JP2017002390A - Titanium alloy forging material - Google Patents

Titanium alloy forging material Download PDF

Info

Publication number
JP2017002390A
JP2017002390A JP2015121156A JP2015121156A JP2017002390A JP 2017002390 A JP2017002390 A JP 2017002390A JP 2015121156 A JP2015121156 A JP 2015121156A JP 2015121156 A JP2015121156 A JP 2015121156A JP 2017002390 A JP2017002390 A JP 2017002390A
Authority
JP
Japan
Prior art keywords
phase
titanium alloy
less
primary
forging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015121156A
Other languages
Japanese (ja)
Inventor
山下 浩司
Koji Yamashita
浩司 山下
良規 伊藤
Yoshinori Ito
良規 伊藤
公輔 小野
Kimisuke Ono
公輔 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2015121156A priority Critical patent/JP2017002390A/en
Publication of JP2017002390A publication Critical patent/JP2017002390A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a titanium alloy forging material excellent in strength and ductility and excellent in homogeneity of mechanical strength.SOLUTION: There is provided a titanium alloy forging material consisting of a titanium alloy having Mo equivalent [Mo]represented by the following formula of 10 or more and less than 13, where content of an element X (mass%) is [X], [Mo]=[Mo]+[Ta]/5+[Nb]/3.6+[W]/2.5+[V]/1.5+1.25[Cr]+1.25[Ni]+1.7[Mn]+1.7[Co]+2.5[Fe] and having a particle diameter of 5 μm or more, area percentage of a primary α phase with an aspect ratio of 2 or more of 1% or less, area percentage of a primary α phase with a particle diameter of 0.5 μm or more of over 0% and 20% or less and average spacing of a secondary α phase of 100 to 200 nm.SELECTED DRAWING: None

Description

本発明は、チタン合金鍛造材に関し、特に、ニア(near)β型チタン合金鍛造材に関する。   The present invention relates to a titanium alloy forging, and more particularly to a near β-type titanium alloy forging.

航空機用部品等には、軽量で高強度であることに加えて、高延性、高靭性等であることが要求されることから、α+β型チタン合金やニアβ型チタン合金が多く使用されている。α+β型チタン合金は、主相である稠密六方晶(hcp構造)のα相と体心立方晶(bcc構造)のβ相とが室温で安定に共存して、強度と延性等のバランスに優れており、また、β変態点(Tβ)以上の温度域でβ相単相となる。ニアβ型チタン合金は、α+β型チタン合金と高強度なβ型チタン合金との中間的な金属組織を有しており、α+β型チタン合金と同様にα相とβ相とが共存する。これらのチタン合金の鍛造材には、Tβ以上の温度に到達しないようにTβ未満の温度域(α+β二相域)に加熱して鍛造するα+β鍛造によるものと、Tβ以上の温度域(β単相域)に加熱して鍛造するβ鍛造によるものとがある。α+β鍛造材とβ鍛造材では、形成される材料組織は全く異なり、それに伴い材料特性が異なることが知られている。   Aircraft parts are required to have high ductility, high toughness, etc. in addition to being lightweight and high in strength, so α + β type titanium alloys and near β type titanium alloys are often used. . α + β-type titanium alloy has excellent balance of strength, ductility, etc. because the α phase of dense hexagonal crystal (hcp structure), which is the main phase, and β phase of body-centered cubic crystal (bcc structure) coexist stably at room temperature. Moreover, it becomes a β phase single phase in a temperature range equal to or higher than the β transformation point (Tβ). The near β-type titanium alloy has an intermediate metal structure between the α + β-type titanium alloy and the high-strength β-type titanium alloy, and the α-phase and the β-phase coexist in the same manner as the α + β-type titanium alloy. These titanium alloy forgings include α + β forging that heats and forges to a temperature range below Tβ (α + β two-phase region) so as not to reach a temperature above Tβ, and a temperature range above Tβ (β single unit). There is a thing by the β forging which heats and forges to a phase region. It is known that the α + β forged material and the β forged material have completely different material structures and have different material properties.

チタン合金の中でも、高強度なニアβ型チタン合金として、Ti-10V-2Fe-3Al合金などが知られている。Ti-10V-2Fe-3Al合金は、その特性をさらに改良するために、いくつかの改良技術が開発されている。例えば、特許文献1には、強度・靭性・延性に優れたニアβ型チタン合金を得るための製造方法が開示されている。また、特許文献2には、強度・靭性に優れたニアβ型チタン合金を得るための製造方法が開示されている。   Among titanium alloys, Ti-10V-2Fe-3Al alloy is known as a high-strength near β-type titanium alloy. In order to further improve the properties of the Ti-10V-2Fe-3Al alloy, several improved techniques have been developed. For example, Patent Document 1 discloses a manufacturing method for obtaining a near β-type titanium alloy having excellent strength, toughness, and ductility. Patent Document 2 discloses a production method for obtaining a near β-type titanium alloy having excellent strength and toughness.

特許第3252596号公報Japanese Patent No. 3252596 特許第3343954号公報Japanese Patent No. 3334354

しかしながら、航空機用部品には、更なる強度、延性等の向上が要求されている。特許文献1および特許文献2に開示された製造方法には、強度・延性にまだ改良の余地があり、また、特性のバラつきが大きく、再現性が不十分であった。   However, aircraft parts are required to be further improved in strength, ductility and the like. The manufacturing methods disclosed in Patent Document 1 and Patent Document 2 still have room for improvement in strength and ductility, and have large variations in characteristics and insufficient reproducibility.

本発明は、前記問題点に鑑みてなされたものであり、強度、延性に優れ、機械的強度の均質性に優れたチタン合金鍛造材を提供することを目的とする。   This invention is made | formed in view of the said problem, and it aims at providing the titanium alloy forging material excellent in intensity | strength and ductility, and excellent in the homogeneity of mechanical strength.

本発明者らは鋭意研究の結果、α+β鍛造による鍛造方法を採用して、金属組織として、α相の形態と面積率を特定の要件のものとすることによって、上記課題を解消し得ることを見出して、本発明に到達することができた。   As a result of diligent research, the present inventors have adopted a forging method by α + β forging, and as a metal structure, the above-mentioned problems can be solved by making the shape and area ratio of the α phase have specific requirements. It was found and the present invention could be reached.

