JP2017145429A - α+β TYPE TITANIUM ALLOY MEMBER AND MANUFACTURING METHOD THEREFOR - Google Patents

α+β TYPE TITANIUM ALLOY MEMBER AND MANUFACTURING METHOD THEREFOR Download PDF

Info

Publication number
JP2017145429A
JP2017145429A JP2016025469A JP2016025469A JP2017145429A JP 2017145429 A JP2017145429 A JP 2017145429A JP 2016025469 A JP2016025469 A JP 2016025469A JP 2016025469 A JP2016025469 A JP 2016025469A JP 2017145429 A JP2017145429 A JP 2017145429A
Authority
JP
Japan
Prior art keywords
less
acicular
titanium alloy
grains
type titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016025469A
Other languages
Japanese (ja)
Other versions
JP6696202B2 (en
Inventor
吉紹 立澤
Yoshitsugu Tatsuzawa
吉紹 立澤
知徳 國枝
Tomonori Kunieda
知徳 國枝
一浩 ▲高▼橋
一浩 ▲高▼橋
Kazuhiro Takahashi
藤井 秀樹
Hideki Fujii
秀樹 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2016025469A priority Critical patent/JP6696202B2/en
Publication of JP2017145429A publication Critical patent/JP2017145429A/en
Application granted granted Critical
Publication of JP6696202B2 publication Critical patent/JP6696202B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide an α+β type titanium alloy member having room temperature strength equal to or more than that of a Ti-6Al-4V alloy and exhibiting super plasticity property at low temperature and high strain rate without using V which is an expensive additive element nor needs for complex thermomechanical treatments.SOLUTION: There is provided an α+β type titanium alloy member having a chemical composition of Al:4.4% or more and less than 5.5%, Fe:1.4% or more and less than 2.1%, Mo:1.5% or more and less than 5.5% and the balance:Ti with impurities, where Si:less than 0.1% and C:less than 0.01% and total amount of the impurities:less than 0.3%, a metallic structure including one or both of fine acicular structure with width in a short axis direction of acicular martensite particles and acicular α particles of average 3 μm or less and fine isometric structure with average particle diameter of isometric α particles of 5 μm. It is manufactured by cooling a raw material from a temperature range of the β transformation point or more at a cooling rate at the β transformation point of 50 to 100°C/sec.SELECTED DRAWING: Figure 1

Description

本発明はα+β型チタン合金部材およびその製造方法に関する。   The present invention relates to an α + β type titanium alloy member and a method for manufacturing the same.

チタン合金は、軽量かつ高強度であり、耐食性にも優れることから、様々な分野で活用されている。特に、最汎用合金であるTi−6Al−4V合金(6質量%Alおよび4質量%含有Ti合金)は、以前から航空宇宙分野で活用されており、近年では自動車分野などへも適用され始めている。   Titanium alloys are used in various fields because they are lightweight and have high strength and excellent corrosion resistance. In particular, Ti-6Al-4V alloy (6 mass% Al and 4 mass% containing Ti alloy), which is the most general-purpose alloy, has been used in the aerospace field for a long time, and has recently begun to be applied to the automotive field and the like. .

その一方で、Ti−6Al−4V合金などのチタン合金は、加工性や切削性に乏しく加工が難しいとともに複雑な形状を有する部品は削り出しにより製造せざるを得ないため、歩留りが低いことに起因して製造コストが高いという問題がある。   On the other hand, titanium alloys such as Ti-6Al-4V alloy are difficult to process due to poor workability and machinability, and parts having complicated shapes must be manufactured by machining, so that the yield is low. As a result, there is a problem that the manufacturing cost is high.

この問題を解決する方法の一つとして、相変態に起因する変態超塑性現象、または結晶粒が微細であることに起因する微細結晶粒(構造)超塑性現象を活用した超塑性加工法が知られる。   As one of the methods for solving this problem, there is known a superplastic processing method utilizing a transformation superplastic phenomenon caused by phase transformation or a fine grain (structure) superplasticity phenomenon caused by fine crystal grains. It is done.

超塑性とは、材料をある特定の条件下で加工した際に、低流動応力を維持したままネッキングを生じることなく、金属材料では数100〜数1000%に及ぶ破断伸びを示す性質である。超塑性加工法は、この性質を利用して複雑な形状を有する部品を精密に塑性加工する。   Superplasticity is a property of exhibiting elongation at break ranging from several hundreds to several thousand% in a metal material without causing necking while maintaining a low flow stress when the material is processed under a specific condition. The superplastic processing method uses this property to precisely plastically process parts having complicated shapes.

しかし、超塑性加工法によりTi−6Al−4V合金を加工するには、一般に約900℃以上の高温、および1×10−3−1以下の低歪速度の加工条件を選択する必要がある。このため、超塑性加工に用いる金型の寿命が短くなることや生産性が低いことなど、いまだに多くの問題がある。 However, in order to process a Ti-6Al-4V alloy by the superplastic processing method, it is generally necessary to select a processing condition of a high temperature of about 900 ° C. or higher and a low strain rate of 1 × 10 −3 s −1 or lower. . For this reason, there are still many problems such as shortening the life of the mold used for superplastic working and low productivity.

また、超塑性加工に供する素材は、5〜10μmの微細等軸組織を有する必要もあるが、Ti−6Al−4V合金ではこの微細等軸組織を得ることが難しいことも生産性を低下させる要因の一つになっている。   In addition, the material to be used for superplastic processing needs to have a fine equiaxed structure of 5 to 10 μm. However, it is difficult to obtain this fine equiaxed structure in the Ti-6Al-4V alloy. It has become one of

さらに、Ti−6Al−4V合金では、β相安定化元素として高価なVを用いており、材料コストが高いという問題もある。   Furthermore, the Ti-6Al-4V alloy uses expensive V as the β-phase stabilizing element, and there is a problem that the material cost is high.

特許文献1には、質量%で、Al:4.4%以上5.5%未満、Fe:1.4%以上2.1%未満、Mo:1.5%以上5.5%未満を含有し、不純物であるSi:0.1%未満およびC:0.01%未満、残部がTiおよび不純物からなる化学組成を有するチタン合金であって、Ti−6Al−4V合金と同等以上の室温強度、室温延性および疲労強度を有するとともに熱間加工性および冷間加工性に優れるα+β型チタン合金が開示されている。   Patent Document 1 contains, by mass%, Al: 4.4% or more and less than 5.5%, Fe: 1.4% or more and less than 2.1%, Mo: 1.5% or more and less than 5.5% And a titanium alloy having a chemical composition consisting of impurities Si: less than 0.1% and C: less than 0.01%, the balance being Ti and impurities, and a room temperature strength equal to or higher than that of a Ti-6Al-4V alloy Further, an α + β type titanium alloy having room temperature ductility and fatigue strength and excellent in hot workability and cold workability is disclosed.

特許文献2には、質量%で、Al:3.0%以上5.0%以下、V:2.1%以上3.7%以下、Mo:0.85%以上3.15%以下、O:0.15%以下、さらに、Fe、Ni、CoおよびCrのうちの1種または2種以上を含有し、かつ、0.85%≦Fe+Ni+Co+0.9×Cr≦3.15%、および、7%≦2×Fe+2×Ni+2×Co+1.8×Cr≦13%を満足し、残部Tiおよび不純物からなり、Ti−6Al−4V合金よりも低温で超塑性を発現する高強度チタン合金が開示されている。   In Patent Document 2, in mass%, Al: 3.0% to 5.0%, V: 2.1% to 3.7%, Mo: 0.85% to 3.15%, O : 0.15% or less, and further containing one or more of Fe, Ni, Co and Cr, and 0.85% ≦ Fe + Ni + Co + 0.9 × Cr ≦ 3.15% and 7 % ≦ 2 × Fe + 2 × Ni + 2 × Co + 1.8 × Cr ≦ 13% is disclosed, and a high-strength titanium alloy composed of the balance Ti and impurities and exhibiting superplasticity at a lower temperature than Ti-6Al-4V alloy is disclosed. Yes.

