KR100337426B1 - Low Cost and High Strength α+ βTitanium Alloy and its Manufacture - Google Patents

Low Cost and High Strength α+ βTitanium Alloy and its Manufacture Download PDF

Info

Publication number
KR100337426B1
KR100337426B1 KR1020000037547A KR20000037547A KR100337426B1 KR 100337426 B1 KR100337426 B1 KR 100337426B1 KR 1020000037547 A KR1020000037547 A KR 1020000037547A KR 20000037547 A KR20000037547 A KR 20000037547A KR 100337426 B1 KR100337426 B1 KR 100337426B1
Authority
KR
South Korea
Prior art keywords
alloy
titanium
aluminum
weight ratio
silicon
Prior art date
Application number
KR1020000037547A
Other languages
Korean (ko)
Other versions
KR20020005072A (en
Inventor
김승언
정희원
현용택
이용태
Original Assignee
황해웅
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 황해웅, 한국기계연구원 filed Critical 황해웅
Priority to KR1020000037547A priority Critical patent/KR100337426B1/en
Publication of KR20020005072A publication Critical patent/KR20020005072A/en
Application granted granted Critical
Publication of KR100337426B1 publication Critical patent/KR100337426B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials For Medical Uses (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

본 발명은 저비용 고강도 α+ β 티타늄 합금 및 그 제조방법에 관한 것으로, 그 목적은 티타늄(Ti)-알루미늄(Al)계를 기본조성으로 하는 α+ β 합금에 인체에도 무해하고 저가인 β상 안정화 원소를 첨가하여 우수한 상온 및 고온 인장특성을 구비하는 저비용 고강도 α+β 티타늄 합금 및 제조방법을 제공하는 것이다.The present invention relates to a low cost high strength α + β titanium alloy and a method of manufacturing the same, the object of which is harmless to human body and low cost β phase stabilization on α + β alloy based on titanium (Ti) -aluminum (Al) system It is to provide a low-cost high-strength α + β titanium alloy and a manufacturing method having excellent room temperature and high temperature tensile properties by adding an element.

본 발명은 티타늄합금에 있어서; 철(Fe) : 3.5∼4.5 중량비, 규소(Si) : 0.3∼1.0 중량비, 알루미늄(Al) : 1.5∼6.5 중량비 및 티타늄(Ti) : 잔부로 조성된 저비용 고강도 α+β 티타늄 합금 및 제조방법을 제공함에 있다.The present invention is a titanium alloy; Low-cost, high strength α + β titanium alloy composed of iron (Fe): 3.5 to 4.5 weight ratio, silicon (Si): 0.3 to 1.0 weight ratio, aluminum (Al): 1.5 to 6.5 weight ratio, and titanium (Ti): balance. In providing.

Description

저비용 고강도 α+β 티타늄 합금 및 그 제조방법{Low Cost and High Strength α+ βTitanium Alloy and its Manufacture}Low cost and high strength α + β titanium alloy and its manufacture

본 발명은 저비용 고강도 α+ β 티타늄 합금 및 그 제조방법에 관한 것으로, 특히 전체 티타늄합금 사용량의 60% 이상을 차지하고 있는 Ti(티타늄)-6Al(알루미늄)-4V(바나듐) 의 고가인 바나듐(V)을 저가인 원소로 대체한 후 상온 및 고온 기계적 성질을 개선한 저비용 고강도 α+ β 티타늄 합금 및 그 제조방법에 관한 것이다.The present invention relates to a low cost, high strength α + β titanium alloy and a method for manufacturing the same, and particularly to vanadium (V), which is expensive of Ti (titanium) -6Al (aluminum) -4V (vanadium), which accounts for 60% or more of total titanium alloy usage. The present invention relates to a low cost, high strength α + β titanium alloy having a low cost element and improved mechanical properties at room temperature and high temperature.