すなわち、本発明に係るチタン合金鍛造材は、元素Xの含有量(質量%)を[X]としたときに、下式(1)で表されるMo当量[Mo]eqが10以上13未満であるチタン合金からなるチタン合金鍛造材であって、
[Mo]eq=[Mo]+[Ta]/5+[Nb]/3.6+[W]/2.5+[V]/1.5+1.25[Cr]+1.25[Ni]+1.7[Mn]+1.7[Co]+2.5[Fe]・・・(1)
粒径5μm以上で、アスペクト比2以上の一次α相の面積率が1%以下であり、粒径0.5μm以上の一次α相の面積率が0%を超えて20%以下であり、二次α相の平均間隔が100〜200nmであることとしている。
That is, in the titanium alloy forging according to the present invention, when the content (mass%) of the element X is [X], the Mo equivalent [Mo] eq represented by the following formula (1) is 10 or more and less than 13 A titanium alloy forging made of a titanium alloy,
[Mo] eq = [Mo] + [Ta] / 5 + [Nb] /3.6+ [W] /2.5+ [V] /1.5+1.25 [Cr] +1.25 [Ni] +1.7 [ Mn] +1.7 [Co] +2.5 [Fe] (1)
The area ratio of the primary α phase having a particle diameter of 5 μm or more and an aspect ratio of 2 or more is 1% or less, the area ratio of the primary α phase having a particle diameter of 0.5 μm or more is more than 0% and 20% or less, The average interval of the next α phase is assumed to be 100 to 200 nm.

かかる構成のチタン合金鍛造材は、β相中にα相が特定の存在様式で存在するものであり、強度、延性とその均質性に優れたものとなっている。   The titanium alloy forged material having such a structure is one in which the α phase is present in a specific manner in the β phase, and is excellent in strength, ductility, and homogeneity thereof.

また、本発明に係るチタン合金鍛造材は、前記チタン合金が、V:9.0〜11.0質量%、Al:2.6〜3.4質量%、Fe:1.6〜2.22質量%を含有し、残部はTiおよび不可避的不純物であることが好ましい。かかる構成のチタン合金鍛造材は、強度、延性に優れたものである。   In the titanium alloy forging according to the present invention, the titanium alloy contains V: 9.0 to 11.0% by mass, Al: 2.6 to 3.4% by mass, Fe: 1.6 to 2.22. It is preferable that it contains mass% and the balance is Ti and inevitable impurities. The titanium alloy forged material having such a structure is excellent in strength and ductility.

本発明に係るチタン合金鍛造材であれば、強度、延性に優れ、機械的強度の均質性に優れている。   The titanium alloy forged material according to the present invention has excellent strength and ductility, and excellent mechanical strength homogeneity.

二次α相の平均間隔を算出する方法を示す模式図である。It is a schematic diagram which shows the method of calculating the average space | interval of a secondary alpha phase.

以下、本発明の実施の形態について詳細に説明する。
〔チタン合金鍛造材〕
本発明に係るチタン合金鍛造材は、航空機用部品等に用いられ得るチタン合金鍛造材であって、鍛造や熱処理によって金属組織を制御することで、高強度、高延性でかつ均質な機械的特性を有する構成としている。
Hereinafter, embodiments of the present invention will be described in detail.
[Titanium alloy forging]
The titanium alloy forging according to the present invention is a titanium alloy forging that can be used for aircraft parts and the like, and has high strength, high ductility and homogeneous mechanical properties by controlling the metal structure by forging or heat treatment. It has composition which has.

本発明に係るチタン合金鍛造材は、元素Xの含有量(質量%)を[X]としたときに、下式(1)で表されるMo(モリブデン)当量[Mo]eqが10以上13未満であるチタン合金からなるチタン合金鍛造材である。
[Mo]eq=[Mo]+[Ta]/5+[Nb]/3.6+[W]/2.5+[V]/1.5+1.25[Cr]+1.25[Ni]+1.7[Mn]+1.7[Co]+2.5[Fe]・・・(1)
Mo当量は、チタン合金の各相の安定性を示す指標として、一般的に使用されているものである。Mo当量の詳細については、G. Lutjering & J. C. Williams, "Titanium", Second Edition, Springer-Verlag, Berlin, 2010, p30または古原、牧, 金属, vol.66(1996), No.4, p289 等において説明がなされている。
Mo当量は、強度を確保するために10以上の値は必要であり、より好ましくは10.5以上である。一方、熱間鍛造性や延性を良好なものとするために13未満に制御することが必要であり、より好ましくは12.5以下である。
In the titanium alloy forging according to the present invention, when the content (mass%) of the element X is [X], the Mo (molybdenum) equivalent [Mo] eq represented by the following formula (1) is 10 or more and 13 It is a titanium alloy forging material made of a titanium alloy that is less than.
[Mo] eq = [Mo] + [Ta] / 5 + [Nb] /3.6+ [W] /2.5+ [V] /1.5+1.25 [Cr] +1.25 [Ni] +1.7 [ Mn] +1.7 [Co] +2.5 [Fe] (1)
Mo equivalent is generally used as an index indicating the stability of each phase of the titanium alloy. For details of Mo equivalent, see G. Lutjering & JC Williams, "Titanium", Second Edition, Springer-Verlag, Berlin, 2010, p30 or Furuhara, Maki, Metal, vol.66 (1996), No.4, p289, etc. Is explained.
The Mo equivalent must have a value of 10 or more, more preferably 10.5 or more, in order to ensure strength. On the other hand, in order to make hot forgeability and ductility favorable, it is necessary to control to less than 13, More preferably, it is 12.5 or less.

〔チタン合金〕
上記のMo当量の規定を満足するチタン合金として、AMS4984に定められたTi-10V-2Fe-3Al合金がある。Ti-10V-2Fe-3Al合金の合金組成は、V:9.0〜11.0質量%、Al:2.6〜3.4質量%、Fe:1.6〜2.22質量%を含有し、残部はTiおよび不可避的不純物である。不可避的不純物としては、例えば、C:0.05質量%以下、N:0.05質量%以下、O:0.13質量%以下、H:0.015質量%以下、Y:0.005質量%以下を含有する。ここで、Mo当量は、式(1)中でTi-10V-2Fe-3Al合金が含有しない元素については、含有量0として計算される。
[Titanium alloy]
There is a Ti-10V-2Fe-3Al alloy defined in AMS4984 as a titanium alloy satisfying the above-mentioned definition of Mo equivalent. The alloy composition of Ti-10V-2Fe-3Al alloy contains V: 9.0 to 11.0 mass%, Al: 2.6 to 3.4 mass%, Fe: 1.6 to 2.22 mass% The balance is Ti and inevitable impurities. As unavoidable impurities, for example, C: 0.05 mass% or less, N: 0.05 mass% or less, O: 0.13 mass% or less, H: 0.015 mass% or less, Y: 0.005 mass % Or less. Here, the Mo equivalent is calculated as a content of 0 for an element not contained in the Ti-10V-2Fe-3Al alloy in the formula (1).

