JPH02129331A - Beta-type titanium alloy having excellent cold workability - Google Patents

Beta-type titanium alloy having excellent cold workability

Info

Publication number
JPH02129331A
JPH02129331A JP28329388A JP28329388A JPH02129331A JP H02129331 A JPH02129331 A JP H02129331A JP 28329388 A JP28329388 A JP 28329388A JP 28329388 A JP28329388 A JP 28329388A JP H02129331 A JPH02129331 A JP H02129331A
Authority
JP
Japan
Prior art keywords
alloy
phase
beta
titanium alloy
cold workability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28329388A
Other languages
Japanese (ja)
Other versions
JP2669004B2 (en
Inventor
Wataru Takahashi
渉 高橋
Hisashi Maeda
尚志 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP63283293A priority Critical patent/JP2669004B2/en
Publication of JPH02129331A publication Critical patent/JPH02129331A/en
Application granted granted Critical
Publication of JP2669004B2 publication Critical patent/JP2669004B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title Ti alloy by adding specific amount of V to an Al-contg. Ti alloy having specific compsn. CONSTITUTION:The beta-type Ti alloy is constituted of, by weight, 15 to 25% V, 2 to 5% Al, 0.5 to 4% Sn, <=0.12% O and the balance Ti. The beta-type Ti alloy has low resistance to deformation as subjected to solution heat treatment, has excellent cold deformability and is provided with high strength after subjected to aging treatment. In the beta-type Ti alloy, structure can not be converted into the single phase of a beta phase even if subjected to solution heat treatment and is converted into the martensitic one in the case of <15% V content; while, in the case of >25%, the single phase of a beta-phase is obtd., but the age hardenability is deteriorated and the material cost is furthermore run up.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、溶体化処理された状態で変形抵抗が低く、
優れた冷間変形能を有し、時効熱処理後は高強度となる
β型チタン合金に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) This invention has low deformation resistance in a solution-treated state;
This invention relates to a β-type titanium alloy that has excellent cold deformability and has high strength after aging heat treatment.

(従来の技術) チタン合金は、比重が小さく、強度が高いため実用金属
材料の中でも掻めて高い比強度(強度/比重)をもつこ
とから、従来主に航空機用材料として開発、実用化が進
められて来た。しかし、最近では自動車部品用材料、医
療機器用材料などの一般民需用材料にもチタン合金の用
途が広がりつつあり、それにともなってチタン合金の性
質の改善と、コストの低減が強(要望されるようになっ
てきた。
(Conventional technology) Titanium alloys have a low specific gravity and high strength, which makes them one of the highest specific strengths (strength/specific gravity) among practical metal materials. It has been advanced. However, recently, the use of titanium alloys has been expanding to general civilian materials such as materials for automobile parts and materials for medical devices. It's starting to look like this.

チタン合金は一般に冷間加工性が悪い、冷間加工が容易
であれば製品製造コストは低くなる。冷間加工性が比較
的良好な純Tiでは加工品としての強度が不足し、高い
比強度が必要な部品には適用が難しい、チタン合金の最
も代表的なものの一つであるα+β型のTi −6Aj
! −4Vは、加工品としての強度は高いが、変形能が
極めて悪く、熱間加工でしか製造が不可能であるため、
製造コストが嵩む。このため、冷間加工性のよい体心立
方晶の結晶構造をもつβ相単相型のチタン合金(β型チ
タン合金)が注目されており、例えばTi−3A18 
V  6Cr−4Mo  4Zr、 Ti  15V−
3Cr3Affi  3Snなどのβ型チタン合金が知
られている。
Titanium alloys generally have poor cold workability, and if cold workability is easy, product manufacturing costs will be low. Pure Ti, which has relatively good cold workability, lacks strength as a processed product and is difficult to apply to parts that require high specific strength.α+β type Ti, one of the most typical titanium alloys, -6Aj
! -4V has high strength as a processed product, but has extremely poor deformability and can only be manufactured by hot processing.
Manufacturing costs increase. For this reason, single-phase β-phase titanium alloys (β-type titanium alloys) with a body-centered cubic crystal structure with good cold workability are attracting attention, such as Ti-3A18.
V 6Cr-4Mo 4Zr, Ti 15V-
β-type titanium alloys such as 3Cr3Affi 3Sn are known.