티타늄합금은 높은 비강도, 우수한 내식성, 생체친화성 등으로 인하여 항공·우주, 해양, 스포츠, 의료 등의 다양한 산업 분야에 적용되어지고 있다. 티타늄합금에서의 주요 평형상은 α와 β상으로 합금원소의 종류와 양에 따라 상온에서 안정한 평형상이 α상이 되기도 하고 β상이 되기도 한다. 이와 같이 상온에서의 안정상 기준으로 티타늄합금은 일반적으로 α합금, β합금, α+β합금으로 분류된다. 이 중 가장 널리 사용되고 있는 합금은 α+β합금으로, α상을 안정화시키고 고용강화 효과를 갖는 Ti(티타늄)-Al(알루미늄)계를 기본 조성으로 하고, 여기에 몰리브덴(Mo), 철(Fe), 바나듐(V), 크롬(Cr) 등의 β상 안정화 원소나 지르코늄(Zr), 주석(Sn) 등의 중성원소가 함유된다. α+β합금 중 가장 대표적인 합금은 Ti(티타늄)-6Al(알루미늄)-4V(바나듐)으로 열간가공성, 용접성이 우수하고 열처리에 의한 다양한 기계적 성질이 얻어지기 때문에 전체 티타늄합금 사용량의 60% 이상을 차지하고 있다.Titanium alloys have been applied to various industries such as aviation, aerospace, marine, sports, medical, etc. due to their high specific strength, excellent corrosion resistance and biocompatibility. The major equilibrium phases in titanium alloys are α and β phases. Depending on the type and amount of alloying elements, the equilibrium phases stable at room temperature may be either α phase or β phase. As such, titanium alloys are generally classified into α alloys, β alloys, and α + β alloys at room temperature. The most widely used alloy is α + β alloy, which is based on Ti (titanium) -Al (aluminum) system which stabilizes the α phase and has a solid solution strengthening effect, and includes molybdenum (Mo) and iron (Fe). ), Β-phase stabilizing elements such as vanadium (V) and chromium (Cr), and neutral elements such as zirconium (Zr) and tin (Sn). The most representative alloy of α + β alloy is Ti (titanium) -6Al (aluminum) -4V (vanadium). Occupies.

그러나 티타늄 합금 개발이 주로 항공우주용 목적으로 이루어져 왔기 때문에 가격보다는 물성 위주로 합금원소가 선정되어 고가이면서 공급이 용이하지 않은 합금 체계로 이루어져 왔다. 특히 Ti(티타늄)-6Al(알루미늄)-4V(바나듐)에 사용되고 있는 바나듐(V)은 고가의 원소인데다가 인체에 해로운 독성을 가지기 때문에, 이 합금의 특수목적 사용에 많은 제약조건이 있었다. 따라서, 대표적인 β상 안정화 원소인 바나듐(V)을 값이 싸고 인체에도 비교적 무해한 다른 β상 안정화 원소로 대체하여 저가의 신합금을 개발하려는 노력이 지속되어져 왔으며, 이러한 노력의 결과로 Ti(티타늄)-5Al(알루미늄)-2.5Fe(철), Ti(티타늄)-6Al(알루미늄)-0.1Si(규소)등과 같은 합금이 개발되었으나, β안정화 원소인 철(Fe)의 함량이 최적화 되지 않음에 따라, 상온 및 고온 기계적 특성이 다소 미흡한 경향이 있는 등 여러 가지 문제점이 있었다.However, since the development of titanium alloys has been mainly made for aerospace purposes, alloy elements have been selected based on physical properties rather than prices, and have been made of alloy systems that are expensive and not easy to supply. In particular, vanadium (V), which is used for Ti (titanium) -6Al (aluminum) -4V (vanadium), is an expensive element and has harmful toxicity to the human body. Therefore, there are many constraints on the special purpose of the alloy. Therefore, efforts have been made to develop low-cost new alloys by replacing vanadium (V), which is a representative β-phase stabilizing element, with other β-phase stabilizing elements which are inexpensive and relatively harmless to the human body. As a result, Ti (titanium) Alloys such as -5Al (aluminum) -2.5Fe (iron) and Ti (titanium) -6Al (aluminum) -0.1Si (silicon) have been developed, but the content of iron (Fe), which is a β-stabilizing element, has not been optimized. There are several problems, such as the tendency of the mechanical properties at room temperature and high temperature to be somewhat insufficient.

본 발명은 상기와 같은 문제점을 고려하여 이루어진 것으로, 그 목적은 티타늄(Ti)-알루미늄(Al)계를 기본조성으로 하는 α+β 합금에 인체에도 무해하고 저가인 β상 안정화 원소를 첨가하여 우수한 상온 및 고온 인장특성을 구비하는 저비용 고강도 α+β 티타늄 합금 및 그 제조방법을 제공하는 것이다.The present invention has been made in view of the above problems, and an object thereof is excellent by adding a β-phase stabilizing element, which is harmless to humans and inexpensive, to an α + β alloy based on a titanium (Ti) -aluminum (Al) system. It is to provide a low cost high strength α + β titanium alloy having a normal temperature and high temperature tensile properties and a method of manufacturing the same.

본 발명은 티타늄합금에 있어서; 철(Fe) : 3.5∼4.5 중량비, 규소(Si) : 0.3∼1.0 중량비, 알루미늄(Al) : 1.5∼6.5 중량비 및 티타늄(Ti) : 잔부로 조성된 저비용 고강도 α+β 티타늄 합금 및 그 제조방법을 제공함에 있다.The present invention is a titanium alloy; Low cost high strength α + β titanium alloy composed of iron (Fe): 3.5 to 4.5 weight ratio, silicon (Si): 0.3 to 1.0 weight ratio, aluminum (Al): 1.5 to 6.5 weight ratio and titanium (Ti): balance In providing.