特開2005−320618号公報Japanese Patent Laying-Open No. 2005-320618 特開平3−274238号公報JP-A-3-274238

CAMP−ISIJ,Vol.26,(2013),1065頁CAMP-ISIJ, Vol. 26, (2013), page 1065. CAMP−ISIJ,Vol.26,(2013),440頁CAMP-ISIJ, Vol. 26, (2013), p. 440

特許文献1に開示された発明は、Ti−6Al−4V合金と同等以上の室温強度、室温延性および疲労強度を有するとともに熱間加工性および冷間加工性に優れるα+β型チタン合金を提供することを目的とするが、このα+β型チタン合金の超塑性に関する開示はない。   The invention disclosed in Patent Document 1 provides an α + β type titanium alloy having room temperature strength, room temperature ductility and fatigue strength equal to or better than those of a Ti-6Al-4V alloy and excellent in hot workability and cold workability. However, there is no disclosure regarding the superplasticity of this α + β type titanium alloy.

特許文献2により開示されたチタン合金は、Ti−6Al−4V合金と同様にβ相安定化元素として高価なVを2.1〜3.7質量%含有しており、材料コストが高い。また、このチタン合金を製造するには、超塑性特性を発現させるために、50%以上の圧下量で熱間加工を行った後に(β変態点−250℃)以上β変態点未満の温度で熱処理を行うという複雑な加工熱処理を行う必要があり、この点からも製造コストが嵩む。   The titanium alloy disclosed by patent document 2 contains 2.1-3.7 mass% of expensive V as a beta phase stabilization element like a Ti-6Al-4V alloy, and its material cost is high. In order to produce this titanium alloy, in order to express the superplastic properties, after hot working at a reduction amount of 50% or more (β transformation point−250 ° C.) at a temperature not lower than the β transformation point. It is necessary to perform a complicated heat treatment to perform heat treatment, and the manufacturing cost increases from this point.

本発明は、従来の技術が有するこのような課題に鑑みてなされたものであり、高価な元素であるVを使用せず、複雑な加工熱処理が不要で単純な熱処理や熱間加工などの加工熱処理により、Ti−6Al−4V合金と同等以上の室温強度を有し、かつ、比較的低温で高歪速度でもくびれを生じず、数100%以上の塑性伸びを得られる超塑性特性を発現可能なα+β型チタン合金部材とその製造方法を提供することを目的とする。   The present invention has been made in view of such problems of the prior art, and does not use V, which is an expensive element, and does not require complicated machining heat treatment, and can be carried out such as simple heat treatment and hot working. By heat treatment, it has room temperature strength equal to or better than that of Ti-6Al-4V alloy, and can exhibit superplastic properties that can produce plastic elongation of several hundred% or more without causing constriction even at a relatively low temperature and high strain rate. An object of the present invention is to provide an α + β type titanium alloy member and a method for producing the same.

本発明者らは、上記課題を解決するために鋭意検討を重ねた結果、
(A)特許文献1により開示された化学組成を有するチタン合金(代表組成:Ti−5Al−2Fe−3Mo合金)をβ変態点以上の温度域に加熱および保持した後に高速冷却すると、極めて微細な針状組織となり、この微細な針状組織は、一般に超塑性特性を発現する条件とされる微細等軸組織とは異なるにもかかわらず、その後の加工中に微細等軸組織に変化して超塑性特性を発現すること、および、
(B)このTi−5Al−2Fe−3Mo合金の超塑性特性は、Ti−6Al−4V合金よりも低温かつ高歪速度で発現すること
を知見し、これらの知見A,Bに基づいてさらに検討を重ねて、本発明を完成した。本発明は以下に列記の通りである。
As a result of intensive studies to solve the above problems, the present inventors have
(A) When a titanium alloy having a chemical composition disclosed in Patent Document 1 (representative composition: Ti-5Al-2Fe-3Mo alloy) is heated and held in a temperature range equal to or higher than the β transformation point and then cooled at a high speed, it is extremely fine. It becomes a needle-like structure, and this fine needle-like structure is different from a fine equiaxed structure, which is generally regarded as a condition for developing superplastic properties, but changes to a fine equiaxed structure during subsequent processing. Developing plastic properties; and
(B) It has been found that the superplastic properties of this Ti-5Al-2Fe-3Mo alloy are manifested at a lower temperature and higher strain rate than Ti-6Al-4V alloy, and further examination based on these findings A and B. As a result, the present invention was completed. The present invention is listed below.

(1)化学組成が、質量%で、Al:4.4%以上5.5%未満、Fe:1.4%以上2.1%未満、Mo:1.5%以上5.5%未満、残部:Tiおよび不純物からなり、前記不純物のうちのSi:0.1%未満およびC:0.01%未満であり、かつ、前記不純物の総量:0.3%未満であり、
金属組織が、針状マルテンサイト粒および針状α粒の短軸方向の幅が平均3μm以下である微細針状組織、および、等軸α粒の平均粒径が5μm以下である微細等軸状組織のいずれか一方または両方である、α+β型チタン合金部材。
(1) Chemical composition is mass%, Al: 4.4% or more and less than 5.5%, Fe: 1.4% or more and less than 2.1%, Mo: 1.5% or more and less than 5.5%, The balance: consisting of Ti and impurities, Si among the impurities: less than 0.1% and C: less than 0.01%, and the total amount of the impurities: less than 0.3%,
The metal structure is a fine acicular structure in which the width in the minor axis direction of acicular martensite grains and acicular α grains is 3 μm or less on average, and a fine equiaxed shape in which the average grain diameter of equiaxed α grains is 5 μm or less An α + β type titanium alloy member that is one or both of the tissues.

(2)超塑性加工用である、1項に記載のα+β型チタン合金部材。   (2) The α + β type titanium alloy member according to item 1, which is for superplastic working.

(3)粒界α相の体積率が1%以下であり、かつ、粒界α相の短軸方向の幅が平均3μm以下である、1または2項に記載のα+β型チタン合金部材。   (3) The α + β-type titanium alloy member according to 1 or 2, wherein the grain boundary α phase has a volume ratio of 1% or less and the average width of the grain boundary α phase in the minor axis direction is 3 μm or less.

(4)質量%で、Al:4.4%以上5.5%未満、Fe:1.4%以上2.1%未満、Mo:1.5%以上5.5%未満、残部:Tiおよび不純物からなり、前記不純物のうちのSi:0.1%未満およびC:0.01%未満であり、かつ、前記不純物の総量:0.3%未満である化学組成を有する素材を、β変態点以上の温度域から、β変態点での冷却速度が50〜100℃/秒となるように冷却する、1〜3項のいずれかに記載の、α+β型チタン合金部材の製造方法。   (4) By mass%, Al: 4.4% or more and less than 5.5%, Fe: 1.4% or more and less than 2.1%, Mo: 1.5% or more and less than 5.5%, balance: Ti and A material composed of impurities, having a chemical composition of Si: less than 0.1% and C: less than 0.01% of the impurities, and a total amount of the impurities: less than 0.3%, β transformation The manufacturing method of the alpha + beta type titanium alloy member in any one of Claims 1-3 cooled so that the cooling rate in a beta transformation point may be 50-100 degree-C / sec from the temperature range more than a point.

本発明により、高価な添加元素であるVを使用せず、複雑な加工熱処理が不要でありながら、Ti−6Al−4V合金と同等以上の室温強度を有し、かつ、Ti−6Al−4V合金において超塑性を得られる通常の条件(加工温度900℃以上、歪速度1×10−3−1以下)よりも低い加工温度および高い歪速度で超塑性特性を発現するα+β型チタン合金部材が提供される。 According to the present invention, an expensive additive element V is not used, and a complex heat treatment is not required, but the room temperature strength is equal to or higher than that of a Ti-6Al-4V alloy, and a Ti-6Al-4V alloy. An α + β type titanium alloy member that exhibits superplastic properties at a lower processing temperature and higher strain rate than the normal conditions (processing temperature 900 ° C. or higher, strain rate 1 × 10 −3 s −1 or lower) at which superplasticity can be obtained in Provided.