β型チタン合金は、溶体化処理を施した状態で加工性が
良く、加工後に時効処理を施しα相を析出させることに
よって強度を高めることが可能で、精密部品材料として
望ましい特性をもっている。
β-type titanium alloys have good workability when subjected to solution treatment, and can be strengthened by aging treatment after processing to precipitate the α phase, making them desirable properties as materials for precision parts.

しかしながら、これまでに知られている上記のようなβ
型チタン合金は、変形能は良好であるが変形抵抗が極め
て高いので、例えば冷間鍛造を行う場合に、ダイス、ポ
ンチ等の金型が割れたり欠けたりすることが多い、また
、変形抵抗が高いために、冷間圧延や冷間伸線を行う場
合にも、ロールやダイスとの焼付きが生じやすい。かか
る問題点を解決する一つの提案が特開昭61−2501
38号公報に開示されている。しかし、ここに開示され
る合金は、α相安定化元素としてANのみを用いており
、溶体化の状態でAlによる固溶硬化が大きく、硬度が
充分に低いとはいえない、また、時効後に高硬度になり
得る適正な時効処理の温度範囲が狭く、製造が難しい。
However, the previously known β
Mold titanium alloy has good deformability but extremely high deformation resistance, so when performing cold forging, for example, molds such as dies and punches often crack or chip. Because of its high temperature, seizure with rolls and dies is likely to occur even when performing cold rolling or cold wire drawing. One proposal to solve these problems is published in Japanese Patent Application Laid-Open No. 61-2501.
It is disclosed in Publication No. 38. However, the alloy disclosed herein uses only AN as an α-phase stabilizing element, and solid solution hardening due to Al is large in the solution state, and the hardness cannot be said to be sufficiently low. The temperature range for proper aging treatment that can result in high hardness is narrow, making manufacturing difficult.

(発明が解決しようとする課題) 本発明は、従来のβ型チタン合金における上記の問題点
を無くし、その冷間加工性を一層向上させることを課題
とする。具体的には、溶体化処理の状態で引張強さで7
5kgf/+u+”以下(1(ν硬度で240以下)、
冷間据込み圧縮率が80%以上で、20時間以内の時効
処理で120kgf/mm”以上の引張強さが得られ、
しかも時効処理の適正温度範囲が広く、製造の容易なβ
相単相型のチタン合金を提供することを目的とする。
(Problems to be Solved by the Invention) An object of the present invention is to eliminate the above-mentioned problems in conventional β-type titanium alloys and further improve its cold workability. Specifically, the tensile strength in the solution treated state is 7.
5kgf/+u+” or less (1 (ν hardness 240 or less),
The cold upsetting compression ratio is 80% or more, and a tensile strength of 120 kgf/mm” or more can be obtained by aging within 20 hours.
In addition, the appropriate temperature range for aging treatment is wide, and β is easy to manufacture.
The purpose of the present invention is to provide a single-phase titanium alloy.

(問題点を解決するための手段) 本発明の要旨はr重量%で、V:15〜25%、A2:
2〜5%、Sn : 0.5〜4%、酸素: 0.12
%以下、残部Tiおよび不可避不純物からなる冷間加工
性に優れたβ型チタン合金」にある。
(Means for solving the problems) The gist of the present invention is r weight%, V: 15-25%, A2:
2-5%, Sn: 0.5-4%, Oxygen: 0.12
% or less, the balance is Ti and unavoidable impurities, and the β-type titanium alloy has excellent cold workability.

ここで、冷間加工性とは、冷間変形抵抗および冷間変形
能を併せた特性をいう。
Here, cold workability refers to a property that combines cold deformation resistance and cold deformability.