Ti-10V-2Fe-3Al合金の場合、β相の固溶強化やβ相を安定化させるために、V:9.0質量%以上、Fe:1.6質量%以上が必要であり、α相の固溶強化やα相を安定化させるためにAl:2.6質量%以上が必要である。また、過剰な添加は熱間鍛造性や延性を損なう恐れがあるため、V:11.0質量%以下、Al:3.4質量%以下、Fe:2.22質量%以下に制御する。また、不可避不純物が増えると素材が脆化する恐れがあるため、上述の通り上限値以下に制御する。   In the case of Ti-10V-2Fe-3Al alloy, V: 9.0% by mass or more and Fe: 1.6% by mass or more are necessary for solid solution strengthening of β phase and stabilization of β phase. In order to strengthen the solid solution strengthening of the phase and stabilize the α phase, Al: 2.6% by mass or more is necessary. Moreover, since excessive addition may impair hot forgeability and ductility, it controls to V: 11.0 mass% or less, Al: 3.4 mass% or less, and Fe: 2.22 mass% or less. In addition, if the inevitable impurities increase, the material may become brittle, so the upper limit is controlled as described above.

Mo当量が10以上13未満であるチタン合金としては、その他に、Ti-5Al-5V-5Mo-3Cr合金等を例示することができる。   Other examples of the titanium alloy having an Mo equivalent of 10 or more and less than 13 include Ti-5Al-5V-5Mo-3Cr alloy.

〔金属組織〕
チタン合金の金属組織は、一般にα相及びβ相からなり、更にα相は一次α相と二次α相に分類される。本発明のチタン合金鍛造材の金属組織は、粒径5μm以上で、アスペクト比2以上の一次α相の面積率が1%以下であり、粒径0.5μm以上の一次α相の面積率が0%を超えて20%以下であり、二次α相の平均間隔が100〜200nmであることを特徴とする。以下、各特性について順次説明する。
[Metal structure]
The metal structure of the titanium alloy is generally composed of an α phase and a β phase, and the α phase is further classified into a primary α phase and a secondary α phase. The metal structure of the forged titanium alloy of the present invention has a particle size of 5 μm or more, an area ratio of primary α phase of 2 or more in aspect ratio of 1% or less, and an area ratio of primary α phase of particle diameter of 0.5 μm or more. It is more than 0% and not more than 20%, and the average interval between secondary α phases is 100 to 200 nm. Hereinafter, each characteristic will be sequentially described.

本発明のチタン合金鍛造材の金属組織は、実質的にα相およびβ相からなる。α相は、一次α相と二次α相からなる。二次α相とは、時効工程において析出してくるα相のことであり、一次α相とは、二次α相以外のα相のことである。α相およびβ相以外の組織としては、炭化物や介在物等を微量含有することがある。   The metal structure of the titanium alloy forged material of the present invention substantially consists of an α phase and a β phase. The α phase is composed of a primary α phase and a secondary α phase. The secondary α phase is an α phase precipitated in the aging process, and the primary α phase is an α phase other than the secondary α phase. The structure other than the α phase and the β phase may contain a small amount of carbides, inclusions, and the like.

チタン合金の金属組織は、粒径5μm以上で、アスペクト比2以上である一次α相(以下、「粗大α相」と記載することがある。)の面積率が1%を超えて存在すると、伸びが低下したり、伸びの数値がばらつくことがある。これは、α相の粒径が粗大で、更にアスペクト比が大きい場合には、一次α相に歪みが集中しやすく、延性が低下し易くなるためと考えられる。そのため、本発明のチタン合金鍛造材の金属組織は、粗大α相の面積率を1%以下に制御する。粗大α相の面積率は好ましくは0.9%以下である。なお、ここで、粗大α相とは、一次α相のみを対象としており、二次α相は対象としていない。粗大α相の面積率は、光学顕微鏡写真を画像解析することによって測定することができる。粗大α相の面積率を1%以下に制御する方法として、鍛造を所定の条件で行う方法があるが、詳細は後記する。   When the area ratio of the primary α phase (hereinafter sometimes referred to as “coarse α phase”) having a particle size of 5 μm or more and an aspect ratio of 2 or more is present in a titanium alloy metal structure exceeding 1%, The elongation may decrease or the numerical value of the elongation may vary. This is presumably because when the α phase particle size is coarse and the aspect ratio is large, strain tends to concentrate on the primary α phase and ductility tends to decrease. Therefore, the metal structure of the forged titanium alloy of the present invention controls the area ratio of the coarse α phase to 1% or less. The area ratio of the coarse α phase is preferably 0.9% or less. Here, the coarse α phase is intended only for the primary α phase and not the secondary α phase. The area ratio of the coarse α phase can be measured by image analysis of an optical micrograph. As a method of controlling the area ratio of the coarse α phase to 1% or less, there is a method of performing forging under predetermined conditions, details of which will be described later.

チタン合金の金属組織は、粒径0.5μm以上の一次α相の面積率が20%以下であると、延性を確保しつつ強度を高めることができる。延性を確保する上で一次α相は一定量必要であるが、面積率で20%を超えて含有すると強度が低下する。また、α相が0%の場合は延性を確保することが困難となる。そのため、本発明のチタン合金鍛造材の金属組織は、粒径0.5μm以上の一次α相の面積率を0%を超えて20%以下に制御する。粒径0.5μm以上の一次α相の面積率は好ましくは3%以上で、15%未満であり、より好ましくは10%未満である。一次α相の面積率は、光学顕微鏡写真を画像解析することによって測定することができる。一次α相の面積率を制御する方法として、溶体化処理の温度を所定の条件で行う方法があるが、詳細は後記する。また、粒径0.5μm以上の一次α相の面積率には、粒径5μm以上で、アスペクト比が2以上の一次α相についてもカウントされ、かつ、アスペクト比に関わりなく粒径5μmの一次α相がカウントされている。   When the area ratio of the primary α phase of the titanium alloy having a particle size of 0.5 μm or more is 20% or less, the strength can be increased while ensuring ductility. In order to ensure ductility, a certain amount of the primary α phase is necessary, but if the area ratio exceeds 20%, the strength is lowered. Further, when the α phase is 0%, it is difficult to ensure ductility. Therefore, the metal structure of the titanium alloy forged material of the present invention controls the area ratio of the primary α phase having a particle size of 0.5 μm or more to more than 0% and 20% or less. The area ratio of the primary α phase having a particle size of 0.5 μm or more is preferably 3% or more, less than 15%, and more preferably less than 10%. The area ratio of the primary α phase can be measured by image analysis of an optical micrograph. As a method for controlling the area ratio of the primary α phase, there is a method in which the temperature of the solution treatment is performed under a predetermined condition, details of which will be described later. The area ratio of the primary α phase with a particle size of 0.5 μm or more is counted for the primary α phase with a particle size of 5 μm or more and an aspect ratio of 2 or more, and the primary particle size of 5 μm is independent of the aspect ratio. α phase is counted.