도 1 은 상온에서 TFS 합금의 최대 인장강도와 연신율1 is the maximum tensile strength and elongation of TFS alloy at room temperature

도 2 는 고온(400℃)에서 TFS 합금의 최대 인장강도와 연신율2 is the maximum tensile strength and elongation of TFS alloy at high temperature (400 ° C.).

도 3 은 Ti(티타늄)-4Fe(철)-ySi(규소)의 규소화물 조직3 is a silicide structure of Ti (titanium) -4Fe (iron) -ySi (silicon)

(a) 0.5 wt% 규소(Si), (b) 1 wt% 규소(Si)(a) 0.5 wt% silicon (Si), (b) 1 wt% silicon (Si)

(c) 2 wt% 규소(Si), (d) 4 wt% 규소(Si)(c) 2 wt% silicon (Si), (d) 4 wt% silicon (Si)

도 4 는 상온에서 Ti(티타늄)-4Fe(철)-(0.5,1)Si(규소)-xAl(알루미늄) 합금의 최대 인장강도와 연신율 (빗금친 영역 : 단련합금 Ti(티타늄)-6Al(알루미늄)-4V(바나듐)합금의 최대 인장강도, 점선 : 주조합금 Ti(티타늄)-6Al(알루미늄)-4V(바나듐)합금의 최대 인장강도)4 shows the maximum tensile strength and elongation of Ti (titanium) -4Fe (iron)-(0.5,1) Si (silicon) -xAl (aluminum) alloy at room temperature (hatched area: annealed alloy Ti (titanium) -6Al ( Aluminum) -4V (vanadium) alloy maximum tensile strength, dotted line: main alloy Ti (titanium) -6Al (aluminum) -4V (vanadium) alloy maximum tensile strength)

도 5 는 고온(400℃)에서 Ti(티타늄)-4Fe(철)-(0.5,1)Si(규소)-xAl(알루미늄) 합금의 최대 인장강도와 연신율 (빗금친 영역 : 단련합금 Ti(티타늄)-6Al(알루미늄)-4V(바나듐)합금의 최대 인장강도, 점선 : 주조합금 Ti(티타늄)-6Al(알루미늄)-4V(바나듐)합금의 최대 인장강도)FIG. 5 shows the maximum tensile strength and elongation of Ti (titanium) -4Fe (iron)-(0.5,1) Si (silicon) -xAl (aluminum) alloy at high temperature (400 ° C.) (hatched area: annealed alloy Ti (titanium) Maximum tensile strength of -6Al (aluminum) -4V (vanadium) alloy, dotted line: Maximum tensile strength of main alloy Ti (titanium) -6Al (aluminum) -4V (vanadium) alloy)

본 발명은 티타늄(Ti)-알루미늄(Al)계를 기본조성으로 하는 α+β 합금 중 가장 대표적인 Ti(티타늄)-6Al(알루미늄)-4V(바나듐)합금을 기준으로 하여, 고가의 바나듐(V)을 (3.5∼4.5 중량비)의 저가인 철(Fe)로 대체하고, 아울러 상온 및 고온 기계적 성질을 개선하기 위해 (0.3∼1.0 중량비)의 규소(Si)를 첨가하고, β상 안정화 원소의 변화에 상응하는 α상 안정화 원소의 변화도 도모하여 합금의 알루미늄(Al) 함량을 (1.5∼6.5 중량비)로 변화시킨 새로운 저비용 고강도 α+β 티타늄합금에 관한 것이다.The present invention is based on the most representative Ti (titanium) -6Al (aluminum) -4V (vanadium) alloy of the α + β alloy based on a titanium (Ti) -aluminum (Al) system, the expensive vanadium (V) ) Is replaced with (3.5-4.5 weight ratio) low-cost iron (Fe), and (0.3-1.0 weight ratio) silicon (Si) is added to improve the room temperature and high temperature mechanical properties, and the β-phase stabilization element is changed. The present invention relates to a new low cost high strength α + β titanium alloy in which the aluminum (Al) content of the alloy is changed to (1.5 to 6.5 weight ratio) by changing the α phase stabilizing element corresponding thereto.

