱処理後は高強度と
なるβ型チタン合金に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention is a β type which has a low deformation resistance in a solution-treated state, an excellent cold deformability, and a high strength after aging heat treatment. It relates to a titanium alloy.

(従来の技術) チタン合金は、比重が小さく、強度が高いため実用金
属材料の中でも極めて高い比強度(強度/比重)をもつ
ことから、従来主に航空機用材料として開発、実用化が
進められて来た。しかし、最近では自動車部品用材料、
医療機器用材料などの一般民需用材料にもチタン合金の
用途が広がりつつあり、それにともなってチタン合金の
性質の改善と、コストの低減が強く要望されるようにな
ってきた。
(Prior Art) Titanium alloy has a small specific gravity and high strength, and therefore has an extremely high specific strength (strength / specific gravity) among practical metal materials. Therefore, it has been developed and put into practical use mainly as an aircraft material. I came. However, recently, materials for automobile parts,
The use of titanium alloys is expanding to general-purpose materials such as materials for medical devices, and accordingly, improvement of properties of titanium alloys and cost reduction have been strongly demanded.

チタン合金は一般に冷間加工性が悪い。冷間加工が容
易であれば製品製造コストは低くなる。冷間加工性が比
較的良好な純Tiでは加工品としての強度が不足し、高い
比強度が必要な部品には適用が難しい。チタン合金の最
も代表的なものの一つであるα+β型のTi−6Al−4V
は、加工品としての強度は高いが、変形能が極めて悪
く、熱間加工でしか製造が不可能であるため、製造コス
トが嵩む。このため、冷間加工性のよい体心立方晶の結
晶構造をもつβ相単相型のチタン合金(β型チタン合
金)が注目されており、例えばTi−3Al−8V−6Cr−4Mo
−4Zr,Ti−15V−3Cr−3Al−3Snなどのβ型チタン合金が
知られている。β型チタン合金は、溶体化処理を施した
状態で加工性が良く、加工後に時効処理を施しα相を析
出させることによって強度を高めることが可能で、精密
部品材料として望ましい特性をもっている。
Titanium alloys generally have poor cold workability. If cold working is easy, product manufacturing costs will be low. Pure Ti, which has relatively good cold workability, lacks strength as a processed product and is difficult to apply to parts that require high specific strength. Α + β type Ti-6Al-4V, one of the most typical titanium alloys
Has a high strength as a processed product, but its deformability is extremely poor and it can be manufactured only by hot working, resulting in a high manufacturing cost. Therefore, a β-phase single-phase titanium alloy (β-type titanium alloy) having a body-centered cubic crystal structure with good cold workability has been attracting attention, and for example, Ti-3Al-8V-6Cr-4Mo.
Β-type titanium alloys such as -4Zr and Ti-15V-3Cr-3Al-3Sn are known. The β-type titanium alloy has good workability in the solution-treated state, and can be strengthened by subjecting it to an aging treatment and precipitating an α phase after the processing, and has a desirable property as a precision component material.

しかしながら、これまでに知られている上記のような
β型チタン合金は、変形能は良好であるが変形抵抗が極
めて高いので、例えば冷間鍛造を行う場合に、ダイス、
ポンチ等の金型が割れたり欠けたりすることが多い。ま
た、変形抵抗が高いために、冷間圧延や冷間伸線を行う
場合にも、ロールやダイスとの焼付きが生じやすい。か
かる問題点を解決する一つの提案が特開昭61−250138号
公報に開示されている。しかし、ここに開示される合金
は、α相安定化元素としてAlのみを用いており、溶体化
の状態でAlによる固溶硬化が大きく、硬度が充分に低い
とはいえない。また、時効後に高硬度になり得る適正な
時効処理の温度範囲が狭く、製造が難しい。
However, the above-mentioned β-type titanium alloys known so far have a good deformability but a very high deformation resistance, so that, for example, when performing cold forging, a die,
Dies such as punches are often cracked or chipped. Further, since the deformation resistance is high, seizure with a roll or a die easily occurs even when cold rolling or cold drawing is performed. One proposal for solving such a problem is disclosed in Japanese Patent Laid-Open No. 61-250138. However, the alloy disclosed herein uses only Al as the α-phase stabilizing element, and has a large solid solution hardening due to Al in a solutionized state, and cannot be said to have sufficiently low hardness. In addition, the temperature range of the appropriate aging treatment that may result in high hardness after aging is narrow, and manufacturing is difficult.