チタン合金の金属組織は、二次α相の平均間隔を200nm以下であると、延性を確保しつつ強度を高めることができる。一方、二次α相の平均間隔が100nm未満と小さい場合は素材が脆化する懸念がある。そのため、本発明のチタン合金鍛造材の金属組織は、二次α相の平均間隔を100〜200nmに制御する。二次α相の平均間隔は好ましくは110〜190nmである。二次α相の平均間隔は、SEM写真を参照して後記するように算出することができる。二次α相の平均間隔を制御する方法として、溶体化処理後の冷却速度と時効処理温度を所定の条件で行う方法があるが、詳細は後記する。   When the average microstructure of the secondary α phase is 200 nm or less, the metal structure of the titanium alloy can increase the strength while ensuring ductility. On the other hand, when the average interval of the secondary α phase is as small as less than 100 nm, there is a concern that the material becomes brittle. Therefore, the metal structure of the titanium alloy forged material of the present invention controls the average interval of the secondary α phase to 100 to 200 nm. The average interval between secondary α phases is preferably 110 to 190 nm. The average interval between secondary α phases can be calculated as described later with reference to SEM photographs. As a method for controlling the average interval of the secondary α phase, there is a method in which the cooling rate after the solution treatment and the aging treatment temperature are performed under predetermined conditions, details of which will be described later.

〔チタン合金鍛造材の製造方法〕
上記の金属組織を有するチタン合金鍛造材は、以下に記載するチタン合金鍛造材の製造方法を適用することによって、製造することが可能である。本発明のチタン合金鍛造材の製造方法は、鍛造工程、溶体化工程、時効工程の各工程において、以下に記載する特定の加工条件で加工を行うことを特徴としている。
[Production method of titanium alloy forging]
The titanium alloy forging material having the above-described metal structure can be manufactured by applying the method for manufacturing a titanium alloy forging material described below. The method for producing a titanium alloy forged material of the present invention is characterized in that processing is performed under the specific processing conditions described below in each of the forging step, the solution treatment step, and the aging step.

本発明に係るチタン合金鍛造材は、前記組成のチタン合金からなるインゴットを下記の条件でビレットに鍛造し、溶体化処理、時効処理を行って所望の製品形状に製造される。尚、下記に記載した製造条件以外の製造工程、製造条件については、公知の条件を適宜適用して行うことによって、チタン合金鍛造材を得ることができる。   The titanium alloy forged material according to the present invention is manufactured into a desired product shape by forging an ingot made of a titanium alloy having the above composition into a billet under the following conditions, followed by solution treatment and aging treatment. In addition, about a manufacturing process and manufacturing conditions other than the manufacturing conditions described below, a titanium alloy forging material can be obtained by performing well-known conditions suitably.

(鍛造工程)
鍛造工程では、β変態域に加熱して鍛造を行い、鍛造材としての形状を整える。その後、α+β温度域に加熱して、α+β域での相当歪量が累積で2〜10となるように鍛造する(以下、累積された相当歪量を「累積歪量ε」と記載する。)。累積歪量εを2以上へ増やすことによって、粗大α相の面積率を1%以下に低減させることができる。なお、累積歪量εを高くするためには、複数回に分けて加熱と鍛造を繰返せばよい。累積歪量εは10を超えてもよいが、効果が飽和するため2〜10とする。累積歪量εは好ましくは、3〜9である。累積歪量εを2とするためには、たとえば、一軸圧縮で、均一変形を仮定した場合、圧下率(加工度)は約86%とすればよい。同様に、累積歪量εを10とするためには、ほぼ100%の圧下率とすれば良い。ここで、累積歪量εの計算は、ε=ln(t0/t)、to:圧縮前の試験片高さ、t:圧縮後の試験片高さ、として行った。
(Forging process)
In the forging process, forging is performed by heating to the β transformation region, and the shape as a forging material is adjusted. Thereafter, the steel is heated to the α + β temperature region and forged so that the equivalent strain amount in the α + β region becomes 2 to 10 (hereinafter, the accumulated equivalent strain amount is referred to as “accumulated strain amount ε”). . By increasing the cumulative strain amount ε to 2 or more, the area ratio of the coarse α phase can be reduced to 1% or less. In order to increase the cumulative strain amount ε, heating and forging may be repeated in a plurality of times. The cumulative strain amount ε may exceed 10, but is set to 2 to 10 because the effect is saturated. The cumulative strain amount ε is preferably 3 to 9. In order to set the cumulative strain amount ε to 2, for example, when uniform deformation is assumed by uniaxial compression, the rolling reduction (working degree) may be about 86%. Similarly, in order to set the cumulative strain amount ε to 10, the reduction rate may be approximately 100%. Here, the cumulative strain amount ε was calculated as ε = ln (t0 / t), to: test piece height before compression, and t: test piece height after compression.

一方で、加熱時間が増えると逆に、粗大α相の面積率が増えるため、トータルの累積加熱時間(700℃以上での保持時間)は90hr以下に制御する。累積加熱時間は好ましくは80hr以下である。このように、累積歪量εはできるだけ大きくし、かつ累積加熱時間はできるだけ小さくするという条件にて鍛造を行うこと、すなわち、累積加熱時間を短くしつつ、累積歪量εを増大させることが、粗大α相の面積率を1%以下に抑制して、チタン合金鍛造材としての伸びを確保する上で肝要である。   On the other hand, since the area ratio of the coarse α phase increases as the heating time increases, the total cumulative heating time (holding time at 700 ° C. or higher) is controlled to 90 hours or shorter. The cumulative heating time is preferably 80 hr or less. Thus, forging under the condition that the cumulative strain amount ε is as large as possible and the cumulative heating time is as small as possible, that is, while increasing the cumulative strain amount ε while shortening the cumulative heating time, It is important to suppress the area ratio of the coarse α phase to 1% or less and ensure the elongation as a titanium alloy forged material.