표 1 은 본 발명합금과 비교 및 종래합금의 조성을 나타낸 것으로, 본 발명합금의 제조를 위해 아크용해로를 이용하여 아르곤(Ar) 분위기에서 모합금을 제조한 후, 순 동(Cu)으로 제작한 반영구 금속주형을 사용하여 원심주조방법으로 제작하였다. 또한, 주조 후 합금의 조직을 균질화하고 기공 등의 주조결함을 제거하기 위해서 900℃, 100 MPa 조건에서 2시간 동안 열간정수압처리(Hot Isostatic Pressing)하였다. 상기와 같은 방법에 의해 제조된 본 발명의 주 조성은 철(Fe) ; 3.5∼4.5 중량비, 알루미늄(Al) ; 1.5∼6.5 중량비, 규소(Si) ; 0.3∼1.0 중량비, 및 티타늄(Ti) ; 나머지로 되어 있다.Table 1 shows the composition of the present invention compared with the conventional alloy, the semi-permanent made of pure copper (Cu) after manufacturing the master alloy in the argon (Ar) atmosphere using an arc melting furnace for the production of the present invention alloy It was produced by centrifugal casting method using a metal mold. In addition, in order to homogenize the structure of the alloy after casting and to remove casting defects such as pores, hot isostatic pressing was performed at 900 ° C. and 100 MPa for 2 hours. The main composition of the present invention prepared by the above method is iron (Fe); 3.5-4.5 weight ratio, aluminum (Al); 1.5 to 6.5 weight ratio, silicon (Si); 0.3 to 1.0 weight ratio, and titanium (Ti); It is the rest.

상기 β상을 안정화시켜 합금을 강화시는 철(Fe)은 도 1,2 에 도시된 바와 같이, 상온에서 β상을 안정화시키기 위한 최소한의 조성은 3.5wt% 이며, 3.5wt% 이하의 조성에서는 상온에서 충분한 양의 β상을 안정화 시킬 수 없다. 또한, 티타늄(Ti)-철(Fe)-규소(Si) 3원계합금의 상온 및 고온 기계적 성질로부터 2wt%보다 4wt% 의 조성이 기계적 성질이 우수함을 알 수 있다.As shown in FIGS. 1 and 2, the minimum composition for stabilizing the β phase at room temperature is 3.5 wt%, and the composition of the iron at less than 3.5 wt% It is not possible to stabilize a sufficient amount of β-phase at room temperature. In addition, from the room temperature and high temperature mechanical properties of the titanium (Ti) -iron (Fe) -silicon (Si) ternary alloy, it can be seen that the composition of 4wt% is better than the 2wt%.

또한, 4.5wt% 이상의 철(Fe)이 첨가될 경우, 취약한 ω상과 TiFe와 같은 금속간화합물이 형성되어 합금의 연성을 급격히 저하시킨다. 따라서 본 합금계에서의 철(Fe)의 최대함량은 4.5wt% 로 하는 것이 바람직하다.In addition, when 4.5 wt% or more of iron (Fe) is added, a weak ω phase and an intermetallic compound such as TiFe are formed, thereby rapidly decreasing the ductility of the alloy. Therefore, the maximum content of iron (Fe) in the present alloy system is preferably set to 4.5 wt%.

상기 고온 인장특성을 개선하기 위하여 첨가되는 규소(Si) 는 0.3 ~ 1.0 중량비로, 도 3 에 도시된 바와 같이 규소(Si) 함량이 증가하면, 규소(Si) 티타늄 기지에 고용되지 않고 티타늄 실리사이드의 형태로 석출한다. 석출물의 크기가 1μm 이상이 되면, 합금의 기계적 성질은 저하하며, 이러한 석출물이 형성되는 규소(Si)의 조성은 1wt% 이상이었다. 따라서 본 발명에서의 최대 규소(Si) 함량은 1wt% 이하가 바람직하다. 일반적으로 첨가되는 Si 함량은 0.3wt% 이하인데, 본 합금에서는 최대 고용한인 0.3wt% 이상을 첨가하여 Si의 고용강화와 석출강화효과를 동시에 얻고자 하였다. 즉, 0.3wt% 이상이 되면 석출물이 생기는데 이 석출물에 의해 합금의 강도가 향상될 수 있다.Silicon (Si) added to improve the high temperature tensile properties is 0.3 to 1.0 by weight, and when the silicon (Si) content is increased as shown in FIG. 3, it is not dissolved in the silicon (Si) titanium base, Precipitates in form. When the precipitates had a size of 1 μm or more, the mechanical properties of the alloy were lowered, and the composition of silicon (Si) in which these precipitates were formed was 1 wt% or more. Therefore, the maximum silicon (Si) content in the present invention is preferably 1wt% or less. In general, the added Si content is 0.3wt% or less. In this alloy, a maximum solid solution of 0.3wt% or more was added to simultaneously obtain a solid solution strengthening and precipitation strengthening effect of Si. That is, when more than 0.3wt% precipitates are generated by the precipitate can be improved the strength of the alloy.