(発明が解決しようとする課題) 本発明は、従来のβ型チタン合金における上記の問題
点を無くし、その冷間加工性を一層向上させることを課
題とする。具体的には、溶体化処理の状態で引張強さで
75kgf/mm2以下(Hv硬度で240以下)、冷間据込み圧縮率
が80%以上で、20時間以内の時効処理で120kgf/mm2以上
の引張強さが得られ、しかも時効処理の適正温度範囲が
広く、製造の容易なβ相単相型のチタン合金を提供する
ことを目的とする。
(Problems to be Solved by the Invention) An object of the present invention is to eliminate the above-mentioned problems in the conventional β-type titanium alloy and further improve the cold workability thereof. Specifically, in the state of solution treatment, the tensile strength
75kgf / mm 2 or less (Hv hardness is 240 or less), cold upsetting compressibility is 80% or more, a tensile strength of 120kgf / mm 2 or more can be obtained within 20 hours of aging treatment, and proper aging treatment It is an object of the present invention to provide a β-phase single-phase titanium alloy having a wide temperature range and easy production.

(問題点を解決するための手段) 本発明の要旨は『重量%で、V:15〜25%、Al:2.5〜5
%、Sn:0.5〜4%、酸素:0.12%以下、残部Tiおよび不
可避不純物からなる冷間加工性に優れたβ型チタン合
金』にある。
(Means for Solving Problems) The gist of the present invention is “V: 15 to 25% by weight, Al: 2.5 to 5% by weight”.
%, Sn: 0.5 to 4%, oxygen: 0.12% or less, and a balance of Ti and unavoidable impurities and excellent cold workability.

ここで、冷間加工性とは、冷間変形抵抗および冷間変
形能を併せた特性をいう。
Here, the cold workability refers to a property combining cold deformation resistance and cold deformability.

チタン合金をβ相から急冷した状態で、室温において
準安定β相を得るための合金元素としては、V、Mo、N
b、Ta、Cr、Fe、Mn等がある。一方、β型チタン合金に
一般的に要求される特性は、 溶解が容易で偏析が少ないこと、 添加合金元素の比重が小さいこと、 熱間加工性が良好なこと、 冷間加工性に優れること、 添加元素の固溶硬化作用が小さくTiの軽量性を損なわ
ないよう、少量でβ相が得られること、 時効により、高強度が得られること、 合金そのものが安価であること、 などである。
V, Mo, N are alloy elements for obtaining a metastable β phase at room temperature in a state where a titanium alloy is rapidly cooled from the β phase.
b, Ta, Cr, Fe, Mn, etc. On the other hand, the properties generally required for β-type titanium alloys are that they are easy to melt and segregate little, the specific gravity of the additive alloy elements is small, the hot workability is good, and the cold workability is excellent. The small amount of β phase is obtained so that the solid solution hardening effect of the additive element is small and the lightness of Ti is not impaired, high strength is obtained by aging, and the alloy itself is inexpensive.