ここで、相当歪量は、相当塑性ひずみ量ともいう。試験片採取位置におけるα+β域での相当歪量を市販のFEM解析ソフト(例えば、TRANSVALOR社製解析ソフト「FORGE」)を用いて解析することによって測定することができる。また、累積歪量εについても同様に、鍛造を複数回行った際の累積された相当塑性ひずみ量を、市販のFEM解析ソフトを用いて解析することによって測定することができる。   Here, the equivalent strain amount is also referred to as an equivalent plastic strain amount. The amount of equivalent strain in the α + β region at the specimen collection position can be measured by analysis using commercially available FEM analysis software (for example, analysis software “FORGE” manufactured by TRANSVALOR). Similarly, the accumulated strain amount ε can be measured by analyzing the accumulated equivalent plastic strain amount when forging is performed a plurality of times using commercially available FEM analysis software.

(溶体化工程)
鍛造後、(Tβ−60)℃〜(Tβ−10)℃の温度範囲に加熱保持して溶体化処理を行う。ここで、Tβはβ変態点である。所定温度に保持後に、冷却速度を0.5℃/sec〜20℃/secに制御して冷却する。溶体化処理の保持時間は、0.5〜5時間である。
(Solution process)
After forging, a solution treatment is performed by heating and holding in a temperature range of (Tβ-60) ° C. to (Tβ-10) ° C. Here, Tβ is a β transformation point. After maintaining at a predetermined temperature, cooling is performed by controlling the cooling rate to 0.5 ° C./sec to 20 ° C./sec. The holding time of the solution treatment is 0.5 to 5 hours.

加熱温度を(Tβ−60)℃〜(Tβ−10)℃の温度範囲に保持することで、粒径0.5μm以上の一次α相の面積率を適切に制御することができる。すなわち、粒径0.5μm以上の一次α相が消失すること(面積率0%)を防ぐために、加熱温度は(Tβ−10)℃以下とする。また、粒径0.5μm以上の一次α相の面積率を20%以下とするために、加熱温度は(Tβ−60)℃以上とする。加熱時間は好ましくは1.5〜4時間である。また、加熱保持後の冷却速度を0.5℃/sec〜20℃/secに管理する。さらに、溶体化処理の温度をT(℃)、処理時間をt(分)としたときに、熱処理パラメータT×logtは、1400未満とすることが好ましい。   By maintaining the heating temperature in the temperature range of (Tβ-60) ° C. to (Tβ-10) ° C., the area ratio of the primary α phase having a particle size of 0.5 μm or more can be appropriately controlled. That is, in order to prevent the disappearance of the primary α phase having a particle size of 0.5 μm or more (area ratio 0%), the heating temperature is set to (Tβ−10) ° C. or lower. Further, in order to set the area ratio of the primary α phase having a particle size of 0.5 μm or more to 20% or less, the heating temperature is set to (Tβ-60) ° C. or more. The heating time is preferably 1.5 to 4 hours. Moreover, the cooling rate after heating and holding is controlled to 0.5 ° C./sec to 20 ° C./sec. Furthermore, when the temperature of the solution treatment is T (° C.) and the treatment time is t (minutes), the heat treatment parameter T × logt is preferably less than 1400.

(時効工程)
溶体化工程の冷却後に、480℃〜520℃の温度範囲で加熱保持することによって、時効処理を行う。時効処理温度は、好ましくは485〜515℃である。時効処理の保持時間は、4〜12時間である。
(Aging process)
After cooling in the solution treatment step, aging treatment is performed by heating and holding in a temperature range of 480 ° C to 520 ° C. The aging treatment temperature is preferably 485 to 515 ° C. The holding time of the aging treatment is 4 to 12 hours.

溶体化工程における加熱保持後の冷却速度と、時効工程における480℃〜520℃の温度範囲での加熱保持とを共に適切に行うことによって、二次α相の平均間隔を適切な間隔に制御することができる。すなわち、溶体化処理後の冷却速度が20℃/secよりも速い場合や時効処理温度が480℃未満の場合は、二次α相の平均間隔が100nm未満となりやすい。一方、溶体化処理後の冷却速度が0.5℃/secよりも遅い場合や時効処理温度が520℃を超える場合は、二次α相の平均間隔が200nmを超えやすい。   By appropriately performing both the cooling rate after heating and holding in the solution treatment step and the heating and holding in the temperature range of 480 ° C. to 520 ° C. in the aging step, the average interval of the secondary α phase is controlled to an appropriate interval. be able to. That is, when the cooling rate after solution treatment is higher than 20 ° C./sec or when the aging treatment temperature is less than 480 ° C., the average interval between secondary α phases tends to be less than 100 nm. On the other hand, when the cooling rate after solution treatment is slower than 0.5 ° C./sec or when the aging treatment temperature exceeds 520 ° C., the average interval between secondary α phases tends to exceed 200 nm.

以下に、本発明の効果を確認した実施例を、本発明の要件を満たさない比較例と対比して具体的に説明する。なお、本発明は以下の実施例に限定されるものではない。   Examples in which the effects of the present invention have been confirmed will be specifically described below in comparison with comparative examples that do not satisfy the requirements of the present invention. In addition, this invention is not limited to a following example.

〔試験材の作製〕
AMS4984で規定されるTi-10V-2Fe-3Al合金(Tβ:810℃、Mo当量11.7)からなるビレットを用いて、β変態点の810℃以上の温度で鍛造後に、表1に記載の各条件で、α+β域での仕上げ鍛造を想定した加熱保持及び熱間加工を行った。表1には、α+β域での仕上げ鍛造における加熱温度、累積歪量εおよび累積加熱時間を示した。
[Production of test materials]
Using a billet made of a Ti-10V-2Fe-3Al alloy (Tβ: 810 ° C., Mo equivalent of 11.7) defined by AMS 4984, after forging at a temperature of 810 ° C. or higher of the β transformation point, listed in Table 1 Under each condition, heating holding and hot working assuming finish forging in the α + β region were performed. Table 1 shows the heating temperature, cumulative strain amount ε, and cumulative heating time in finish forging in the α + β region.

鍛造後の素材を使って、溶体化処理および時効処理を表1に記載の条件で行った。溶体化処理の昇温速度は約0.2℃/secとした。溶体化の加熱保持後は、冷却方法(水冷、風冷、空冷)や試験片採取位置を調整することで冷却速度を表1の通りに変化させた。冷却速度は、試験片採取位置と同じ深さとなる位置に熱電対を挿入して測定した。一方、時効処理では所定温度に加熱保持後、全て空冷にて室温まで冷却した。溶体化熱処理や時効処理の時間は、表に記載の加熱温度の炉に入れてからの時間とした。   Using the forged material, solution treatment and aging treatment were performed under the conditions shown in Table 1. The temperature increase rate of the solution treatment was about 0.2 ° C./sec. After heating and holding the solution, the cooling rate was changed as shown in Table 1 by adjusting the cooling method (water cooling, air cooling, air cooling) and the specimen collection position. The cooling rate was measured by inserting a thermocouple at the same depth as the specimen collection position. On the other hand, in the aging treatment, after heating and holding at a predetermined temperature, all were cooled to room temperature by air cooling. The time for solution heat treatment and aging treatment was the time after placing in the furnace at the heating temperature shown in the table.