本発明に係るα+β型チタン合金部材は、低温での超塑性の発現による金型の高寿命化、生産コストの低下、高歪速度での超塑性発現による生産性の向上、さらには安価汎用元素の活用による素材コストの低減など、その産業上の効果は計り知れないほど大きい。   The α + β-type titanium alloy member according to the present invention is a low-cost general-purpose element that increases the service life of the mold due to the development of superplasticity at a low temperature, reduces the production cost, improves the productivity due to the development of superplasticity at a high strain rate. The industrial effects such as reduction of material costs by utilizing the technology are immense.

図1は、本発明に係るα+β型チタン合金部材の光学顕微鏡写真の一例であり、微細針状組織を示す。FIG. 1 is an example of an optical micrograph of an α + β type titanium alloy member according to the present invention, and shows a fine acicular structure. 図2は、本発明に係るα+β型チタン合金部材の光学顕微鏡写真の一例であり、微細針状組織および微細等軸状組織の混合組織を示す。FIG. 2 is an example of an optical micrograph of an α + β type titanium alloy member according to the present invention, and shows a mixed structure of a fine acicular structure and a fine equiaxed structure.

以下、本発明を詳しく説明する。以降の説明では、化学組成または濃度に関する「%」は特に断りがない限り「質量%」を意味する。   The present invention will be described in detail below. In the following description, “%” regarding chemical composition or concentration means “% by mass” unless otherwise specified.

1.本発明に係るα+β型チタン合金部材 1. Α + β type titanium alloy member according to the present invention

(1−1)化学組成 (1-1) Chemical composition

(1−1−1)Al:4.4%以上5.5%未満
Alは、固溶強化能が高いα相安定化元素であり、Al含有量が増加すると室温での引張強度が上昇する。Alは、安価な元素であるが、その固溶強化能は大きく、室温でTi−6Al−4V合金と同等以上の引張強度(1000MPa以上)を得るために、Al含有量は、4.4%以上であり、好ましくは4.7%以上であり、さらに好ましくは4.8%以上である。
(1-1-1) Al: 4.4% or more and less than 5.5% Al is an α-phase stabilizing element having a high solid solution strengthening ability, and the tensile strength at room temperature increases as the Al content increases. . Al is an inexpensive element, but its solid solution strengthening ability is large, and in order to obtain a tensile strength (1000 MPa or more) equal to or higher than that of the Ti-6Al-4V alloy at room temperature, the Al content is 4.4%. Or more, preferably 4.7% or more, and more preferably 4.8% or more.

一方、Alを過剰に含有すると、高温および室温での延性や冷間加工性が低下する。室温延性および冷間加工性が低下する理由は、Alが積層欠陥エネルギーを上げ、双晶変形を抑制するためであり、Al含有量が5.5%以上になると、双晶変形の抑制が顕著になる。そこで、Al含有量は、5.5%未満であり、好ましくは5.3%以下であり、さらに好ましくは5.1%以下である。   On the other hand, when Al is contained excessively, ductility and cold workability at high temperature and room temperature are lowered. The reason why room temperature ductility and cold workability are reduced is that Al increases stacking fault energy and suppresses twin deformation. When the Al content is 5.5% or more, suppression of twin deformation is significant. become. Therefore, the Al content is less than 5.5%, preferably 5.3% or less, and more preferably 5.1% or less.

(1−1−2)Fe:1.4%以上2.1%未満
Feは、比較的安価なβ相安定化置換型固溶元素であり、Fe含有量にしたがって引張強度が上昇する。また、Feは高いβ相安定化能を示す元素であるため、その含有量を少なくすることが可能である。室温で1000MPa以上の引張強度を得るために、Fe含有量は、1.4%以上であり、好ましくは1.6%以上であり、さらに好ましくは1.8%以上である。
(1-1-2) Fe: 1.4% or more and less than 2.1% Fe is a relatively inexpensive β-phase-stabilized substitutional solid solution element, and the tensile strength increases according to the Fe content. Further, since Fe is an element that exhibits high β-phase stabilization ability, its content can be reduced. In order to obtain a tensile strength of 1000 MPa or more at room temperature, the Fe content is 1.4% or more, preferably 1.6% or more, and more preferably 1.8% or more.

一方、Feは、Ti中で凝固偏析し易く、数百kg以上の大型インゴットでは2.1%以上含有するとFeの偏析が顕著になる。このため、Fe含有量は、2.1%未満であり、好ましくは2.0%以下である。   On the other hand, Fe is easy to solidify and segregate in Ti, and if it contains 2.1% or more in a large ingot of several hundred kg or more, the segregation of Fe becomes remarkable. For this reason, Fe content is less than 2.1%, Preferably it is 2.0% or less.

(1−1−3)Mo:1.5%以上5.5%未満
Moは、β相安定化置換型固溶元素であり、Feと同様に、室温強度を向上させるだけでなく、熱間加工性および冷間加工性を向上させる。冷間加工性を向上させるために、Mo含有量は、1.5%以上であり、好ましくは2.4%以上であり、さらに好ましくは2.9%以上である。
(1-1-3) Mo: 1.5% or more and less than 5.5% Mo is a β-phase-stabilized substitutional solid solution element and, like Fe, not only improves room temperature strength, but also hot Improve workability and cold workability. In order to improve cold workability, the Mo content is 1.5% or more, preferably 2.4% or more, and more preferably 2.9% or more.

一方、Moを5.5%以上含有すると大型インゴットでの凝固偏析が問題になるため、Mo含有量は、5.5%未満であり、好ましくは4.9%以下であり、さらに好ましくは4.0%以下である。   On the other hand, when Mo is contained in an amount of 5.5% or more, solidification segregation in a large ingot becomes a problem, so the Mo content is less than 5.5%, preferably 4.9% or less, more preferably 4 0.0% or less.

(1−1−4)残部
上記以外の残部は、Tiおよび不純物であり、不純物のうちのSi:0.1%未満、C:0.01%未満であり、かつ、前記不純物の総量:0.3%未満である。
(1-1-4) Balance The balance other than the above is Ti and impurities, of which Si is less than 0.1%, C is less than 0.01%, and the total amount of the impurities is 0. Less than 3%.

不純物としてのSiを0.1%以上含有し、不純物としてのCを0.01%以上含有すると、室温延性、熱間加工性および冷間加工性に悪影響を及ぼす。このため、Si含有量は0.1%未満であるとともにC含有量は0.01%未満である。   Containing 0.1% or more of Si as an impurity and 0.01% or more of C as an impurity adversely affects room temperature ductility, hot workability, and cold workability. For this reason, the Si content is less than 0.1% and the C content is less than 0.01%.

Si,C以外のその他の不純物元素は、本効果を阻害しない範囲であれば含有してもよい。その他の不純物元素としては、O、N、H、P、S、Cl、Mg、Cr、Ni、Sn等が例示される。   Other impurity elements other than Si and C may be contained as long as the effects are not impaired. Examples of other impurity elements include O, N, H, P, S, Cl, Mg, Cr, Ni, and Sn.

さらに、SiおよびCを含めた不純物元素の総量は、室温延性、熱間加工性および冷間加工性を維持する観点から、0.3%未満である。   Furthermore, the total amount of impurity elements including Si and C is less than 0.3% from the viewpoint of maintaining room temperature ductility, hot workability, and cold workability.