上記〜を満足する合金元素として本発明ではVを
採用した。その理由は下記のとおりである。Moは比重お
よび溶融点が高く、NbおよびTaは高価な元素であり、し
かも多量添加しないとβ相にならない。Cr、Feは固溶硬
化の作用が著しく、溶体化の状態で合金を過度に硬くし
てしまう。次に、時効析出したα相の硬化のためにはAl
が有効であるが、溶体化時の固溶硬化の作用が大きいた
め過度に添加すると冷間加工の際の加工荷重が高くなる
のでその一部を固溶硬化作用の小さいSnに置き換え、冷
間加工性を損なわないようにした。Snは、固溶硬化の作
用は小さいが、時効処理時のα相の硬化には役立ち、時
効硬化の安定性と硬度の向上に寄与する。次に、不純物
中の、特に酸素に注目し、冷間加工性向上のために、そ
の許容上限値を定めた。
In the present invention, V is employed as an alloy element satisfying the above conditions. The reason is as follows. Mo has a high specific gravity and melting point, Nb and Ta are expensive elements, and if they are not added in large amounts, they do not form a β phase. Cr and Fe have a remarkable effect of solution hardening, and excessively harden the alloy in a solution state. Next, in order to harden the aged α phase, Al
Is effective, but since the effect of solid solution hardening during solution treatment is large, excessive addition increases the processing load during cold working, so part of it is replaced with Sn, which has a small solid solution hardening effect, The workability was not impaired. Although Sn has a small solution hardening effect, it is useful for hardening the α phase during aging treatment, and contributes to the improvement of the stability and hardness of age hardening. Next, paying particular attention to oxygen in the impurities, an allowable upper limit value thereof was set in order to improve cold workability.

(作用) 以下に、本発明のβ型チタン合金における、合金成分
の作用効果と、それぞれの含有量の限定理由を説明す
る。なお、合金成分の含有量は全て重量%で表す。
(Function) The function and effect of the alloy components in the β-type titanium alloy of the present invention and the reasons for limiting the respective contents will be described below. In addition, the content of all alloy components is represented by wt%.

(a)V:15〜25% Vは、チタン合金素地に固溶してβ相を安定化し室温
においてβ相単相組織となし、冷間加工性を向上させ
る。しかし、V含有量が15%より少ない場合は、溶体化
処理を行ってもβ相単相とすることができず、マルテン
サイト組織となる。25%より多い場合は、β相単相には
なるが、時効硬化性が悪い時効処理に要する時間が長く
なる。また、Vを過度に添加すると比重が増大し、原料
費も嵩み経済的でない。
(A) V: 15 to 25% V forms a solid solution in a titanium alloy base material to stabilize the β phase, forms a β phase single phase structure at room temperature, and improves cold workability. However, when the V content is less than 15%, the β phase single phase cannot be obtained even if the solution treatment is performed, and the martensite structure is formed. When it is more than 25%, the β phase becomes a single phase, but the time required for the aging treatment with poor age hardening becomes long. On the other hand, if V is added excessively, the specific gravity increases, the raw material cost increases, and it is not economical.

なお、前記のとおり、β相安定化元素としてはVの外
に、Mo、Ta、Nb、Cr、Fe、Mnなどがあるが、これらの中
で安価でかつ溶体化の状態で強度の低いβ相単相合金と
なす元素は、MoとVに限られる。Cr、Fe、Mnを含む合金
では、溶体化の状態で引張強さが75kgf/mm2(Hv240以
上)となって変形抵抗が増大する。VとMoのうち、Moは
融点が高く溶解しにくいため偏析が生じやすく、またMo
を含む合金は熱間加工性も悪い。結局β相安定化元素と
して実用上最も好ましいものはVであり、その含有量は
前記の理由で15〜25%とする。
As described above, as the β-phase stabilizing element, there are Mo, Ta, Nb, Cr, Fe, Mn, etc. in addition to V. Among them, β is inexpensive and has low strength in the solution state. The elements constituting the single-phase alloy are limited to Mo and V. In an alloy containing Cr, Fe, and Mn, the tensile strength becomes 75 kgf / mm 2 (Hv 240 or more) in a solution state, and the deformation resistance increases. Of V and Mo, Mo has a high melting point and is difficult to dissolve, so segregation is likely to occur.
Alloys containing Ni also have poor hot workability. After all, V is the most preferable β-phase stabilizing element in practice, and its content is set to 15 to 25% for the above reason.