상기 α안정화 원소인 알루미늄(Al) 은 도 4 및 도 5 에 도시된 바와 같이 알루미늄(Al) 함량이 첨가됨에 따라 알루미늄(Al)의 티타늄 기지로의 고용에 의해서 강도가 증가한다. 그러나, 본 발명에서 알루미늄(Al) 함량이 1.5wt% 이하로 첨가되는 경우 그 강도가 Ti(티타늄)-6Al(알루미늄)-4V(바나듐) 보다 높지 못하게 되므로, 본 발명에서의 알루미늄(Al)의 최소 첨가량은 1.5wt % 이 바람직하다.As shown in FIGS. 4 and 5, the α-stabilizing element aluminum (Al) increases in strength by solid solution of aluminum (Al) to the titanium base as the aluminum (Al) content is added. However, in the present invention, when the aluminum (Al) content is added below 1.5wt%, the strength thereof is not higher than Ti (titanium) -6Al (aluminum) -4V (vanadium). The minimum amount added is preferably 1.5 wt%.

또한, 알루미늄(Al)이 7wt% 이상 첨가되는 경우, 취약한 Ti3Al이 형성되어 티타늄의 연성은 급격히 저하된다는 것은 이미 널이 알려진 사실이므로, 본 발명에서의 최대 알루미늄(Al) 첨가량은 6.5wt% 이 바람직하다.In addition, when aluminum (Al) is added 7wt% or more, it is already known that a weak Ti 3 Al is formed and the ductility of titanium is rapidly reduced, the maximum aluminum (Al) addition amount in the present invention is 6.5wt% This is preferred.

[표 1]TABLE 1

시편번호Psalm Number 합금계(wt%)Alloy system (wt%) 비고Remarks 1One Ti-0.5Fe-0.5SiTi-0.5Fe-0.5Si 비교예Comparative example 22 Ti-1Fe-0.5SiTi-1Fe-0.5Si 비교예Comparative example 33 Ti-2Fe-0.5SiTi-2Fe-0.5Si 비교예Comparative example 44 Ti-4Fe-0.5SiTi-4Fe-0.5Si 비교예Comparative example 55 Ti-0.5Fe-1SiTi-0.5Fe-1Si 비교예Comparative example 66 Ti-1Fe-1SiTi-1Fe-1Si 비교예Comparative example 77 Ti-2Fe-1SiTi-2Fe-1Si 비교예Comparative example 88 Ti-4Fe-1SiTi-4Fe-1Si 비교예Comparative example 99 Ti-6Al-4VTi-6Al-4V 비교예Comparative example 10* 10 * Ti-5Al-2.5FeTi-5Al-2.5Fe 종례예Example 11** 11 ** Ti-6Al-1.7Fe-0.1SiTi-6Al-1.7Fe-0.1Si 종례예Example 1212 Ti-2Al-4Fe-0.5SiTi-2Al-4Fe-0.5Si 실시예Example 1313 Ti-4Al-4Fe-0.5SiTi-4Al-4Fe-0.5Si 실시예Example 1414 Ti-6Al-4Fe-0.5SiTi-6Al-4Fe-0.5Si 실시예Example 1515 Ti-2Al-4Fe-1SiTi-2Al-4Fe-1Si 실시예Example 1616 Ti-4Al-4Fe-1SiTi-4Al-4Fe-1Si 실시예Example 1717 Ti-6Al-4Fe-1SiTi-6Al-4Fe-1Si 실시예Example

* Source : Materials Properties Handbook Titanium Alloys, 상온인장특성 : 1h at 900℃/WQ + 2h at 700℃ 의 조건으로 시효처리한 시편Source: Materials Properties Handbook Titanium Alloys

** Source : Materials Properties Handbook Titanium Alloys, 상온 및 고온인장특성 : α-β processed bar, 고온 인장특성은 300℃에서 실시하였음.** Source: Materials Properties Handbook Titanium Alloys, room temperature and high temperature tensile properties: α-β processed bar, high temperature tensile properties were performed at 300 ℃.