(1−1−5)Mo当量
本発明では、β相安定度の指標であり、下記(1)式により求められるMo当量を、0.5〜7.0の範囲とすることが望ましい。
[Mo]eq=[Mo]+2.9[Fe]−[Al] ・・・・・(1)
(1-1-5) Mo equivalent In this invention, it is desirable to make Mo equivalent which is a parameter | index of (beta) phase stability and calculated | required by the following (1) formula into the range of 0.5-7.0.
[Mo] eq = [Mo] +2.9 [Fe]-[Al] (1)

Mo当量が0.5未満であると、焼入れ性が低く、加工熱処理の際に高温でβ→α相変態が生じ、針状α粒や等軸α粒が粗大化することがある。一方、Mo当量が7.0を超えると、β相分率が高くなり、室温での強度が1000MPa未満に低下するおそれがある。このため、Mo当量は0.5以上7.0以下であることが好ましい。   When the Mo equivalent is less than 0.5, the hardenability is low, and β → α phase transformation occurs at high temperature during the heat treatment process, and acicular α grains and equiaxed α grains may be coarsened. On the other hand, when the Mo equivalent exceeds 7.0, the β phase fraction increases, and the strength at room temperature may be reduced to less than 1000 MPa. For this reason, it is preferable that Mo equivalent is 0.5 or more and 7.0 or less.

(1−2)金属組織 (1-2) Metallographic structure

図1は、本発明に係るα+β型チタン合金部材の光学顕微鏡写真の一例であり、微細針状組織を示す。図2は、本発明に係るα+β型チタン合金部材の光学顕微鏡写真の一例であり、微細針状組織および微細等軸状組織の混合組織を示す。   FIG. 1 is an example of an optical micrograph of an α + β type titanium alloy member according to the present invention, and shows a fine acicular structure. FIG. 2 is an example of an optical micrograph of an α + β type titanium alloy member according to the present invention, and shows a mixed structure of a fine acicular structure and a fine equiaxed structure.

金属組織は、針状マルテンサイト粒および針状α粒の短軸方向の幅が平均3μm以下である微細針状組織、および、等軸α粒の平均粒径が5μm以下である微細等軸状組織のいずれか一方または両方である。   The metal structure is a fine acicular structure having an average width of 3 μm or less in the minor axis direction of acicular martensite grains and acicular α grains, and a fine equiaxed shape in which the average grain diameter of equiaxed α grains is 5 μm or less. Either one or both of the organizations.

針状組織の場合、針状マルテンサイト粒および針状α粒の短軸方向の幅が平均3μmを超えると、高温保持後の加工中に針状α粒の分断が生じ難くなり、大きな伸びを得られない。したがって、針状マルテンサイト粒および針状α粒の短軸方向の幅は平均3μm以下である。   In the case of an acicular structure, if the width in the minor axis direction of acicular martensite grains and acicular alpha grains exceeds an average of 3 μm, the acicular alpha grains are less likely to break during processing after holding at high temperature, resulting in large elongation. I can't get it. Therefore, the average width of acicular martensite grains and acicular α grains in the minor axis direction is 3 μm or less.

一方、等軸α粒の場合、周囲をβ相で覆われており、このβ粒が変形することにより、針状α粒よりも変形が容易である。このため、等軸α粒の場合、平均粒径が5μmまで許容される。したがって、等軸α粒の平均粒径は5μm以下である。   On the other hand, in the case of equiaxed α-grains, the periphery is covered with a β-phase, and deformation of the β-grains is easier than that of acicular α-grains. For this reason, in the case of equiaxed α-grains, an average particle size of 5 μm is allowed. Therefore, the average particle diameter of the equiaxed α grains is 5 μm or less.

また、粒界α相が存在すると伸びが低下することがあり、粒界α相の体積率が1%を超えると加工時の伸びの低下が大きくなる。このため、粒界α相の体積率は1%以下であることが望ましい。   In addition, when the grain boundary α phase is present, the elongation may decrease. When the volume ratio of the grain boundary α phase exceeds 1%, the elongation during processing increases greatly. For this reason, the volume ratio of the grain boundary α phase is desirably 1% or less.

また、粒界α相の短軸方向の幅が平均3μmを超えると、同様に加工率の低下が顕著になることがあるため、粒界α相の短軸方向の幅は平均3μm以下であることが望ましい。   Further, when the width in the minor axis direction of the grain boundary α phase exceeds 3 μm on the average, the reduction of the processing rate may be noticeable in the same manner, so that the width in the minor axis direction of the grain boundary α phase is 3 μm or less on average. It is desirable.

針状マルテンサイト粒および針状α粒(針状粒)の平均幅、等軸α粒(等軸粒)の平均粒径、粒界α相の短軸方向の平均幅は、いずれも、光学顕微鏡観察用の試験片を採取し、CもしくはT断面(長手方向に垂直な断面)を観察面とする埋め込み研磨試料を作製し、硝フッ酸水溶液(硝酸濃度:約12%、フッ酸濃度:約1.5%)を用いて室温でエッチングした後に、500倍の倍率で各視野からランダムに10カ所測定し、計20視野測定した際の平均値を算出することにより、求める。   The average width of acicular martensite grains and acicular alpha grains (acicular grains), the average grain diameter of equiaxed alpha grains (equiaxial grains), and the mean width in the minor axis direction of the grain boundary alpha phase are all optical. A specimen for microscopic observation was collected, and an embedded polished sample having a C or T cross section (cross section perpendicular to the longitudinal direction) as an observation surface was prepared. An aqueous nitric hydrofluoric acid solution (nitric acid concentration: about 12%, hydrofluoric acid concentration: After etching at room temperature using about 1.5%), 10 points are randomly measured from each visual field at a magnification of 500 times, and the average value when measuring 20 visual fields in total is calculated.

さらに、粒界α相が確認できた素材については、光学顕微鏡観察用の埋め込み試料から、500倍の倍率で画像解析することで面積率を測定し、3視野の平均値を粒界α相の面積率とする。   Furthermore, for the material in which the grain boundary α phase was confirmed, the area ratio was measured by analyzing the image at a magnification of 500 times from the embedded sample for observation with an optical microscope, and the average value of the three fields of view was determined as the grain boundary α phase. The area ratio.

(1−3)形状
丸棒や角棒、さらには板が例示される。
(1-3) Shape A round bar, a square bar, and a board are illustrated.

(1−4)超塑性の発現機構
超塑性は、上述したように、微細結晶粒超塑性と変態超塑性の2つに大別される。本発明に係るα+β型チタン合金部材において発現する超塑性は微細結晶粒超塑性である。以下、微細結晶粒超塑性の発現機構を説明する。
(1-4) Superplasticity manifestation mechanism As described above, superplasticity is roughly classified into two types: fine grain superplasticity and transformation superplasticity. The superplasticity developed in the α + β-type titanium alloy member according to the present invention is fine crystal superplasticity. Hereinafter, the mechanism of manifestation of fine crystal superplasticity will be described.

微細結晶粒超塑性は、加工前組織が微細等軸状組織を有する材料を約0.5T以上の一定温度で、比較的低歪速度で変形させる際に生じる現象である。微細等軸状組織については、組織が微細なほど超塑性が生じ易く、また微細組織を維持し易い二相合金の方が超塑性に適する。本発明に係るα+β型チタン合金では、α/β相比が1に近いほど超塑性を発現し易い。したがって、加工温度でα/β相比が1に近くなるように、合金の化学組成を設定することが好ましい。 Fine grain superplasticity is a phenomenon that occurs when a material having a fine equiaxed structure in a pre-working structure is deformed at a relatively low strain rate at a constant temperature of about 0.5 Tm or higher. As for the fine equiaxed structure, the finer the structure, the easier the superplasticity occurs, and the two-phase alloy that can easily maintain the fine structure is more suitable for the superplasticity. In the α + β type titanium alloy according to the present invention, the closer the α / β phase ratio is to 1, the easier it is to develop superplasticity. Therefore, it is preferable to set the chemical composition of the alloy so that the α / β phase ratio is close to 1 at the processing temperature.