チタン合金をβ相から象、冷した状態で、室温において
準安定β相を得るための合金元素としては、■、Mo、
 Nb、 Ta、 Cr、 Fe、 Mn等がある。一
方、β型チタン合金に一般的に要求される特性は、■溶
解が容易で偏析が少ないこと、 ■添加合金元素の比重が小さいこと、 ■熱間加工性が良好なこと、 ■冷間加工性に優れること、 ■添加元素の固溶硬化作用が小さくTiの軽量性をt員
なわないよう、少量でβ相が得られること、■時効によ
り、高強度が得られること、■合金そのものが安価であ
ること、 などである。
The alloying elements for changing the titanium alloy from the β phase and obtaining the metastable β phase at room temperature in a cooled state include ■, Mo,
There are Nb, Ta, Cr, Fe, Mn, etc. On the other hand, the properties generally required for β-type titanium alloys are: ■ Easy melting and low segregation; ■ Low specific gravity of added alloying elements; ■ Good hot workability; ■ Cold workability. ■ The solid solution hardening effect of the additive elements is small so that the lightness of Ti is not compromised by the β phase, ■ High strength can be obtained by aging, ■ The alloy itself It is cheap, etc.

上記■〜■を満足する合金元素として本発明では■を採
用した。その理由は下記のとおりである。
In the present invention, (1) was adopted as an alloying element that satisfies the above (1) to (2). The reason is as follows.

Moは比重および溶融点が高<、NbおよびTaは高価
な元素であり、しかも多量添加しないとβ相にならない
、 Cr、 Feは固溶硬化の作用が著しく、溶体化の
状態で合金を過度に硬くしてしまう0次に、時効析出し
たα相の硬化のためにはiがを効であるが、溶体化時の
固溶硬化の作用が大きいため過度に添加すると冷間加工
の際の加工荷重が高くなるのでその一部を固溶硬化作用
の小さいSnに置き換え、冷間加工性を損なわないよう
にした。Snは、固溶硬化の作用は小さいが、時効処理
時のα相の硬化には役立ち、時効硬化の安定性と硬度の
向上に寄与する0次に、不純物中の、特に酸素に注目し
、冷間加工性向上のために、その許容上限値を定めた。
Mo has a high specific gravity and melting point, Nb and Ta are expensive elements and will not form a β phase unless added in large quantities, Cr and Fe have a significant solid solution hardening effect and will not cause the alloy to excessively harden in the solution state. Although i is effective for hardening the alpha phase precipitated by aging, adding too much of it will cause hardening during cold working. Since the processing load would be high, a part of it was replaced with Sn, which has a small solid solution hardening effect, so as not to impair cold workability. Although Sn has a small solid solution hardening effect, it is useful for hardening the α phase during aging treatment and contributes to improving the stability and hardness of age hardening. In order to improve cold workability, the allowable upper limit was determined.

(作用) 以下に、本発明のβ型チタン合金における、合金成分の
作用効果と、それぞれの含有量の限定理由を説明する。
(Function) Below, the function and effect of the alloy components in the β-type titanium alloy of the present invention and the reason for limiting the content of each will be explained.

なお、合金成分の含有量は全て重量%で表す。In addition, all the contents of alloy components are expressed in weight %.

(a)V:15〜25% ■は、チタン合金素地に固溶してβ相を安定化し室温に
おいてβ相単相組織となし、冷間加工性を向上させる。
(a) V: 15 to 25% (2) stabilizes the β phase by forming a solid solution in the titanium alloy base, forming a single β phase structure at room temperature, and improving cold workability.

しかし、■含有量が15%より少ない場合は、溶体化処
理を行ってもβ相単相とすることができず、マルテンサ
イト組織となる。25%より多い場合は、β相単相には
なるが、時効硬化性が悪く時効処理に要する時間が長く
なる。また、■を過度に添加すると比重が増大し、原料
費も嵩み経済的でない。
However, if the content of (1) is less than 15%, even if solution treatment is performed, it will not be possible to form a single β phase, resulting in a martensitic structure. When the amount is more than 25%, the β-phase becomes a single phase, but the age hardenability is poor and the time required for aging treatment becomes longer. Moreover, if (2) is added excessively, the specific gravity will increase and the raw material cost will also increase, making it uneconomical.

なお、前記のとおり、β相安定化元素としては■の外に
、Mo5Ta、 Nb、 Cr、 Fe、 Mnなどが
あるが、これらの中で安価でかつ溶体化の状態で強度の
低いβ相単相合金となす元素は、MOと■に限られる。
As mentioned above, in addition to (2), β-phase stabilizing elements include Mo5Ta, Nb, Cr, Fe, Mn, etc. Among these, the β-phase single element is inexpensive and has low strength in the solution state. The elements forming the phase alloy are limited to MO and (2).