(b)Al:2.5〜5% 本発明のチタン合金は、溶体化の状態で準安定β相単
体であり、これを時効処理した時、α相が析出して強度
の上昇が得られるものである。α相の時効析出により高
強度を得るためには、α相の分散強化ばかりでなく、析
出したα相自身の強化が有効である。αチタンの固溶強
化に最も有効な合金元素はAlである。また、Alの添加
は、合金を脆化させるω相の析出を抑制し、α相の析出
を促進するという効果もある。
(B) Al: 2.5 to 5% The titanium alloy of the present invention is a metastable β phase simple substance in the solution-treated state, and when this is aged, the α phase is precipitated and strength is increased. is there. In order to obtain high strength by aging precipitation of the α phase, not only dispersion strengthening of the α phase but also strengthening of the precipitated α phase itself is effective. The most effective alloying element for solid solution strengthening of α-titanium is Al. The addition of Al also has the effect of suppressing the precipitation of the ω phase, which makes the alloy brittle, and promoting the precipitation of the α phase.

上記のAlの効果は、その含有量が2.5%未満では顕著
に現れない。一方、Alの含有量が5%を越えると、溶体
化処理状態での強度(硬度)が高くなって冷間加工性が
低下する。即ち、Alの適正含有量は2.5〜5%である。
The above-mentioned effect of Al does not appear remarkably when the content is less than 2.5%. On the other hand, if the Al content exceeds 5%, the strength (hardness) in the solution heat treated state increases and the cold workability deteriorates. That is, the proper content of Al is 2.5 to 5%.

(c)Sn:0.5〜4% Snはα相の時効析出を促進安定化し、ω相の生成を抑
えるため、時効処理のための適正温度範囲を広くする効
果があり、かつ時効処理後の強度を高くする。さらに、
Alが合金素地を固溶強化するのに対し、Snはあまり素地
を硬化させないのでAlを減らしてSnに置き換えることが
変形抵抗を減少させるためには有効である。このような
Snの効果は、0.5%以下では乏しく、4%を越えると素
地の硬度上昇が避けられない。従って、Snの含有量は0.
5〜4%とする。
(C) Sn: 0.5-4% Sn has the effect of widening the appropriate temperature range for aging treatment because it promotes and stabilizes the aging precipitation of α phase and suppresses the formation of ω phase, and the strength after aging treatment is strong. Higher. further,
While Al hardens the alloy base while Sn hardens the base hardly, it is effective to reduce Al and replace it with Sn to reduce deformation resistance. like this
The effect of Sn is poor at 0.5% or less, and if it exceeds 4%, an increase in hardness of the base material cannot be avoided. Therefore, the Sn content is 0.
5 to 4%.

以上の合金成分の外、残部は実質的にTiである。実質
的にTiというのは、工業的に製造される場合の不可避的
に含まれる不純物を伴うという意味である。しかし、本
発明の合金においては、不純物中の酸素が、特に下記の
ように抑制されている。
In addition to the above alloy components, the balance is substantially Ti. Substantially Ti means that it is accompanied by impurities that are inevitably contained when industrially manufactured. However, in the alloy of the present invention, oxygen in impurities is suppressed as described below.

(d)酸素:0.12%以下 酸素はα相安定化元素であり、多量にあるとβ相単相
化を阻害し、また素地を硬化させ、冷間加工性を劣化さ
せる。即ち、変形抵抗を大きくし、変形能を低下させ、
冷間加工性にクラックを発生させる原因になる。0.12%
以下であれば、かかる悪影響が小さいので0.12%以下と
した。
(D) Oxygen: 0.12% or less Oxygen is an α-phase stabilizing element. If it is present in a large amount, it inhibits β-phase from becoming a single phase, hardens the substrate, and deteriorates cold workability. That is, the deformation resistance is increased, the deformability is reduced,
This causes cracks in cold workability. 0.12%
If it is less than 0.1%, the adverse effect is small, so the content is set to 0.12% or less.