Figure 2017002390
Figure 2017002390

〔試験材の評価〕
得られた試験材について、以下に記載する評価条件によって、各種物性を測定・評価した。
(引張試験)
鍛伸方向と引張試験片の荷重軸方向が平行になるよう、試験片を採取した。試験片は、1条件あたり4本採取した。この際、各試験片位置における歪み量や冷却速度が4本とも同等になるようにするため、鍛造材表面から試験片採取位置までの距離が等価となる位置から各試験片を採取した。試験片サイズはASTM E8のSpecimen2とした。試験結果から、0.2%耐力が1050MPa超、伸びが10%超、伸びの標準偏差が1.5以下であるものを合格とした。
[Evaluation of test material]
About the obtained test material, various physical properties were measured and evaluated under the evaluation conditions described below.
(Tensile test)
The test piece was collected so that the forging direction and the load axis direction of the tensile test piece were parallel. Four test pieces were collected per condition. At this time, each test piece was sampled from a position where the distance from the forged material surface to the test piece sampling position was equivalent in order to equalize the strain amount and the cooling rate at the four test piece positions. The specimen size was ASTM E8 Specimen2. From the test results, a sample having a 0.2% proof stress exceeding 1050 MPa, an elongation exceeding 10%, and an elongation standard deviation of 1.5 or less was regarded as acceptable.

(組織観察)
(1)二次α相の平均間隔
鍛造材のL方向(光学顕微鏡で観察した際にβ結晶粒の伸張方向で判別できる)に平行な断面が観察できるように、引張試験片採取位置のすぐ隣の場所から組織観察用のブロックを切出した。樹脂包埋、研磨および腐食(フッ硝酸溶液)を実施しSEM観察用サンプルとした。その後、倍率400倍で観察し、円相当径で0.5μm以上に判別される粒を一次α相とし、0.5μm未満の領域はそれ以外の二次α相やβ相などの領域とした。β相と二次α相のみが含まれる領域(一次α相を含まない領域)においてFE-SEM(電界放射型走査電子顕微鏡)(日立製作所社製、SU-70)を用いた拡大写真(倍率3万倍)を1条件あたり5枚取得した。写真を元に、水平方向及び垂直方向に写真の端から端まで線分を各5本、等間隔に引き、線分が二次α相と交わる点をカウントした。その後、(線分長さの合算)÷(カウント数の総数)から、二次α相の平均間隔を算出した。図1に二次α相の平均間隔を算出する方法を示す模式図を示した。線分lと二次α相Pとの交点X1〜X5をカウントした。なお、図1においては、5本引いた線分のうちの1本についての状態を示している。
(Tissue observation)
(1) Average interval between secondary α phases Immediately after the tensile specimen is collected so that a cross-section parallel to the L direction of the forged material (which can be identified by the direction of β crystal grain extension when observed with an optical microscope) can be observed. A block for tissue observation was cut out from the adjacent location. Resin embedding, polishing, and corrosion (fluoric nitric acid solution) were performed to obtain a sample for SEM observation. Thereafter, observation was performed at a magnification of 400 times, and the grains determined to have an equivalent circle diameter of 0.5 μm or more were defined as the primary α phase, and the regions of less than 0.5 μm were defined as other regions such as the secondary α phase and β phase. Magnified photograph (magnification) using FE-SEM (Field Emission Scanning Electron Microscope) (Hitachi, Ltd., SU-70) in the region containing only β phase and secondary α phase (region not including primary α phase) 30,000 times) was obtained per condition. Based on the photograph, five line segments were drawn at equal intervals from the end of the photograph in the horizontal and vertical directions, and the points where the line segments intersected the secondary α phase were counted. Thereafter, the average interval of the secondary α phase was calculated from (total length of line segments) ÷ (total number of counts). FIG. 1 is a schematic diagram showing a method for calculating the average interval between secondary α phases. The intersection points X1 to X5 between the line segment 1 and the secondary α phase P were counted. In addition, in FIG. 1, the state about one of the line segments drawn five is shown.

なお、測定の際、まれに極端に微細なα相や極端に微細なβ相の領域が存在する場合があるが、画像解析ソフトにて円相当径が5nm以上とカウントされるα相・β相をカウント対象とした。ここで、円相当径の算出にあたっては、図1の交点X4、X5を通る二次α相のような場合、二次α相の中に含まれるβ相(白色)の領域は円相当径を算出する際の計算対象としていない(つまり黒色の領域のみの面積から円相当径を求めた。)   In rare cases, there may be an extremely fine α phase or an extremely fine β phase region at the time of measurement. However, the α phase / β whose equivalent circle diameter is counted as 5 nm or more by image analysis software. Phases were counted. Here, in calculating the equivalent circle diameter, in the case of a secondary α phase passing through the intersections X4 and X5 in FIG. 1, the region of the β phase (white) included in the secondary α phase has an equivalent circle diameter. Not calculated (ie, the equivalent circle diameter was determined from the area of the black region only)

(2)粗大α相の面積率の測定
前記鍛造材試料について、光学顕微鏡(OLYMPUS社製、GX71)観察を実施した。観察では、倍率400倍にて、各条件、ランダムに10枚写真を撮影した。その後10枚の写真に含まれる各一次α相の粒径やアスペクト比を画像解析(画像解析ソフトウェア;日本ローパー社製、Image-Pro Plus)により求めた。なお、一次α相は鍛造や熱処理によって徐々にくびれ(凹み)が生じ更には分断されていくが、くびれが生じていても互いに重なっている一次α相については一つの一次α相としてカウントした。前記した画像解析により粒径5μm以上でアスペクト比2以上の一次α相の面積率が1%以下であるか否かを測定した。
(2) Measurement of area ratio of coarse α phase The forged material sample was observed with an optical microscope (OLYMPUS, GX71). In the observation, 10 photographs were taken at random with 400 times magnification under each condition. Thereafter, the particle size and aspect ratio of each primary α phase contained in 10 photographs were determined by image analysis (image analysis software; Image-Pro Plus, manufactured by Nippon Roper). The primary α phase is gradually constricted (dented) and further divided by forging and heat treatment, but the primary α phases that overlap each other even if constricted are counted as one primary α phase. Whether or not the area ratio of the primary α phase having a particle diameter of 5 μm or more and an aspect ratio of 2 or more was 1% or less was determined by the image analysis described above.