표 2 는 본 발명과 비교 및 종래합금의 상온 기계적 성질을 나타낸 것으로, 표점거리 22.4㎜ 의 봉상의 인장시편을 제조하여 상온 인장특성을 조사하였다. Fe의 함량이 증가할수록 인장강도는 증가하였으며, 3.5-4.5wt%가 최적의 조성이었다.또한, Si 함량은 1wt% 이상일 경우, 1㎛ 이상의 크기를 가지는 조대한 실리사이드가 형성되어 기계적 성질을 저하시켰으며, 알루미늄(Al) 함량은 증가할수록 인장강도는 증가함을 알 수 있었다. 본 발명은 Ti(티타늄)-6Al(알루미늄)-4V(바나듐)합금에 비해 항복강도, 인장강도, 연신율이 월등히 우수할 뿐만 아니라, 종래의 저비용 α+β 티타늄합금보다 우수한 기계적 특성 즉, 상온에서 인장강도 975 ~ 1241 MPa, 연신율 6.3 ~ 16 % 의 기계적 특성을 나타내었다.Table 2 shows the room temperature mechanical properties of the present invention compared with the conventional alloy. A bar-shaped tensile specimen with a gauge length of 22.4 mm was prepared to investigate the room temperature tensile properties. As Fe content increased, tensile strength increased, and 3.5-4.5wt% was the optimum composition. Also, when Si content is 1wt% or more, coarse silicide having a size of 1µm or more is formed to degrade mechanical properties. As the aluminum (Al) content increases, the tensile strength increases. The present invention not only has superior yield strength, tensile strength, and elongation compared to Ti (titanium) -6Al (aluminum) -4V (vanadium) alloy, but also superior mechanical properties, namely, at room temperature, to conventional low cost α + β titanium alloy. Mechanical properties of tensile strength 975 ~ 1241 MPa and elongation 6.3 ~ 16% were shown.

[표 2]TABLE 2

시편번호Psalm Number 인장강도(MPa)Tensile Strength (MPa) 항복강도(MPa)Yield strength (MPa) 연신율(%)Elongation (%) 1One 567567 478478 22.222.2 22 565565 398398 26.426.4 33 690690 553553 19.619.6 44 799799 634634 13.913.9 55 587587 475475 23.023.0 66 645645 524524 18.118.1 77 704704 539539 19.419.4 88 831831 611611 13.913.9 99 917917 722722 8.08.0 1010 10501050 920920 15.515.5 1111 10521052 991991 16.516.5 1212 975975 930930 13.013.0 1313 10931093 10551055 16.016.0 1414 11911191 11411141 12.012.0 1515 10221022 871871 11.011.0 1616 11081108 949949 11.711.7 1717 12411241 11791179 6.36.3

표 3 은 본 발명과 비교 및 종래합금의 고온(400℃) 기계적 성질을 나타낸 것으로, 표점거리 22.4 의 봉상의 인장시편을 제조하여 400℃의 고온에서 인장특성을 조사하였다. 본 발명은 Ti(티타늄)-6Al(알루미늄)-4V(바나듐) 합금에 비해 항복강도, 인장강도가 월등히 우수할 뿐만 아니라, 종래의 저비용 α+ β 티타늄 합금보다 우수한 기계적 성질 즉, 고온(400℃)에서 인장강도 678 ~ 981 MPa, 연신율 8.8 ~ 18.1 % 의 고온 기계적 특성을 나타내었다.Table 3 shows the mechanical properties of the high-temperature (400 ° C) and comparative alloys of the present invention. The tensile properties of the rod-shaped specimens with a gauge length of 22.4 were prepared and investigated at high temperature of 400 ° C. The present invention not only has superior yield strength and tensile strength compared to Ti (titanium) -6Al (aluminum) -4V (vanadium) alloy, but also has excellent mechanical properties, namely high temperature (400 ° C.), compared to conventional low-cost α + β titanium alloys. ) Showed high temperature mechanical properties of tensile strength of 678 ~ 981 MPa and elongation of 8.8 ~ 18.1%.

[표 3]TABLE 3

시편번호Psalm Number 인장강도(MPa)Tensile Strength (MPa) 항복강도(MPa)Yield strength (MPa) 연신율(%)Elongation (%) 1One 309309 218218 26.326.3 22 327327 215215 23.623.6 33 -- -- -- 44 532532 323323 12.912.9 55 385385 256256 17.817.8 66 403403 275275 17.717.7 77 -- -- -- 88 585585 337337 11.811.8 99 609609 450450 20.520.5 1010 720720 540540 -- 1111 798798 667667 17.517.5 1212 678678 442442 14.814.8 1313 779779 570570 17.017.0 1414 930930 731731 18.118.1 1515 750750 484484 11.011.0 1616 807807 598598 9.99.9 1717 981981 787787 8.88.8

상기 3.5 ~ 4.5 wt% 첨가되는 철(Fe)은 상온에서 β상을 안정시키며, 합금의 연성을 저하시키지 않는 범위로, β상 분율의 증가, α/β상경계 증가와 고용강화시킨다. 또한, 0.3 ~ 1.0 wt% 첨가되는 규소(Si)는 티타늄에 고용되거나 0.1 ㎛ 이하의 크기를 가지는 티타늄 실리사이드로 미세하게 석출됨으로써 합금을 강화시킨다. 또한, 1.5 ~ 6.5 wt% 첨가되는 알루미늄(Al)은 기지에 고용되어 α상을 안정화시켜 합금을 강화시킨다.The iron (Fe) is added to 3.5 ~ 4.5 wt% stabilizes the β phase at room temperature, and does not reduce the ductility of the alloy, increases the β phase fraction, increases the α / β phase boundary and solid solution. In addition, silicon (Si) added in the 0.3 ~ 1.0 wt% is strengthened by finely precipitated into titanium silicide having a solid solution in titanium or having a size of 0.1 ㎛ or less. In addition, aluminum (Al) added 1.5 to 6.5 wt% is solid solution in the matrix to stabilize the α phase to strengthen the alloy.