Cr、 Fe、 Mnを含む合金では、溶体化の状態で
引張強さが75kgf/mm”以上(Hv240以上)
となって変形抵抗が増大する。VとMoのうち、Moは
融点が高く溶解しにくいため偏析が生じやすく、またM
oを含む合金は熱間加工性も悪い、結局β相安定化元素
として実用上酸も好ましいのは■であり、その含有■は
前記の理由で15〜25%とする。
For alloys containing Cr, Fe, and Mn, the tensile strength in the solution state is 75 kgf/mm” or more (Hv240 or more).
As a result, deformation resistance increases. Among V and Mo, Mo has a high melting point and is difficult to dissolve, so segregation tends to occur, and M
Alloys containing o also have poor hot workability.As a result, the preferred β-phase stabilizing element in practical terms is acid, and for the reasons mentioned above, the content (2) is set at 15 to 25%.

(blA12〜5% 本発明のチタン合金は、溶体化の状態で準安定β相単体
であり、これを時効処理した時、α相が析出して強度の
上昇が得られるものである。α相の時効析出により高強
度を得るためには、α相の分散強化ばかりでなく、析出
したα相自身の強化が有効である。αチタンの固溶強化
に最も有効な合金元素はA2である。また、IiV、の
添加は、合金を脆化させるω相の析出を抑制し、α相の
析出を促進するという効果もある。
(blA12-5% The titanium alloy of the present invention is a metastable β phase alone in the solution state, and when it is aged, the α phase precipitates and an increase in strength is obtained.α phase In order to obtain high strength through aging precipitation, it is effective not only to dispersion strengthen the α phase but also to strengthen the precipitated α phase itself.The most effective alloying element for solid solution strengthening of α titanium is A2. Furthermore, the addition of IiV has the effect of suppressing the precipitation of the ω phase, which makes the alloy brittle, and promoting the precipitation of the α phase.

上記のAl1の効果は、その含有量が2%未満では顕著
に現れない。一方、AI!、の含有量が5%を越えると
、溶体化処理状態での強度(硬度)が高くなって冷間加
工性が低下する。即ち、lの適正含有量は2〜5%であ
る。
The above-mentioned effect of Al1 is not noticeable when its content is less than 2%. On the other hand, AI! If the content exceeds 5%, the strength (hardness) in the solution treatment state increases and cold workability decreases. That is, the appropriate content of 1 is 2 to 5%.

(C)Sn : 0.5〜4% Snはα相の時効析出を促進安定化し、ω相の生成を抑
えるため、時効処理のための適正温度範囲を広くする効
果があり、かつ時効処理後の強度を高くする。さらに、
Al1が合金素地を固溶強化するのに対し、Snはあま
り素地を硬化させないのでA2を減らしてSnに置き換
えることが変形抵抗を減少させるためには有効である。
(C) Sn: 0.5-4% Sn promotes and stabilizes the aging precipitation of the α phase and suppresses the formation of the ω phase, so it has the effect of widening the appropriate temperature range for aging treatment, and has the effect of widening the appropriate temperature range for aging treatment. increase the strength of moreover,
While Al1 solid-solution strengthens the alloy matrix, Sn does not harden the matrix very much, so reducing A2 and replacing it with Sn is effective in reducing deformation resistance.

このようなSnの効果は、0.5%以下では乏しく、4
%を越えると素地の硬度上昇が避けられない。従って、
Snの含有量は0.5〜4%とする。
Such an effect of Sn is poor at 0.5% or less;
%, an increase in the hardness of the substrate is unavoidable. Therefore,
The content of Sn is 0.5 to 4%.

以上の合金成分の外、残部は実質的にTiである。In addition to the above alloy components, the remainder is substantially Ti.

実質的にTiというのは、工業的に製造される場合の不
可避的に含まれる不純物を伴うという意味である。しか
し、本発明の合金においては、不純物中の酸素が、特に
下記のように抑制されている。
The term "substantially Ti" means that impurities are inevitably included when industrially produced. However, in the alloy of the present invention, oxygen in the impurity is particularly suppressed as described below.