(3)一次α相の面積率の測定
前記400倍の光学顕微鏡写真について、一次α相の面積率を画像解析(画像解析ソフトウェア;日本ローパー社製、Image-Pro Plus)により求めた。なお、一次α相は円相当径が0.5μm以上のものを対象とした。前記した画像解析により粒径0.5μm以上の一次α相の面積率が0%を越えて20%以下であるか否かを測定した。
このように、一次α相は、倍率400倍の光学顕微鏡写真にて、円相当径が0.5μm以上のものである。
(3) Measurement of area ratio of primary α-phase The area ratio of the primary α-phase was determined by image analysis (image analysis software; Image-Pro Plus, manufactured by Nippon Roper Co., Ltd.) for the 400 × optical micrograph. The primary α phase was targeted for those with an equivalent circle diameter of 0.5 μm or more. Whether or not the area ratio of the primary α phase having a particle diameter of 0.5 μm or more exceeds 0% and is 20% or less was determined by the image analysis described above.
As described above, the primary α phase has an equivalent circle diameter of 0.5 μm or more in an optical micrograph at a magnification of 400 times.

実際の鍛造材製品では、鍛造品の最も厚みのある場所(すなわち、最大内接円が描かれる場所)において、内接円の表層側(試験片の最表層から10mm〜20mm深さの位置)と中心部とを評価し、共に本発明の規定を満たすことが必要である。すなわち、最大内接円の表層側から中心にかけて、機械的特性や材料組織がばらつくことがあるため、その表層側と中心部とを評価して、判断する。
評価結果を表2に示した。
In an actual forging product, at the thickest place of the forged product (that is, the place where the maximum inscribed circle is drawn), the surface layer side of the inscribed circle (position 10mm to 20mm deep from the outermost layer of the test piece) And the central part must be evaluated and both must satisfy the provisions of the present invention. That is, since the mechanical characteristics and material structure may vary from the surface layer side to the center of the maximum inscribed circle, the surface layer side and the center part are evaluated and judged.
The evaluation results are shown in Table 2.

Figure 2017002390
Figure 2017002390

試験材No.1〜2、8〜10は、いずれも本発明のMo当量を満足し、前記の製造条件を用いて製造されたものである。本発明の規定を満足するものであり、強度、延性、機械的強度の均質性において優れたものであった。
試験材No.3は、α+β域での鍛造工程において、累積歪量が0.3と小さいため、粗大α相の面積率が1%を超えたものとなり、伸びが低減し、伸びの標準偏差も大きなものとなった。
試験材No.4は、α+β域での鍛造工程において、累積歪量が0.3と小さく、累積加熱時間も90hrを超えて大きいため、粗大α相の面積率が試験材No.3よりもさらに大きくなり、伸びが低減し、伸びの標準偏差もさらに大きなものとなった。
Test material No. 1-2 and 8-10 satisfy the Mo equivalent of the present invention, and are produced using the production conditions described above. This satisfied the provisions of the present invention, and was excellent in strength, ductility, and homogeneity of mechanical strength.
Test material No. In No. 3, the cumulative strain amount is as small as 0.3 in the forging process in the α + β region, so that the area ratio of the coarse α phase exceeds 1%, the elongation is reduced, and the standard deviation of the elongation is large. became.
Test material No. No. 4 in the forging process in the α + β region, the cumulative strain amount is as small as 0.3 and the cumulative heating time is longer than 90 hours. Even larger than 3, the elongation was reduced, and the standard deviation of the elongation was further increased.

試験材No.5は、溶体化処理における加熱温度が(Tβ−60)℃未満であるため、一次α相の面積率が20%を超え、0.2%耐力において劣るものとなった。
試験材No.6は、冷却速度が0.5℃/secよりも遅く、時効処理を520℃を超える温度で行ったため、二次α相の平均間隔が200nmを超え、0.2%耐力において劣るものとなった。
試験材No.7は、冷却速度が20℃/secよりも速く、時効処理を480℃未満の温度で行ったため、二次α相の平均間隔が100nm未満となり、伸びにおいて劣るものとなった。
Test material No. In No. 5, since the heating temperature in the solution treatment was less than (Tβ-60) ° C., the area ratio of the primary α phase exceeded 20% and the yield strength was inferior in 0.2%.
Test material No. In No. 6, the cooling rate was slower than 0.5 ° C./sec, and the aging treatment was performed at a temperature exceeding 520 ° C., so the average interval between the secondary α phases exceeded 200 nm, and the 0.2% yield strength was inferior. It was.
Test material No. In No. 7, since the cooling rate was faster than 20 ° C./sec and the aging treatment was performed at a temperature of less than 480 ° C., the average interval between the secondary α phases was less than 100 nm, and the elongation was inferior.

P 二次α相
X1、X2、X3、X4、X5 交点
l 線分
P Secondary α phase X1, X2, X3, X4, X5 Intersection l Line segment

Claims (2)

元素Xの含有量(質量%)を[X]としたときに、下式(1)で表されるMo当量[Mo]eqが10以上13未満であるチタン合金からなるチタン合金鍛造材であって、
[Mo]eq=[Mo]+[Ta]/5+[Nb]/3.6+[W]/2.5+[V]/1.5+1.25[Cr]+1.25[Ni]+1.7[Mn]+1.7[Co]+2.5[Fe]・・・(1)
粒径5μm以上で、アスペクト比2以上の一次α相の面積率が1%以下であり、
粒径0.5μm以上の一次α相の面積率が0%を超えて20%以下であり、
二次α相の平均間隔が100〜200nmであることを特徴とするチタン合金鍛造材。
When the content (mass%) of the element X is [X], it is a titanium alloy forging made of a titanium alloy having a Mo equivalent [Mo] eq represented by the following formula (1) of 10 or more and less than 13. And
[Mo] eq = [Mo] + [Ta] / 5 + [Nb] /3.6+ [W] /2.5+ [V] /1.5+1.25 [Cr] +1.25 [Ni] +1.7 [ Mn] +1.7 [Co] +2.5 [Fe] (1)
The area ratio of the primary α phase having a particle size of 5 μm or more and an aspect ratio of 2 or more is 1% or less,
The area ratio of the primary α phase having a particle size of 0.5 μm or more is more than 0% and 20% or less,
A titanium alloy forging material, wherein the average interval between secondary α phases is 100 to 200 nm.
前記チタン合金が、V:9.0〜11.0質量%、Al:2.6〜3.4質量%、Fe:1.6〜2.22質量%を含有し、残部はTiおよび不可避的不純物であることを特徴とする請求項1に記載のチタン合金鍛造材。   The titanium alloy contains V: 9.0 to 11.0% by mass, Al: 2.6 to 3.4% by mass, Fe: 1.6 to 2.22% by mass, the balance being Ti and inevitable The titanium alloy forging material according to claim 1, which is an impurity.
JP2015121156A 2015-06-16 2015-06-16 Titanium alloy forging material Pending JP2017002390A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015121156A JP2017002390A (en) 2015-06-16 2015-06-16 Titanium alloy forging material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015121156A JP2017002390A (en) 2015-06-16 2015-06-16 Titanium alloy forging material