最近、例えば非特許文献1,2に、本発明に係るα+β型チタン合金系のTi−5Al−2Fe−3Mo合金において、特定の熱処理条件で熱処理を施すと、短軸方向の幅が数十nm〜数μmの針状マルテンサイト粒や針状α粒からなる微細針状組織を得られることが報告された。   Recently, for example, in Non-Patent Documents 1 and 2, when an α + β type titanium alloy-based Ti-5Al-2Fe-3Mo alloy according to the present invention is subjected to heat treatment under specific heat treatment conditions, the width in the minor axis direction is several tens of nm. It has been reported that a fine needle-like structure composed of needle-like martensite grains and needle-like α grains having a size of several μm can be obtained.

従来、超塑性特性の発現には、微細等軸状組織が必要であるとされてきた。しかし、この文献に記載されたTi−5Al−2Fe−3Mo合金、すなわち本発明に係るα+β型チタン合金の針状組織は極めて微細である。さらに、本発明に係るα+β型チタン合金に適した超塑性加工温度域である700〜900℃で数十分間保持しても、α+β二相域となるため、針状α粒(針状マルテンサイト粒も高温保持でα相に変態)の粒成長が抑制され、針状α粒の短軸方向の幅が平均3μm以下に維持される。このため、本発明に係るα+β型チタン合金の加工中に加工歪が導入されると、針状α粒の組織分断や動的再結晶を生じ、針状α粒が等軸α粒に変化することにより、α相を取り囲むβ相が連結して塑性流動性が向上し、大きな塑性伸びを得られる。   Conventionally, it has been said that a fine equiaxed structure is required for the development of superplastic characteristics. However, the needle-like structure of the Ti-5Al-2Fe-3Mo alloy described in this document, that is, the α + β type titanium alloy according to the present invention is extremely fine. Furthermore, even if it is held for several tens of minutes at 700 to 900 ° C. which is a superplastic processing temperature range suitable for the α + β type titanium alloy according to the present invention, it becomes an α + β two-phase region. The grain growth of the site grains is also transformed to the α phase by holding at a high temperature, and the width of the acicular α grains in the minor axis direction is maintained at an average of 3 μm or less. For this reason, when processing strain is introduced during the processing of the α + β type titanium alloy according to the present invention, the structure of the acicular α grains is divided and dynamic recrystallization occurs, and the acicular α grains change into equiaxed α grains. As a result, the β phase surrounding the α phase is connected to improve the plastic fluidity, thereby obtaining a large plastic elongation.

このように、本発明に係るα+β型チタン合金は、加工中に、微細針状組織から微細等軸組織へと変化することにより、超塑性特性を発現する。本発明で規定する化学組成と、後述する加工熱処理条件とをともに満足することにより、上記微細針状組織を得ることができ、超塑性を発現できる。   Thus, the α + β type titanium alloy according to the present invention exhibits superplastic characteristics by changing from a fine needle-like structure to a fine equiaxed structure during processing. By satisfying both the chemical composition defined in the present invention and the thermomechanical processing conditions described later, the fine needle-like structure can be obtained, and superplasticity can be exhibited.

このため、上記のような微細針状組織のみからなる組織であってもよいが、微細針状組織と微細等軸組織とが混合した混合組織であってもよい。旧β粒界に生じる粒界α相は、針状α粒よりも短軸方向の幅が太くなり易く、旧β粒界部分に連続して生じる。このため、組織分断が生じ難く、十分に分断されないと、α相に隣接するβ相に変形が集中し、延性限界に達したところでボイドが発生し、それが連結することにより破断に至ってしまい、大きな伸びが得られないことがある。   For this reason, the structure which consists only of the above fine acicular structures may be sufficient, but the mixed structure | tissue which the fine acicular structure | tissue and the fine equiaxed structure | tissue mixed may be sufficient. The grain boundary α phase generated in the old β grain boundary is likely to be wider in the minor axis direction than the needle-like α grain, and is continuously generated in the old β grain boundary portion. For this reason, it is difficult to cause structural division, and if it is not sufficiently divided, deformation concentrates in the β phase adjacent to the α phase, a void is generated when the ductility limit is reached, and it leads to fracture when connected, Large elongation may not be obtained.

なお、超塑性加工の実加工条件は、伸びが200%程度であるので、本発明では、200%以上の伸びが発現される場合を超塑性と定義する。   In addition, since the actual processing condition of superplastic processing is about 200% in elongation, in the present invention, a case where elongation of 200% or more is expressed is defined as superplasticity.

2.本発明に係る製造方法
本発明に係るα+β型チタン合金部材は、上述した化学組成を有する素材を、β変態点以上の温度域から、β変態点での冷却速度が50〜100℃/秒となるように冷却することにより、製造される。
2. Production method according to the present invention The α + β type titanium alloy member according to the present invention is a material having the above-described chemical composition, and the cooling rate at the β transformation point is 50 to 100 ° C./second from the temperature range above the β transformation point. It manufactures by cooling so that it may become.

(2−1)加工熱処理条件
本発明の効果を得られる加工熱処理の一例を以下に述べる。
(2-1) Thermomechanical processing conditions An example of thermomechanical processing that can achieve the effects of the present invention will be described below.

本発明では、比較的単純な加工熱処理により非常に微細な組織を得られる。例えば、β変態点以上へ加熱し、試験片全体の組織をβ相へ変態させた後、水冷などの高速冷却(β変態点での冷却速度は50〜100℃/秒)を行うことにより、微細針状組織とすることができる。   In the present invention, a very fine structure can be obtained by a relatively simple heat treatment. For example, by heating to the β transformation point or higher and transforming the entire structure of the test piece to the β phase, by performing high-speed cooling such as water cooling (the cooling rate at the β transformation point is 50 to 100 ° C./second), It can be a fine needle-like structure.

この方法では、熱処理前の加工量によらずに微細な組織を得ることができる。もしくは、β域加熱圧延後に同様に高速冷却することにより、微細針状組織および微細等軸組織の混合組織を得ることができる。   In this method, a fine structure can be obtained regardless of the processing amount before the heat treatment. Alternatively, a mixed structure of a fine acicular structure and a fine equiaxed structure can be obtained by high-speed cooling similarly after β-region heating and rolling.

(2−2)加工条件の範囲
本発明で、超塑性特性が得られる加工条件は、概ね、加工温度:700℃以上(好ましくは700〜900℃)、歪速度:1×10−2−1以下(好ましくは1×10−4〜1×10−2−1)であり、Ti−6Al−4V合金などのチタン合金において超塑性を得られる通常の条件(加工温度900℃、歪速度1×10−3−1以下)と比較すると、より低い加工温度およびより高い歪速度で超塑性を発現することができる。
(2-2) Range of processing conditions In the present invention, processing conditions for obtaining superplastic characteristics are generally processing temperature: 700 ° C. or higher (preferably 700 to 900 ° C.), strain rate: 1 × 10 −2 s −. 1 or less (preferably 1 × 10 −4 to 1 × 10 −2 s −1 ) and normal conditions for obtaining superplasticity in a titanium alloy such as a Ti-6Al-4V alloy (processing temperature 900 ° C., strain rate) 1 × 10 −3 s −1 or less), it is possible to develop superplasticity at a lower processing temperature and a higher strain rate.

このため、本発明によれば、低温での超塑性の発現による金型の高寿命化、生産コストの低下、さらには、高歪速度での超塑性発現による生産性の向上が図られる。   For this reason, according to the present invention, it is possible to extend the life of the mold due to the development of superplasticity at a low temperature, to reduce the production cost, and to improve the productivity due to the development of superplasticity at a high strain rate.

本発明を、実施例を参照しながらさらに具体的に説明する。   The present invention will be described more specifically with reference to examples.

表1に示す化学組成No.1〜11を有するチタン合金No.1〜11をプラズマ溶解した鋳塊をβ域加熱鍛造した後、β域加熱圧延を行い、直径20mmの丸棒とした。   Chemical composition No. shown in Table 1 Titanium alloy No. 1-11 The ingot in which 1 to 11 was plasma-melted was forged in the β region and then heated in the β region to obtain a round bar having a diameter of 20 mm.