なお、Feはβ相安定化元素であるが、溶体化処理後の
硬度を高くするので有害である。0.3%以下、できるだ
け少ないのが望ましい。
Although Fe is a β-phase stabilizing element, it is harmful because it increases the hardness after solution treatment. 0.3% or less, preferably as small as possible.

以下、実施例によって本発明のチタン合金の特性を具
体的に説明する。
Hereinafter, the characteristics of the titanium alloy of the present invention will be specifically described with reference to examples.

(実施例1) 真空溶解炉を使用して、第1表に示す組成のチタン合
金を溶製し、140mmφのインゴットに鋳造した。このイ
ンゴットに通常の条件で熱間鍛造および熱間圧延を施し
て、20mmφにした後、溶体化処理(βトランザス+20℃
の温度に30分の加熱保持後水冷)を施して供試材を作製
した。
(Example 1) Using a vacuum melting furnace, a titanium alloy having the composition shown in Table 1 was melted and cast into a 140 mmφ ingot. This ingot is subjected to hot forging and hot rolling under ordinary conditions to obtain a diameter of 20 mm, and then subjected to a solution treatment (β transus + 20 ° C).
The sample was prepared by heating it at 30 ° C. for 30 minutes and then cooling it with water.

上記の供試材について、溶体化処理後の硬さと引張強
さを測定すると共に、変形能を評価するために圧縮試験
を行った。硬さの測定はHv硬度計を用いた。また、圧縮
試験は、第1表中に記した14mmφ×21mm高さの試験片を
切削で切り出し、平滑圧縮板を用いて圧縮し、変形能と
変形抵抗を測定した。
With respect to the above-mentioned test materials, hardness and tensile strength after solution treatment were measured, and a compression test was performed in order to evaluate deformability. The hardness was measured with an Hv hardness meter. Further, in the compression test, a test piece having a height of 14 mmφ × 21 mm shown in Table 1 was cut out by cutting and compressed using a smooth compression plate, and the deformability and the deformation resistance were measured.

第1表に供試材の引張強さ、硬度、および冷間限界圧
縮率(いずれも5個の試験片の測定値の平均値)を示
す。なお、冷間限界圧縮率とは、第1表の試験片イを圧
縮したとき、割れの発生なしに圧縮できた限界の高さ
(第1表のロのH)から、100×(H0−H)/H0(%)で
求めた値である。
Table 1 shows the tensile strength, hardness, and cold limit compressibility (average of the measured values of five test pieces) of the test materials. The cold limit compressibility is 100 x (H 0 from the limit height (H in Table 1B) at which the test piece a in Table 1 was compressed without cracking when compressed. −H) / H 0 (%).

なお、第1表には、時効処理後の引張強さおよび伸び
の測定値を併せて掲げた。時効処理は、引張強さが最大
となる時効温度が全てのβ型チタン合金で475℃前後で
あるから、No.14を除いて、全て475℃×20時間とした。
(No.14はα+β型チタン合金であるから、750℃加熱→
炉冷の熱処理とした。) 第1表に示すように、この発明によるチタン合金(N
o.1〜7)はいずれも溶体化処理後の引張強さが75kgf/m
m2以下、硬度はHv240以下で極めて低強度のチタン合金
になっている。従って、溶体化処理の状態での変形能
は、限界圧縮率で全て80%以上と、極めて良好である。
Table 1 also shows the measured values of tensile strength and elongation after aging treatment. Since the aging temperature at which the tensile strength is maximized is around 475 ° C. for all β-type titanium alloys, the aging treatment was performed at 475 ° C. × 20 hours except for No. 14.
(No. 14 is an α + β type titanium alloy, so it is heated at 750 ℃ →
The furnace heat treatment was used. ) As shown in Table 1, the titanium alloy (N
o.1 to 7) have a tensile strength of 75 kgf / m after solution treatment.
It is a titanium alloy with m 2 or less and hardness of Hv 240 or less, which is extremely low strength. Therefore, the deformability in the solution-treated state is 80% or more at the critical compression rate, which is extremely good.