(d)酸素:0.12%以下 酸素はα相安定化元素であり、多量にあるとβ相単相化
を阻害し、また素地を硬化させ、冷間加工性を劣化させ
る。即ち、変形抵抗を大きくし、変形能を低下させ、冷
間加工時にクラックを発生させる原因になる。 0.1
2%以下であれば、かかる悪影響が小さいので0.12
%以下とした。
(d) Oxygen: 0.12% or less Oxygen is an α-phase stabilizing element, and if present in a large amount, it inhibits β-phase single phase formation, hardens the base material, and deteriorates cold workability. That is, it increases deformation resistance, reduces deformability, and causes cracks to occur during cold working. 0.1
If it is 2% or less, the negative effect is small, so 0.12
% or less.

なお、Feはβ相安定化元素であるが、溶体化処理後の
硬度を高くするので有害である。0.3%以下、できる
だけ少ないのが望ましい。
Although Fe is a β-phase stabilizing element, it is harmful because it increases the hardness after solution treatment. It is desirable that the content be as low as possible, 0.3% or less.

以下、実施例によって本発明のチタン合金の特性を具体
的に説明する。
Hereinafter, the characteristics of the titanium alloy of the present invention will be specifically explained using examples.

(実施例1) 真空溶解炉を使用して、第1表に示す組成のチタン合金
を溶製し、140IIIIlφのインゴットに鋳造した
。このインゴットに通常の条件で熱間鍛造および熱間圧
延を施して、20IIImφにした後、溶体化処理(β
トランザス+20°Cの温度に30分の加熱保持後水冷
)を施して供試材を作製した。
(Example 1) Using a vacuum melting furnace, a titanium alloy having the composition shown in Table 1 was melted and cast into an ingot of 140III1φ. This ingot was hot-forged and hot-rolled under normal conditions to a diameter of 20IIImφ, and then solution-treated (β
A sample material was prepared by heating and holding at a temperature of transus +20°C for 30 minutes and then cooling with water.

上記の供試材について、溶体化処理後の硬さと引張強さ
を測定すると共に、変形能を評価するために圧縮試験を
行った。硬さの測定はIlv硬度計を用いた。また、圧
縮試験は、第1表中に記した14mmφ×211111
高さの試験片を切削で切り出し、平滑圧縮板を用いて圧
縮し、変形能と変形抵抗を測定した。
Regarding the above sample materials, the hardness and tensile strength after solution treatment were measured, and a compression test was conducted to evaluate the deformability. The hardness was measured using an ILV hardness meter. In addition, the compression test was performed on the 14mmφ×211111
A specimen of the same height was cut out, compressed using a smooth compression plate, and the deformability and deformation resistance were measured.

第1表に供試材の引張強さ、硬度、および冷間限界圧縮
率(いずれも5個の試験片の測定値の平均値)を示す、
なお、冷間限界圧縮率とは、第1表の試験片イを圧縮し
たとき、割れの発生なしに圧縮できた限界の高さ(第1
表の口のH)から、100 X (H,−H) /H,
(%)で求めた値である。
Table 1 shows the tensile strength, hardness, and cold compressibility limit (all average values of the measured values of 5 test pieces) of the test materials.
Note that the cold compressibility limit is the limit height that can be compressed without cracking when test specimen A in Table 1 is compressed (the first
From H) at the top of the table, 100 X (H, -H) /H,
(%).

なお、第1表には、時効処理後の引張強さおよび伸びの
測定値を併せて掲げた0時効処理は、引張強さが最大と
なる時効温度が全てのβ型チタン合金で475℃前後で
あるから、Nα14を除いて、全て475°C×20時
間とした。(Nα14はα+β型チタン合金であるから
、750°C加熱→炉冷の熱処理とした。) 第1表に示すように、この発明によるチタン合金(階1
〜7)はいずれも溶体化処理後の引張強さが75kgf
/mm”以下、硬度はHv240以下で極めて低強度の
チタン合金になっている。従って、溶体化処理の状態で
の変形能は、限界圧縮率で全て80%以上と、極めて良
好である。
Table 1 also lists the measured values of tensile strength and elongation after aging treatment. For 0-aging treatment, the aging temperature at which the tensile strength reaches the maximum is around 475°C for all β-type titanium alloys. Therefore, except for Nα14, the temperature was set to 475°C for 20 hours. (Since Nα14 is an α+β type titanium alloy, the heat treatment was performed by heating at 750°C → furnace cooling.) As shown in Table 1, the titanium alloy according to the present invention (floor 1
~7) All have a tensile strength of 75 kgf after solution treatment.
/mm'' or less, and the hardness is Hv240 or less, making it an extremely low-strength titanium alloy. Therefore, the deformability in the solution treatment state is extremely good, with all of them being 80% or more at the critical compressibility.