본 발명은 상술한 특정의 바람직한 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형실시가 가능한 것은 물론이고, 그와 같은 변경은 청구범위 기재의 범위내에 있게 된다.The present invention is not limited to the above-described specific preferred embodiments, and various modifications can be made by any person having ordinary skill in the art without departing from the gist of the present invention claimed in the claims. Of course, such changes will fall within the scope of the claims.

이와 같이 본 발명은 α상을 안정화시키고 고용강화 효과를 구비하는 Ti-Al계를 기본조성물에 철(Fe)과 같이 원료가 풍부하면서도 저가이고, 최종 합금의 기계적 성질을 저하시키지 않는 β안정화 원소의 함량과, 고온 기계적 특성을 개선하기 위해 첨가되는 규소(Si) 함량 및, 이들의 첨가량 변화에 따라 α 안정화 원소인 알루미늄(Al)의 함량을 최적화 하여, 기존의 α+β 합금인 Ti(티타늄)-6Al(알루미늄)-4V(바나듐) 보다 저렴하고, 생체에 무해한 합금을 얻을 수 있다.As described above, the present invention provides a Ti-Al-based stabilized α phase and a solid-state stabilized element of β-stabilized element, which is rich in raw materials such as iron (Fe) and inexpensive, and does not degrade the mechanical properties of the final alloy. Content, the content of silicon (Si) added to improve high temperature mechanical properties, and the content of aluminum (Al), which is an α stabilizing element, according to the change in the amount of addition thereof, thereby optimizing the content of Ti (titanium), which is an existing α + β alloy. An alloy which is cheaper than -6Al (aluminum) -4V (vanadium) and is harmless to a living body can be obtained.

또한, Ti(티타늄)-6Al(알루미늄)-4V(바나듐) 및 기존에 개발된 저비용 α+β 합금보다 우수한 상온 및 고온 인장특성을 구비하므로, 여러 응용분야에 적용할 수 있는 등 많은 효과가 있다.In addition, since Ti (titanium) -6Al (aluminum) -4V (vanadium) and superior low-temperature α + β alloys have been developed at room temperature and high temperature, they can be applied to various applications. .

Claims (2)

티타늄합금에 있어서;In titanium alloys; 철(Fe) : 3.5∼4.5 중량비, 규소(Si) : 0.3∼1.0 중량비, 알루미늄(Al) : 1.5∼6.5 중량비 및 티타늄(Ti) : 잔부로 조성된 것을 특징으로 하는 저비용 고강도 α+β 티타늄 합금.Low cost, high strength α + β titanium alloy, characterized in that it is composed of iron (Fe): 3.5 to 4.5 weight ratio, silicon (Si): 0.3 to 1.0 weight ratio, aluminum (Al): 1.5 to 6.5 weight ratio, and titanium (Ti): balance. . 티타늄합금에 제조방법에 있어서;In a method for producing a titanium alloy; 철(Fe) : 3.5∼4.5 중량비, 규소(Si) : 0.3∼1.0 중량비, 알루미늄(Al) : 1.5∼6.5 중량비 및 티타늄(Ti) : 잔부 로 조성된 합금을 아크용해로를 이용하여 아르곤(Ar) 분위기에서 용해하여 모합금을 제조하고, 이를 순 동(Cu) 반영구 금속주형을 사용하여 원심주조하며, 주조된 합금을 900℃, 100 MPa 조건에서 2시간 동안 열간정수압처리(Hot Isostatic Pressing)하여 조직을 균질화하고 기공 등의 주조결함을 제거하는 것을 특징으로 하는 저비용 고강도 α+ β 티타늄 합금 제조방법.Iron (Fe): 3.5 to 4.5 weight ratio, silicon (Si): 0.3 to 1.0 weight ratio, aluminum (Al): 1.5 to 6.5 weight ratio and titanium (Ti): balance alloy consisting of argon (Ar) using an arc melting furnace Dissolve in the atmosphere to prepare a master alloy, centrifugal casting using a pure copper (Cu) semi-permanent metal mold, and the cast alloy is hot Isostatic Pressing (Hot Isostatic Pressing) for 2 hours at 900 ℃, 100 MPa conditions A low cost high strength α + β titanium alloy manufacturing method, characterized in that the homogenization and removing the casting defects such as pores.
KR1020000037547A 2000-07-01 2000-07-01 Low Cost and High Strength α+ βTitanium Alloy and its Manufacture KR100337426B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000037547A KR100337426B1 (en) 2000-07-01 2000-07-01 Low Cost and High Strength α+ βTitanium Alloy and its Manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000037547A KR100337426B1 (en) 2000-07-01 2000-07-01 Low Cost and High Strength α+ βTitanium Alloy and its Manufacture