比較合金(No.8〜11)のうち、Vの含有量が低いNo.8
は、β単相組織にならないため強度が高すぎ、Al、Sn、
または酸素(O)の含有量の高すぎるNo.9、10、11も引
張強さが80kgf/mm2以上(硬度250Hv以上)となり、かつ
限界圧縮率も80%に達していない。
No. 8 with low V content among comparative alloys (Nos. 8-11)
Has a too high strength because it does not become a β single phase structure, Al, Sn,
Alternatively, Nos. 9, 10, and 11 having too high an oxygen (O) content have a tensile strength of 80 kgf / mm 2 or more (hardness of 250 Hv or more), and the critical compressibility does not reach 80%.

比較合金のNo.12は、Vの含有量が多すぎるもので、
この場合、溶体化状態での強度は低く、限界圧縮率は80
%以上になる。しかし、この合金は最終製品に必要とさ
れる120kgf/mm2程度の強度を持たせるための適正時効硬
化時間が50時間以上にもなって、実用的でない。
No. 12 of the comparative alloy has too much V,
In this case, the strength in the solution state is low, and the critical compressibility is 80.
% Or more. However, this alloy is not practical because the appropriate age hardening time for providing the strength of about 120 kgf / mm 2 required for the final product is 50 hours or more.

従来例のNo.13は、前掲の特開昭61−250138号公報に
開示されている合金に相当するものである。これは、本
発明例に較べて、溶体化時の硬度、引張強さが概して高
い。
The conventional example No. 13 corresponds to the alloy disclosed in the above-mentioned JP-A-61-250138. The hardness and the tensile strength at the time of solution treatment are generally higher than those of the examples of the present invention.

第1図は、本発明合金(No.2、7)と比較合金(No.1
1)および従来合金(No.14、15)の変形抵抗曲線であ
る。
FIG. 1 shows the alloys of the present invention (Nos. 2 and 7) and the comparative alloy (No. 1).
It is a deformation resistance curve of 1) and the conventional alloy (No. 14, 15).

第1図によれば、本発明合金の変形抵抗は従来材であ
るTi−6Al−4V(No.14)及びTi−15V−3Cr−3Al−3Sn
(No.15)より著しく小さく、冷間加工性が良好なこと
を示している。比較合金(No.11)の変形抵抗が大き
く、変形能が低いのは、酸素含有量が0.30%と高いこと
が主な原因である。
According to FIG. 1, the deformation resistance of the alloy according to the present invention is the same as that of the conventional materials Ti-6Al-4V (No. 14) and Ti-15V-3Cr-3Al-3Sn.
It is significantly smaller than (No.15), indicating that the cold workability is good. The large deformation resistance and low deformability of the comparative alloy (No. 11) are mainly due to the high oxygen content of 0.30%.

(実施例2) 第1表に示した本発明合金No.5の時効硬化特性を調べ
た。比較材として、Snを含まないで他の不純物は同レベ
ルの従来例No.13(Ti−22V−4Al)を用いた。溶体化条
件はいずれも(βトランザス+20℃)×30分→水冷とし
た。
Example 2 The age hardening characteristics of the alloy No. 5 of the present invention shown in Table 1 were examined. As a comparative material, a conventional example No. 13 (Ti-22V-4Al) containing no Sn and having the same level of other impurities was used. The solution treatment conditions were (β-transus + 20 ° C.) × 30 minutes → water cooling.

第2図は、時効処理の温度と、引張強さおよび伸びの
関係を示したものである。時効時間は、20時間一定とし
た。
FIG. 2 shows the relationship between the aging temperature and the tensile strength and elongation. The aging time was fixed at 20 hours.