比較合金(Nα8〜11)のうち、■の含有量が低いN
α8は、β単相組織にならないため強度が高すぎ、AI
!、、Sn、または酸素(0)の含有量の高すぎるN(
19,1O111も引張強さカ80kgf/WIIlz
以上(硬度25011v以上)となり、かつ限界圧縮率
も80%に達していない。
Among the comparative alloys (Nα8 to 11), N with a low content of ■
α8 is too strong because it does not form a β single phase structure, and AI
! , , Sn, or N with too high content of oxygen (0) (
19,1O111 also has a tensile strength of 80kgf/WIIlz
or more (hardness of 25011v or more), and the limit compression ratio has not reached 80%.

比較合金のNα12は、■の含有量が多すぎるもので、
この場合、溶体化状態での強度は低く、限界圧縮率は8
0%以上になる。しかし、この合金は最終製品に必要と
される120kgf/mm”程度の強度を持たせるため
の適正時効硬化時間が50時間以上にもなって、実用的
でない。
The comparative alloy Nα12 has too much ■ content,
In this case, the strength in the solution state is low and the critical compressibility is 8
It becomes 0% or more. However, this alloy requires an appropriate age hardening time of more than 50 hours to provide the final product with a strength of about 120 kgf/mm'', which is not practical.

従来例の随13は、前掲の特開昭61−250138号
公報に開示されている合金に相当するものである。
Conventional Example No. 13 corresponds to the alloy disclosed in the above-mentioned Japanese Unexamined Patent Publication No. 61-250138.

これは、本発明例に較べて、溶体化時の硬度、引張強さ
が概して高い。
This generally has higher hardness and tensile strength during solution treatment than the examples of the present invention.

第1図は、本発明合金(NIl12.7)と比較合金(
kll)および従来合金(Nα14.15)の変形抵抗
曲線である。
Figure 1 shows the inventive alloy (NIl12.7) and the comparative alloy (NIl12.7).
kll) and the conventional alloy (Nα14.15).

第1図によれば、本発明合金の変形抵抗は従来材である
Ti−6Al−4V (隘14)及びTi−15V3 
Cr −3A l −3Sn (NCL15)より著し
く小さく、冷間加工性が良好なことを示している。比較
合金(Nα11)の変形抵抗が大きく、変形能が低いの
は、酸素含有量が0.30%と高いことが主な原因であ
る。
According to FIG. 1, the deformation resistance of the alloy of the present invention is the same as that of the conventional material Ti-6Al-4V (14) and Ti-15V3.
It is significantly smaller than Cr-3Al-3Sn (NCL15), indicating good cold workability. The large deformation resistance and low deformability of the comparative alloy (Nα11) is mainly due to the high oxygen content of 0.30%.

(実施例2) 第1表に示した本発明舎金漱5の時効硬化特性を調べた
。比較材として、Snを含まないで他の不純物は同レベ
ルの従来側石13(Tr−22V−4Ajりを用いた。
(Example 2) The age hardening characteristics of the present invention Shakinso 5 shown in Table 1 were investigated. As a comparison material, a conventional side stone 13 (Tr-22V-4Aj) which does not contain Sn and has the same level of other impurities was used.

溶体化条件はいずれも(βトランザス+20°C)X3
0分→水冷とした。
The solution treatment conditions are (β transus +20°C)X3
0 minutes → water cooling.

第2図は、時効処理の温度と、引張強さおよび伸びの関
係を示したものである0時効時間は、20時間一定とし
た。
FIG. 2 shows the relationship between aging treatment temperature, tensile strength, and elongation. The zero aging time was kept constant for 20 hours.