得られた素材をそのまま、もしくは、β変態点以上の1050℃まで加熱および30分間保持し、β変態点での冷却速度:70℃/秒で高速冷却した後、平行部の直径3mm、長さ6mmの試験片を作製した。   The obtained material is heated as it is or heated to 1050 ° C. above the β transformation point and held for 30 minutes, and then cooled at the β transformation point: 70 ° C./sec. A 6 mm test piece was prepared.

なお、引張試験片の採取時に、その部位近傍から光学顕微鏡観察用の試験片を採取し、C断面(長手方向に垂直な断面)を観察面とする埋め込み研磨試料を作製し、硝フッ酸水溶液(硝酸濃度:約12%、フッ酸濃度:約1.5%)を用いて室温でエッチングした後に観察した。   At the time of collecting the tensile test piece, a test piece for observation with an optical microscope was taken from the vicinity of the tensile test piece to prepare an embedded polished sample having a C cross section (cross section perpendicular to the longitudinal direction) as an observation surface. Observation was performed after etching at room temperature using (nitric acid concentration: about 12%, hydrofluoric acid concentration: about 1.5%).

この際、金属組織の形態を確認するとともに、針状マルテンサイト粒および針状α粒(針状粒)の平均幅、等軸α粒(等軸粒)の平均粒径、粒界α相の短軸方向の平均幅(いずれも500倍の倍率で各視野からランダムに10カ所測定し、計20視野測定した際の平均値を算出)を計測した。   At this time, while confirming the form of the metal structure, the average width of the acicular martensite grains and the acicular α grains (acicular grains), the average grain diameter of the equiaxed α grains (equal axis grains), the grain boundary α phase The average width in the minor axis direction (all measured at 10 locations randomly from each field at a magnification of 500 times, and the average value when measuring 20 fields in total was calculated) was measured.

なお、針状粒の幅や等軸粒の平均粒径が1μm未満の場合、分解能の低い光学顕微鏡では正確な数値が測定できなかったため、表中には1μm未満と記載している。さらに、粒界α相が確認できた素材については、光学顕微鏡観察用の埋め込み試料から、粒界α相の面積率(500倍の倍率で画像解析することで面積率を測定し、3視野の平均値を面積率とした)を算出した。   When the width of the acicular grains and the average grain diameter of the equiaxed grains are less than 1 μm, an accurate numerical value could not be measured with an optical microscope having a low resolution, so that it is described in the table as less than 1 μm. Furthermore, for the material in which the grain boundary α phase was confirmed, the area ratio of the grain boundary α phase was measured from an embedded sample for observation with an optical microscope (by analyzing the image at a magnification of 500 times, The average value was taken as the area ratio).

採取した引張試験片については、昇温速度45℃/分で700〜800℃まで加熱し、10分間保持した後、歪速度1×10−3〜1×10−2−1の条件で引張特性(引張強度、絞り、突き合わせ伸び)を評価した。 About the extract | collected tensile test piece, after heating up to 700-800 degreeC with the temperature increase rate of 45 degreeC / min and hold | maintaining for 10 minutes, it tension | tensiles on the conditions of the strain rate of 1 * 10 < -3 > -1 * 10 <-2 > s < -1 >. The properties (tensile strength, drawing, butt elongation) were evaluated.

表2に、チタン合金No.1〜11の素材をそのまま引張試験片に加工し、試験温度800℃、歪速度1×10−2−1の条件で引張試験した結果と、その素材の金属組織の観察結果を示す。 Table 2 shows titanium alloy no. The materials of 1 to 11 are processed into tensile test pieces as they are, the results of a tensile test under the conditions of a test temperature of 800 ° C. and a strain rate of 1 × 10 −2 s −1 and the observation results of the metal structure of the materials are shown.

合金No.A−1〜11は、いずれも、針状粒および等軸粒の混合組織であり、粒界α相は確認できなかった。   Alloy No. A-1 to 11 were all mixed structures of acicular grains and equiaxed grains, and no grain boundary α phase could be confirmed.

合金A−1〜7の本発明例では、いずれも針状粒の平均幅が3μm以下であり、かつ等軸粒の平均粒径が5μm以下であり、突き合わせ伸びは200%以上であった。また、破断試験片の破断部近傍の断面組織でもボイドは確認されなかった。   In all of the inventive examples of Alloys A-1 to A-7, the average width of the needle-like grains was 3 μm or less, the average grain diameter of the equiaxed grains was 5 μm or less, and the butt elongation was 200% or more. Moreover, no void was confirmed even in the cross-sectional structure near the fractured portion of the fracture test piece.

合金A−8の比較例は、Al,Fe,Mo含有量がいずれも本発明の範囲の下限を下回るため、針状粒の短軸方向の平均幅が大きくなり、突き合わせ伸びが不芳になった。   In the comparative example of Alloy A-8, since the Al, Fe, and Mo contents are all below the lower limit of the range of the present invention, the average width of the acicular grains in the minor axis direction is increased, and the butt elongation is unsatisfactory. It was.

合金A−9の比較例は、Mo含有量が本発明の範囲の下限を下回るため、針状粒の短軸方向の平均幅が大きくなり、突き合わせ伸びが不芳になった。   In Comparative Example of Alloy A-9, since the Mo content was below the lower limit of the range of the present invention, the average width of the acicular grains in the minor axis direction was increased, and the butt elongation was unsatisfactory.

合金A−10の比較例は、不純物であるSi,C含有量が本発明の範囲の上限を上回るため、突き合わせ伸びが不芳になった。   In Comparative Example of Alloy A-10, the content of Si and C as impurities exceeded the upper limit of the range of the present invention, so that the butt elongation was unsatisfactory.

さらに、合金A−10の比較例は、本発明の化学成分系(Ti−5Al−2Fe−3Mo合金)とは異なる化学成分系(Ti−6Al−4V合金)であるため、合金コストが高い。   Furthermore, since the comparative example of alloy A-10 is a chemical component system (Ti-6Al-4V alloy) different from the chemical component system (Ti-5Al-2Fe-3Mo alloy) of the present invention, the alloy cost is high.

表3には、表2と同様に、チタン合金No.1〜11の素材をそのまま引張試験片に加工し、試験温度700℃、歪速度1×10−3−1の条件で引張試験した結果を示す。 In Table 3, as in Table 2, the titanium alloy No. The raw material of 1-11 is processed into a tensile test piece as it is, and the result of having carried out the tension test on conditions with a test temperature of 700 degreeC and a strain rate of 1 * 10 <-3> s < -1 > is shown.

A−12〜18の本発明例は、いずれも、突き合わせ伸びは200%以上であった。また、破断試験片の破断部近傍の断面組織でもボイドは確認されなかった。   In all of the inventive examples A-12 to 18, the butt elongation was 200% or more. Moreover, no void was confirmed even in the cross-sectional structure near the fractured portion of the fracture test piece.

合金A−19の比較例は、Al,Fe,Mo含有量がいずれも本発明の範囲の下限を下回るため、針状粒の短軸方向の平均幅が大きくなり、突き合わせ伸びが不芳になった。   In the comparative example of Alloy A-19, since the Al, Fe, and Mo contents are all below the lower limit of the range of the present invention, the average width of the acicular grains in the minor axis direction is increased and the butt elongation is unsatisfactory. It was.

合金A−20の比較例は、Mo含有量が本発明の範囲の下限を下回るため、針状粒の短軸方向の平均幅が大きくなり、突き合わせ伸びが不芳になった。   In Comparative Example of Alloy A-20, since the Mo content was below the lower limit of the range of the present invention, the average width of the acicular grains in the minor axis direction was increased, and the butt elongation was unsatisfactory.

合金A−21の比較例は、不純物であるSi,C含有量が本発明の範囲の上限を上回るため、突き合わせ伸びが不芳になった。   In the comparative example of Alloy A-21, the content of Si and C as impurities exceeded the upper limit of the range of the present invention, so that the butt elongation was unsatisfactory.