本発明合金(No.5)のTi−20V−4Al−1Sn合金は、Ti
−22V−4Al合金に比べ、溶体化のままでは強度が低く、
時効処理によってTi−22V−4Alを凌ぐ高強度となる。し
かも、高強度を示す時効温度範囲が広く、安定した時効
特性をもつことがわかる。また、延性もTi−22V−4Al合
金と同等以上である。
The Ti-20V-4Al-1Sn alloy of the present invention alloy (No. 5) is Ti
Compared to the -22V-4Al alloy, the strength is low when it is solution-treated,
Due to the aging treatment, the strength becomes higher than that of Ti-22V-4Al. Moreover, it can be seen that the aging temperature range showing high strength is wide and the aging characteristics are stable. Also, the ductility is equal to or higher than that of the Ti-22V-4Al alloy.

(発明の効果) 本発明のβ型チタン合金は、現用の同種の合金(Ti−
22V−4Al、Ti−15V−3Cr−3Al−3Sn)に比べて溶体化の
状態での冷間加工性が優れている。従って、冷間鍛造時
の心型寿命の延長、冷間圧延や伸線の際のロール、ダイ
スとの焼付けの減少など、チタン製部品製造のコスト低
減に大きく寄与する。本発明合金は、例えば自動車動弁
部品、宇宙航空用部品、或いは、めがねフレームのよう
な日用品の分野にも広く利用できる。
(Effects of the Invention) The β-type titanium alloy of the present invention is an alloy of the same kind (Ti-
(22V-4Al, Ti-15V-3Cr-3Al-3Sn) have better cold workability in the solution state. Therefore, the life of the core die during cold forging is extended, and the rolls during cold rolling or wire drawing and the reduction of baking with the die are greatly contributed to the cost reduction of the titanium component manufacturing. INDUSTRIAL APPLICABILITY The alloy of the present invention can be widely used in the field of daily commodities such as automobile valve parts, aerospace parts, and eyeglass frames.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、実施例で用いた供試材について、圧縮試験に
よって求めた変形抵抗曲線である。 第2図は本発明合金および従来のβ型チタン合金の時効
硬化特性を示す図である。
FIG. 1 is a deformation resistance curve obtained by a compression test for the test materials used in the examples. FIG. 2 is a diagram showing the age hardening characteristics of the alloy of the present invention and the conventional β-type titanium alloy.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】重量%で、V:15〜25%、Al:2.5〜5%、S
n:0.5〜4%、酸素:0.12%以下、残部Tiおよび不可避不
純物からなる冷間加工性に優れたβ型チタン合金。
1. By weight%, V: 15-25%, Al: 2.5-5%, S
A β-type titanium alloy excellent in cold workability, consisting of n: 0.5 to 4%, oxygen: 0.12% or less, the balance Ti and unavoidable impurities.
JP63283293A 1988-11-09 1988-11-09 Β-type titanium alloy with excellent cold workability Expired - Lifetime JP2669004B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63283293A JP2669004B2 (en) 1988-11-09 1988-11-09 Β-type titanium alloy with excellent cold workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63283293A JP2669004B2 (en) 1988-11-09 1988-11-09 Β-type titanium alloy with excellent cold workability

Publications (2)

Publication Number Publication Date
JPH02129331A JPH02129331A (en) 1990-05-17
JP2669004B2 true JP2669004B2 (en) 1997-10-27

Family

ID=17663574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63283293A Expired - Lifetime JP2669004B2 (en) 1988-11-09 1988-11-09 Β-type titanium alloy with excellent cold workability

Country Status (1)

Country Link
JP (1) JP2669004B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005005677A1 (en) * 2003-07-15 2005-01-20 Minoru Fumoto Titanium alloy and eyeglass frame excelling in spring characteristic
US7132021B2 (en) 2003-06-05 2006-11-07 Sumitomo Metal Industries, Ltd. Process for making a work piece from a β-type titanium alloy material
US7910052B2 (en) 2004-10-15 2011-03-22 Sumitomo Metal Industries, Ltd. Near β-type titanium alloy