Publications (1)

Publication Number Publication Date
JP2017002390A true JP2017002390A (en) 2017-01-05

Family

ID=57751463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015121156A Pending JP2017002390A (en) 2015-06-16 2015-06-16 Titanium alloy forging material

Country Status (1)

Country Link
JP (1) JP2017002390A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017218661A (en) * 2016-06-10 2017-12-14 株式会社神戸製鋼所 Titanium alloy forging material
JP2017218660A (en) * 2016-06-10 2017-12-14 株式会社神戸製鋼所 Titanium alloy forging material
CN109338158A (en) * 2018-12-24 2019-02-15 南通金源智能技术有限公司 3D printing titanium alloy powder and its atomization production

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02217452A (en) * 1989-02-17 1990-08-30 Sumitomo Metal Ind Ltd Method for toughening near beta-type titanium alloy
JPH03240939A (en) * 1990-02-19 1991-10-28 Sumitomo Metal Ind Ltd Manufacture of high ductility and high toughness titanium alloy
JPH07252617A (en) * 1994-03-11 1995-10-03 Sumitomo Metal Ind Ltd Production of titanium alloy having high strength and high toughness
JPH08158028A (en) * 1994-12-07 1996-06-18 Sumitomo Metal Ind Ltd Toughening of titanium alloy
JP2002146499A (en) * 2000-11-09 2002-05-22 Nkk Corp Method for forging titanium alloy, forging stock, and forged article
JP2003013159A (en) * 2001-07-02 2003-01-15 Nkk Corp Fastener material of titanium alloy and manufacturing method therefor
WO2012115187A1 (en) * 2011-02-23 2012-08-30 独立行政法人物質・材料研究機構 Ti-mo alloy and method for producing same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02217452A (en) * 1989-02-17 1990-08-30 Sumitomo Metal Ind Ltd Method for toughening near beta-type titanium alloy
JPH03240939A (en) * 1990-02-19 1991-10-28 Sumitomo Metal Ind Ltd Manufacture of high ductility and high toughness titanium alloy
JPH07252617A (en) * 1994-03-11 1995-10-03 Sumitomo Metal Ind Ltd Production of titanium alloy having high strength and high toughness
JPH08158028A (en) * 1994-12-07 1996-06-18 Sumitomo Metal Ind Ltd Toughening of titanium alloy
JP2002146499A (en) * 2000-11-09 2002-05-22 Nkk Corp Method for forging titanium alloy, forging stock, and forged article
JP2003013159A (en) * 2001-07-02 2003-01-15 Nkk Corp Fastener material of titanium alloy and manufacturing method therefor
WO2012115187A1 (en) * 2011-02-23 2012-08-30 独立行政法人物質・材料研究機構 Ti-mo alloy and method for producing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017218661A (en) * 2016-06-10 2017-12-14 株式会社神戸製鋼所 Titanium alloy forging material
JP2017218660A (en) * 2016-06-10 2017-12-14 株式会社神戸製鋼所 Titanium alloy forging material
CN109338158A (en) * 2018-12-24 2019-02-15 南通金源智能技术有限公司 3D printing titanium alloy powder and its atomization production

Similar Documents

Publication Publication Date Title
JP5850859B2 (en) Production of high-strength titanium
JP7024861B2 (en) Titanium alloy wire rod and titanium alloy wire rod manufacturing method
JP6889418B2 (en) Manufacturing method of Ni-based super heat-resistant alloy and Ni-based super heat-resistant alloy
JP5592818B2 (en) Α-β type titanium alloy extruded material excellent in fatigue strength and method for producing the α-β type titanium alloy extruded material
JP4493029B2 (en) Α-β type titanium alloy with excellent machinability and hot workability
US10400311B2 (en) Wrought material comprising Cu—Al—Mn-based alloy excellent in stress corrosion resistance and use thereof
JP6823827B2 (en) Heat-resistant Ti alloy and its manufacturing method
US20210348252A1 (en) α+β type titanium alloy wire and manufacturing method of α+β type titanium alloy wire
JP5885169B2 (en) Ti-Mo alloy and manufacturing method thereof
IL212821A (en) Method for producing a component and components of a titanium-aluminum base alloy
CN106103757B (en) High-intensitive α/β titanium alloy
JP6540179B2 (en) Hot-worked titanium alloy bar and method of manufacturing the same
WO2018193810A1 (en) High strength and low thermal expansion alloy wire
KR101643838B1 (en) Resource-saving titanium alloy member having excellent strength and toughness, and method for manufacturing same
JP6696202B2 (en) α + β type titanium alloy member and manufacturing method thereof
WO2021182518A1 (en) METHOD FOR MANUFACTURING Fe-Co-BASED ALLOY ROD, AND Fe-Co-BASED ALLOY ROD
JP2010100943A (en) METHOD FOR PRODUCING alpha+beta TYPE TITANIUM ALLOY MEMBER HAVING TENSILE STRENGTH OF 1,000 MPA CLASS OR ABOVE
JP2007314834A (en) ALPHA PLUS BETA TITANIUM ALLOY MEMBER HAVING >=1,000 MPa GRADE TENSILE STRENGTH, AND ITS MANUFACTURING METHOD
JP2017002390A (en) Titanium alloy forging material
WO2020031579A1 (en) Method for producing ni-based super-heat-resisting alloy, and ni-based super-heat-resisting alloy
JP2017218661A (en) Titanium alloy forging material
JP6432328B2 (en) High strength titanium plate and manufacturing method thereof
JP6851147B2 (en) Titanium alloy forged material
JP2017002373A (en) Titanium alloy forging material
JP2017179478A (en) Austenitic heat resistant alloy member and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180724

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180913

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190205