本発明合金(Nα5)のTi  20V  4Aj2−
ISn合金は、Ti−22V −4A 1合金に比べ、
溶体化のままでは強度が低く、時効処理によってTi−
22V−4A2を凌ぐ高強度となる。しかも、高強度を
示す時効温度範囲が広く、安定した時効特性をもつこと
がわかる。また、延性もTi−22V−4Al合金と同
等以上である。
Ti 20V 4Aj2- of the invention alloy (Nα5)
Compared to Ti-22V-4A 1 alloy, ISn alloy has
Ti-
It has high strength exceeding 22V-4A2. In addition, it can be seen that the aging temperature range in which high strength is exhibited is wide, and that the material has stable aging characteristics. Further, the ductility is also equal to or higher than that of Ti-22V-4Al alloy.

C発明の効果) 本発明のβ型チタン合金は、現用の同種の合金(Ti−
22V−4Al、Ti−15V  3Cr  3Al 
 3Sn)に比べて溶体化の状態での冷間加工性が優れ
ている。従って、冷間鍛造時の金型寿命の延長、冷間圧
延や伸線の際のロール、ダイスとの焼付けの減少など、
チタン製部品製造のコスト低減に大きく寄与する0本発
明合金は、例えば自動車動弁部品、宇宙航空用部品、或
いは、めがねフレームのような日用品の分野にも広く利
用できる。
C) Effect of the invention) The β-type titanium alloy of the present invention is similar to the currently used alloy (Ti-
22V-4Al, Ti-15V 3Cr 3Al
3Sn) has superior cold workability in a solution-treated state. Therefore, the life of the mold during cold forging is extended, and the occurrence of seizure with rolls and dies during cold rolling and wire drawing is reduced.
The alloy of the present invention, which greatly contributes to reducing the cost of manufacturing titanium parts, can be widely used in the field of daily necessities such as automobile valve train parts, aerospace parts, and eyeglass frames.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例で用いた供試材について、圧縮試験に
よって求めた変形抵抗曲線である。 第2図は本発明合金および従来のβ型チタン合金の時効
硬化特性を示す図である。
FIG. 1 is a deformation resistance curve obtained by a compression test for the sample materials used in the examples. FIG. 2 is a diagram showing the age hardening characteristics of the alloy of the present invention and a conventional β-type titanium alloy.

Claims (1)

【特許請求の範囲】[Claims] 重量%で、V:15〜25%、Al:2〜5%、Sn:
0.5〜4%、酸素:0.12%以下、残部Tiおよび
不可避不純物からなる冷間加工性に優れたβ型チタン合
金。
In weight%, V: 15-25%, Al: 2-5%, Sn:
A β-type titanium alloy with excellent cold workability, consisting of 0.5 to 4%, oxygen: 0.12% or less, and the remainder Ti and unavoidable impurities.
JP63283293A 1988-11-09 1988-11-09 Β-type titanium alloy with excellent cold workability Expired - Lifetime JP2669004B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63283293A JP2669004B2 (en) 1988-11-09 1988-11-09 Β-type titanium alloy with excellent cold workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63283293A JP2669004B2 (en) 1988-11-09 1988-11-09 Β-type titanium alloy with excellent cold workability

Publications (2)

Publication Number Publication Date
JPH02129331A true JPH02129331A (en) 1990-05-17
JP2669004B2 JP2669004B2 (en) 1997-10-27

Family

ID=17663574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63283293A Expired - Lifetime JP2669004B2 (en) 1988-11-09 1988-11-09 Β-type titanium alloy with excellent cold workability

Country Status (1)

Country Link
JP (1) JP2669004B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003104506A1 (en) * 2002-06-11 2003-12-18 住友金属工業株式会社 β-TYPE TITANIUM ALLOY AND PROCESS FOR PRODUCING THE SAME
JP2008075173A (en) * 2006-01-18 2008-04-03 Nissan Motor Co Ltd Titanium alloy having low young's modulus
JP2011025269A (en) * 2009-07-23 2011-02-10 Kobe Steel Ltd Press forming method for titanium sheet
KR101967910B1 (en) * 2017-11-10 2019-04-10 국방과학연구소 Titanium alloy with high formability at room temperature and manufacturing method for the same
CN115786832A (en) * 2022-10-31 2023-03-14 西安交通大学 Method for improving high Jiang Yawen beta titanium alloy strong plasticity matching and titanium alloy
CN115786832B (en) * 2022-10-31 2024-04-26 西安交通大学 Method for improving high Jiang Yawen beta titanium alloy strong plasticity matching and titanium alloy