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050005506A (en) * 2002-06-11 2005-01-13 스미토모 긴조쿠 고교 가부시키가이샤 β- TYPE TITANIUM ALLOY AND PROCESS FOR PRODUCING THE SAME
JP2008075173A (en) * 2006-01-18 2008-04-03 Nissan Motor Co Ltd Titanium alloy having low young's modulus
JP5123910B2 (en) * 2009-07-23 2013-01-23 株式会社神戸製鋼所 Press forming method of titanium plate
KR101967910B1 (en) * 2017-11-10 2019-04-10 국방과학연구소 Titanium alloy with high formability at room temperature and manufacturing method for the same
CN115786832B (en) * 2022-10-31 2024-04-26 西安交通大学 Method for improving high Jiang Yawen beta titanium alloy strong plasticity matching and titanium alloy

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01184242A (en) * 1988-01-18 1989-07-21 Nippon Stainless Steel Co Ltd Titanium alloy having excellent ductility

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01184242A (en) * 1988-01-18 1989-07-21 Nippon Stainless Steel Co Ltd Titanium alloy having excellent ductility

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7132021B2 (en) 2003-06-05 2006-11-07 Sumitomo Metal Industries, Ltd. Process for making a work piece from a β-type titanium alloy material
WO2005005677A1 (en) * 2003-07-15 2005-01-20 Minoru Fumoto Titanium alloy and eyeglass frame excelling in spring characteristic
US7910052B2 (en) 2004-10-15 2011-03-22 Sumitomo Metal Industries, Ltd. Near β-type titanium alloy

Also Published As

Publication number Publication date
JPH02129331A (en) 1990-05-17

Similar Documents

Publication Publication Date Title
EP2078760B1 (en) Beta titanium alloy
US5124121A (en) Titanium base alloy for excellent formability
US4260432A (en) Method for producing copper based spinodal alloys
EP3791003B1 (en) High strength titanium alloys
JPH10306335A (en) Alpha plus beta titanium alloy bar and wire rod, and its production
JPH0754114A (en) Improved low-cost ti-6a1-4v varistick alloy
JP2009138218A (en) Titanium alloy member and method for manufacturing titanium alloy member
US5256369A (en) Titanium base alloy for excellent formability and method of making thereof and method of superplastic forming thereof
JP3873313B2 (en) Method for producing high-strength titanium alloy
EP3844314B1 (en) Creep resistant titanium alloys
JPH0823053B2 (en) High-strength titanium alloy with excellent workability, method for producing the alloy material, and superplastic forming method
EP0322087A2 (en) High strength titanium material having improved ductility and method for producing same
JPH0730419B2 (en) Chromium and silicon modified .GAMMA.-titanium-aluminum alloys and methods for their production
JP2586023B2 (en) Method for producing TiA1-based heat-resistant alloy
JP2669004B2 (en) Β-type titanium alloy with excellent cold workability
US5362441A (en) Ti-Al-V-Mo-O alloys with an iron group element
EP0202791A1 (en) Titanium alloys
JP2005076098A (en) HIGH-STRENGTH alpha-beta TITANIUM ALLOY
JPH05255780A (en) High strength titanium alloy having uniform and fine structure
US5417779A (en) High ductility processing for alpha-two titanium materials
JP4715048B2 (en) Titanium alloy fastener material and manufacturing method thereof
KR102245612B1 (en) Ti-Al-Fe-Sn TITANIUM ALLOYS WITH EXCELLENT MECHANICAL PROPERTIES AND LOW COST
JP2003201530A (en) High-strength titanium alloy with excellent hot workability
JP2005154850A (en) High strength beta-type titanium alloy
RU2774671C2 (en) High-strength titanium alloys

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070704

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080704

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080704

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090704

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090704

Year of fee payment: 12