さらに、合金A−22の比較例は、本発明の化学成分系(Ti−5Al−2Fe−3Mo合金)とは異なる化学成分系(Ti−6Al−4V合金)であるため、合金コストが高い。   Furthermore, since the comparative example of alloy A-22 is a chemical component system (Ti-6Al-4V alloy) different from the chemical component system (Ti-5Al-2Fe-3Mo alloy) of the present invention, the alloy cost is high.

表4には、チタン合金No.1〜11の素材を、β変態点以上まで加熱した後に高速冷却してから引張試験片に加工し、試験温度800℃、歪速度1×10−2−1の条件で引張試験した結果と、その素材の金属組織の観察結果とを示す。 Table 4 shows titanium alloy no. The materials 1 to 11 were heated to the β transformation point or higher and then cooled at high speed, and then processed into a tensile test piece, and a tensile test was performed at a test temperature of 800 ° C. and a strain rate of 1 × 10 −2 s −1. The observation result of the metal structure of the material is shown.

合金No.B−1〜11は、いずれも、針状粒からなる針状組織であり、等軸粒は確認できなかった。   Alloy No. B-1 to 11 are all acicular structures composed of acicular grains, and no equiaxed grains could be confirmed.

合金No.B−1〜7の本発明例では、いずれも針状粒および粒界α相の平均幅は3μm以下であり、かつ粒界α相の体積率が1%以下であり、突き合わせ伸びは200%以上であった。また、破断試験片の破断部近傍の断面組織でもボイドは確認されなかった。   Alloy No. In the present invention examples of B-1 to 7, the average width of the acicular grains and the grain boundary α phase is 3 μm or less, the volume ratio of the grain boundary α phase is 1% or less, and the butt elongation is 200%. That was all. Moreover, no void was confirmed even in the cross-sectional structure near the fractured portion of the fracture test piece.

合金B−8の比較例は、Al,Fe,Mo含有量がいずれも本発明の範囲の下限を下回るため、粒界α相の面積率が大きくなり、突き合わせ伸びが不芳になった。   In the comparative example of Alloy B-8, since the Al, Fe, and Mo contents were all below the lower limit of the range of the present invention, the area ratio of the grain boundary α phase was increased and the butt elongation was unsatisfactory.

合金B−9の比較例は、Mo含有量が本発明の範囲の下限を下回るため、粒界α相の面積率が大きくなり、突き合わせ伸びが不芳になった。   In Comparative Example of Alloy B-9, the Mo content was below the lower limit of the range of the present invention, so the area ratio of the grain boundary α phase was increased, and the butt elongation was unsatisfactory.

合金B−10の比較例は、不純物であるSi,C含有量が本発明の範囲の上限を上回るため、突き合わせ伸びが不芳になった。   In the comparative example of Alloy B-10, the content of Si and C as impurities exceeded the upper limit of the range of the present invention, so that the butt elongation was unsatisfactory.

さらに、合金B−11の比較例は、本発明の化学成分系(Ti−5Al−2Fe−3Mo合金)とは異なる化学成分系(Ti−6Al−4V合金)であるためにこの加工条件では超塑性を発現できず、突き合わせ伸びが不芳になったとともに、合金コストが高い。   Furthermore, since the comparative example of alloy B-11 is a chemical component system (Ti-6Al-4V alloy) different from the chemical component system (Ti-5Al-2Fe-3Mo alloy) of the present invention, it is super The plasticity cannot be expressed, the butt elongation becomes unsatisfactory, and the alloy cost is high.

表5には、表4と同様に、チタン合金No.1〜11の素材を、β変態点以上まで加熱した後に高速冷却してから引張試験片に加工し、試験温度700℃、歪速度1×10−3−1の条件で引張試験した結果を示す。 In Table 5, as in Table 4, titanium alloy No. The materials 1 to 11 were heated to the β transformation point or higher and then cooled at high speed, and then processed into a tensile test piece. The result of a tensile test under the conditions of a test temperature of 700 ° C. and a strain rate of 1 × 10 −3 s −1 was obtained. Show.

合金No.B−12〜18は、いずれも、突き合わせ伸びは200%以上であった。また、破断試験片の破断部近傍の断面組織でもボイドは確認されなかった。   Alloy No. In any of B-12 to 18, the butt elongation was 200% or more. Moreover, no void was confirmed even in the cross-sectional structure near the fractured portion of the fracture test piece.

合金B−19の比較例は、Al,Fe,Mo含有量がいずれも本発明の範囲の下限を下回るため、突き合わせ伸びが不芳になった。   In Comparative Example of Alloy B-19, the butt elongation was unsatisfactory because the Al, Fe, and Mo contents were all below the lower limit of the range of the present invention.

合金B−20の比較例は、Mo含有量が本発明の範囲の下限を下回るため、突き合わせ伸びが不芳になった。   In Comparative Example of Alloy B-20, the butt elongation was unsatisfactory because the Mo content was below the lower limit of the range of the present invention.

合金B−21の比較例は、不純物であるSi,C含有量が本発明の範囲の上限を上回るため、突き合わせ伸びが不芳になった。   In the comparative example of Alloy B-21, the content of Si and C as impurities exceeded the upper limit of the range of the present invention, so that the butt elongation was unsatisfactory.

さらに、B−22の比較例は、本発明の化学成分系(Ti−5Al−2Fe−3Mo合金)とは異なる化学成分系(Ti−6Al−4V合金)であるため、突き合わせ伸びが不芳になった。

Furthermore, since the comparative example of B-22 is a chemical component system (Ti-6Al-4V alloy) different from the chemical component system (Ti-5Al-2Fe-3Mo alloy) of the present invention, the butt elongation is poor. became.

Claims (4)

化学組成が、質量%で、Al:4.4%以上5.5%未満、Fe:1.4%以上2.1%未満、Mo:1.5%以上5.5%未満、残部:Tiおよび不純物からなり、前記不純物のうちのSi:0.1%未満およびC:0.01%未満であり、かつ、前記不純物の総量:0.3%未満であり、
金属組織が、針状マルテンサイト粒および針状α粒の短軸方向の幅が平均3μm以下である微細針状組織、および、等軸α粒の平均粒径が5μm以下である微細等軸状組織のいずれか一方または両方である、α+β型チタン合金部材。
Chemical composition is mass%, Al: 4.4% to less than 5.5%, Fe: 1.4% to less than 2.1%, Mo: 1.5% to less than 5.5%, balance: Ti And, among the impurities, Si: less than 0.1% and C: less than 0.01%, and the total amount of the impurities: less than 0.3%,
The metal structure is a fine acicular structure in which the width in the minor axis direction of acicular martensite grains and acicular α grains is 3 μm or less on average, and a fine equiaxed shape in which the average grain diameter of equiaxed α grains is 5 μm or less An α + β type titanium alloy member that is one or both of the tissues.
超塑性加工用である、請求項1に記載のα+β型チタン合金部材。   The α + β type titanium alloy member according to claim 1, which is for superplastic working. 粒界α相の体積率が1%以下であり、かつ、粒界α相の短軸方向の幅が平均3μm以下である、請求項1または2に記載のα+β型チタン合金部材。   The α + β-type titanium alloy member according to claim 1 or 2, wherein the volume ratio of the grain boundary α phase is 1% or less and the width of the minor axis direction of the grain boundary α phase is 3 µm or less on average. 質量%で、Al:4.4%以上5.5%未満、Fe:1.4%以上2.1%未満、Mo:1.5%以上5.5%未満、残部:Tiおよび不純物からなり、前記不純物のうちのSi:0.1%未満およびC:0.01%未満であり、かつ、前記不純物の総量:0.3%未満である化学組成を有する素材を、β変態点以上の温度域から、β変態点での冷却速度が50〜100℃/秒となるように冷却する、請求項1〜3のいずれかに記載の、α+β型チタン合金部材の製造方法。

Mass: Al: 4.4% or more and less than 5.5%, Fe: 1.4% or more and less than 2.1%, Mo: 1.5% or more and less than 5.5%, balance: Ti and impurities. Of the impurities, Si: less than 0.1% and C: less than 0.01%, and the total amount of the impurities: a material having a chemical composition of less than 0.3%, a material having a β transformation point or more The manufacturing method of the alpha + beta type titanium alloy member in any one of Claims 1-3 cooled so that the cooling rate in a beta transformation point may be 50-100 degree-C / sec from a temperature range.