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4041774B2 (en) 2003-06-05 2008-01-30 住友金属工業株式会社 Method for producing β-type titanium alloy material
WO2005005677A1 (en) * 2003-07-15 2005-01-20 Minoru Fumoto Titanium alloy and eyeglass frame excelling in spring characteristic
JP4939741B2 (en) 2004-10-15 2012-05-30 住友金属工業株式会社 near β type titanium alloy

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01184242A (en) * 1988-01-18 1989-07-21 Nippon Stainless Steel Co Ltd Titanium alloy having excellent ductility

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01184242A (en) * 1988-01-18 1989-07-21 Nippon Stainless Steel Co Ltd Titanium alloy having excellent ductility

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003104506A1 (en) * 2002-06-11 2003-12-18 住友金属工業株式会社 β-TYPE TITANIUM ALLOY AND PROCESS FOR PRODUCING THE SAME
JP2008075173A (en) * 2006-01-18 2008-04-03 Nissan Motor Co Ltd Titanium alloy having low young's modulus
JP2011025269A (en) * 2009-07-23 2011-02-10 Kobe Steel Ltd Press forming method for titanium sheet
KR101967910B1 (en) * 2017-11-10 2019-04-10 국방과학연구소 Titanium alloy with high formability at room temperature and manufacturing method for the same
CN115786832A (en) * 2022-10-31 2023-03-14 西安交通大学 Method for improving high Jiang Yawen beta titanium alloy strong plasticity matching and titanium alloy
CN115786832B (en) * 2022-10-31 2024-04-26 西安交通大学 Method for improving high Jiang Yawen beta titanium alloy strong plasticity matching and titanium alloy

Also Published As

Publication number Publication date
JP2669004B2 (en) 1997-10-27

Similar Documents

Publication Publication Date Title
US20030168138A1 (en) Method for processing beta titanium alloys
JP4939741B2 (en) near β type titanium alloy
EP1632581A1 (en) High strength low cost titanium and method for making same
EP0683242A1 (en) Method for making titanium alloy products
EP3844314B1 (en) Creep resistant titanium alloys
KR20130134014A (en) Beta type titanium alloy with low elastic modulus and high strength
CN114836651B (en) Ultrahigh-strength and toughness beta titanium alloy and preparation method thereof
JP2004010963A (en) HIGH STRENGTH Ti ALLOY AND ITS PRODUCTION METHOD
EP3775307B1 (en) High temperature titanium alloys
JPH0730419B2 (en) Chromium and silicon modified .GAMMA.-titanium-aluminum alloys and methods for their production
JP2007527466A (en) Beta titanium alloy, process for producing hot rolled products from this type of alloy, and use thereof
JP2010275606A (en) Titanium alloy
JPH0457734B2 (en)
JPS63171862A (en) Manufacture of heat resistant ti-al alloy
JPH02129331A (en) Beta-type titanium alloy having excellent cold workability
KR102332018B1 (en) High temperature titanium alloy and method for manufacturing the same
WO2016140231A1 (en) Thin titanium sheet and manufacturing method therefor
JP5210874B2 (en) Cold workable titanium alloy
US5417779A (en) High ductility processing for alpha-two titanium materials
KR20200041629A (en) Transformation-induced-plasticity dual-phase high-entropy alloy and manufacturing method of the same
JP2000087199A (en) Manufacture of rolled product of magnesium alloy, method of press working magnesium alloy, and press worked product
JP4528109B2 (en) Low elastic β-titanium alloy having an elastic modulus of 65 GPa or less and method for producing the same
JPH04235262A (en) Manufacture of ti-al intermetallic compound-series ti alloy excellent in strength and ductility
JP2005154850A (en) High strength beta-type titanium alloy
JP2003201530A (en) High-strength titanium alloy with excellent hot workability

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070704

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080704

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080704

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090704

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090704

Year of fee payment: 12