JP2016025469A 2016-02-15 2016-02-15 α + β type titanium alloy member and manufacturing method thereof Active JP6696202B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016025469A JP6696202B2 (en) 2016-02-15 2016-02-15 α + β type titanium alloy member and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016025469A JP6696202B2 (en) 2016-02-15 2016-02-15 α + β type titanium alloy member and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2017145429A true JP2017145429A (en) 2017-08-24
JP6696202B2 JP6696202B2 (en) 2020-05-20

Family

ID=59682092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016025469A Active JP6696202B2 (en) 2016-02-15 2016-02-15 α + β type titanium alloy member and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6696202B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109055816A (en) * 2018-08-22 2018-12-21 广东省材料与加工研究所 A kind of engine powder metallurgy valve and preparation method thereof
TWI684646B (en) * 2019-05-10 2020-02-11 大田精密工業股份有限公司 Titanium alloy plate and its manufacturing method
CN114472897A (en) * 2022-01-28 2022-05-13 有研工程技术研究院有限公司 Gradient titanium alloy with low adiabatic shear sensitivity and preparation method thereof
CN114752874A (en) * 2022-03-25 2022-07-15 重庆大学 Novel multi-scale structure for synergistically optimizing strong plasticity of TA19 titanium alloy and preparation method thereof
WO2023249227A1 (en) * 2022-06-23 2023-12-28 한국재료연구원 High-strength and high-ductility titanium alloy with excellent moldability

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63230858A (en) * 1987-03-20 1988-09-27 Sumitomo Metal Ind Ltd Manufacture of titanium-alloy sheet for superplastic working
JPH08269656A (en) * 1995-03-30 1996-10-15 Sumitomo Metal Ind Ltd Production of titanium alloy
JP2007314834A (en) * 2006-05-25 2007-12-06 Nippon Steel Corp ALPHA PLUS BETA TITANIUM ALLOY MEMBER HAVING >=1,000 MPa GRADE TENSILE STRENGTH, AND ITS MANUFACTURING METHOD
JP2010216011A (en) * 2009-02-19 2010-09-30 Nippon Steel Corp SEMISTABLE beta TYPE TITANIUM ALLOY HAVING LOW YOUNG'S MODULUS AND METHOD FOR PRODUCING THE SAME
JP2012126944A (en) * 2010-12-14 2012-07-05 Nippon Steel Corp α-β TYPE TITANIUM ALLOY HAVING LOW YOUNG'S MODULUS OF <75 GPa, AND METHOD FOR PRODUCING THE SAME
JP2015004100A (en) * 2013-06-20 2015-01-08 新日鐵住金株式会社 α+β TYPE TITANIUM ALLOY MEMBER AND PRODUCTION METHOD THEREOF

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63230858A (en) * 1987-03-20 1988-09-27 Sumitomo Metal Ind Ltd Manufacture of titanium-alloy sheet for superplastic working
JPH08269656A (en) * 1995-03-30 1996-10-15 Sumitomo Metal Ind Ltd Production of titanium alloy
JP2007314834A (en) * 2006-05-25 2007-12-06 Nippon Steel Corp ALPHA PLUS BETA TITANIUM ALLOY MEMBER HAVING >=1,000 MPa GRADE TENSILE STRENGTH, AND ITS MANUFACTURING METHOD
JP2010216011A (en) * 2009-02-19 2010-09-30 Nippon Steel Corp SEMISTABLE beta TYPE TITANIUM ALLOY HAVING LOW YOUNG'S MODULUS AND METHOD FOR PRODUCING THE SAME
JP2012126944A (en) * 2010-12-14 2012-07-05 Nippon Steel Corp α-β TYPE TITANIUM ALLOY HAVING LOW YOUNG'S MODULUS OF <75 GPa, AND METHOD FOR PRODUCING THE SAME
JP2015004100A (en) * 2013-06-20 2015-01-08 新日鐵住金株式会社 α+β TYPE TITANIUM ALLOY MEMBER AND PRODUCTION METHOD THEREOF

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109055816A (en) * 2018-08-22 2018-12-21 广东省材料与加工研究所 A kind of engine powder metallurgy valve and preparation method thereof
TWI684646B (en) * 2019-05-10 2020-02-11 大田精密工業股份有限公司 Titanium alloy plate and its manufacturing method
CN111910103A (en) * 2019-05-10 2020-11-10 大田精密工业股份有限公司 Titanium alloy sheet material and method for producing same
CN114472897A (en) * 2022-01-28 2022-05-13 有研工程技术研究院有限公司 Gradient titanium alloy with low adiabatic shear sensitivity and preparation method thereof
CN114752874A (en) * 2022-03-25 2022-07-15 重庆大学 Novel multi-scale structure for synergistically optimizing strong plasticity of TA19 titanium alloy and preparation method thereof
WO2023249227A1 (en) * 2022-06-23 2023-12-28 한국재료연구원 High-strength and high-ductility titanium alloy with excellent moldability

Also Published As

Publication number Publication date
JP6696202B2 (en) 2020-05-20

Similar Documents

Publication Publication Date Title
EP3118338B1 (en) Rod made of cu-al-mn-based alloy and method for producing same
JP6696202B2 (en) α + β type titanium alloy member and manufacturing method thereof
JP5592818B2 (en) Α-β type titanium alloy extruded material excellent in fatigue strength and method for producing the α-β type titanium alloy extruded material
JP5795030B2 (en) Expanded material made of Cu-Al-Mn alloy material with excellent stress corrosion resistance
KR20210043652A (en) Titanium alloy wire rod and method of manufacturing titanium alloy wire rod
KR20120115497A (en) Production of high strength titanium alloys
Wang et al. Superior tensile strength and microstructure evolution of TiB whisker reinforced Ti60 composites with network architecture after β extrusion
JP2009138218A (en) Titanium alloy member and method for manufacturing titanium alloy member
Moghaddam et al. Kinetic grain growth, shape memory and corrosion behavior of two Cu-based shape memory alloys after thermomechanical treatment
CN111868287A (en) Method for producing Ni-based superalloy and Ni-based superalloy
JP6315319B2 (en) Method for producing Fe-Ni base superalloy
JP2009074104A (en) Alloy with high elasticity
KR101643838B1 (en) Resource-saving titanium alloy member having excellent strength and toughness, and method for manufacturing same
JP2013023697A (en) α+β TYPE TITANIUM ALLOY HAVING LOW YOUNG&#39;S MODULUS OF LESS THAN 75 GPa AND METHOD FOR MANUFACTURING THE SAME
JP5589861B2 (en) Α + β type titanium alloy member having high strength and low Young&#39;s modulus and method for producing the same
Yu et al. Flow behavior and dynamic transformation of bimodal TC17 titanium alloy during high strain rate hot compression
JP5421796B2 (en) Titanium alloy billet with excellent defect detection capability in ultrasonic testing
JPWO2016013566A1 (en) Titanium alloy member having shape change characteristics in the same direction as the machining direction and method for producing the same
JP6432328B2 (en) High strength titanium plate and manufacturing method thereof
JP5578041B2 (en) Titanium alloy member having shape memory characteristics in two directions and manufacturing method thereof
JP5621571B2 (en) Α + β type titanium alloy having a low Young&#39;s modulus of less than 75 GPa and method for producing the same
Li et al. Effect of Hot Rolling and Annealing on Phase Component, Recrystallization, and Mechanical Properties of TC21 Titanium Alloy
JP6673121B2 (en) α + β type titanium alloy rod and method for producing the same
JP6851147B2 (en) Titanium alloy forged material
JP2017002390A (en) Titanium alloy forging material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200406

R151 Written notification of patent or utility model registration

Ref document number: 6696202

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151