Publications (2)

Publication Number Publication Date
KR20020005072A KR20020005072A (en) 2002-01-17
KR100337426B1 true KR100337426B1 (en) 2002-05-22

Family

ID=19675758

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000037547A KR100337426B1 (en) 2000-07-01 2000-07-01 Low Cost and High Strength α+ βTitanium Alloy and its Manufacture

Country Status (1)

Country Link
KR (1) KR100337426B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190105835A (en) 2018-03-06 2019-09-18 인하대학교 산학협력단 Method for inhibiting pore formation of A356 alloy by addition of manganese

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5796810B2 (en) * 2012-06-18 2015-10-21 株式会社神戸製鋼所 Titanium alloy material with high strength and excellent cold rolling properties
KR102197317B1 (en) 2017-11-09 2021-01-06 한국재료연구원 Titanium alloy with high strength and high ductility consisted of elements with melting point of 1,900℃ or less

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01222038A (en) * 1988-02-29 1989-09-05 Mitsubishi Metal Corp Manufacture of alpha+beta type ti alloy member having high strength and high toughness
JPH03219035A (en) * 1989-10-13 1991-09-26 Honda Motor Co Ltd Titanium base alloy for high strength structural member, manufacture of titanium base alloy for high strength structural member and manufacture of high strength structural member made of titanium base alloy
JPH0762474A (en) * 1993-08-30 1995-03-07 Nippon Steel Corp Alpha+beta type titanium alloy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01222038A (en) * 1988-02-29 1989-09-05 Mitsubishi Metal Corp Manufacture of alpha+beta type ti alloy member having high strength and high toughness
JPH03219035A (en) * 1989-10-13 1991-09-26 Honda Motor Co Ltd Titanium base alloy for high strength structural member, manufacture of titanium base alloy for high strength structural member and manufacture of high strength structural member made of titanium base alloy
JPH0762474A (en) * 1993-08-30 1995-03-07 Nippon Steel Corp Alpha+beta type titanium alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190105835A (en) 2018-03-06 2019-09-18 인하대학교 산학협력단 Method for inhibiting pore formation of A356 alloy by addition of manganese

Also Published As

Publication number Publication date
KR20020005072A (en) 2002-01-17

Similar Documents

Publication Publication Date Title
JP4222157B2 (en) Titanium alloy with improved rigidity and strength
US5350466A (en) Creep resistant titanium aluminide alloy
EP1340825B1 (en) Ni-base alloy, heat-resistant spring made of the alloy, and process for producing the spring
JP2679109B2 (en) Intermetallic compound TiA-based light-weight heat-resistant alloy
JP2543982B2 (en) Titanium-aluminum alloy modified with manganese and niobium
GB2219310A (en) Chromium- and niobium-modified titanium aluminum alloys and method of preparation
WO2005098063A1 (en) HIGH-STRENGTH α+β-TYPE TITANIUM ALLOY
JP2004010963A (en) HIGH STRENGTH Ti ALLOY AND ITS PRODUCTION METHOD
GB2266096A (en) Method of producing titanium aluminium alloys modified by chromium and niobium
JP2009114513A (en) TiAl-BASED ALLOY
JP2569710B2 (en) Ti-A1 intermetallic compound type cast alloy having room temperature toughness
KR101835408B1 (en) Titanium alloy with excellent mechanical property and method for manufacturing the same
KR100337426B1 (en) Low Cost and High Strength α+ βTitanium Alloy and its Manufacture
KR102245612B1 (en) Ti-Al-Fe-Sn TITANIUM ALLOYS WITH EXCELLENT MECHANICAL PROPERTIES AND LOW COST
JPH05255780A (en) High strength titanium alloy having uniform and fine structure
US5026441A (en) High strengths copper base shape memory alloy and its manufacturing process
CA2009598C (en) Gamma titanium aluminum alloys modified by chromium and tungsten and method of preparation
JPH04501440A (en) Improved nickel aluminide alloy for high temperature structural materials
JP2001152268A (en) High strength titanium alloy
JPH0277537A (en) Cooper base alloy to which particle size reducing material containing aluminum beta brass
JP2726929B2 (en) Aluminum alloy powder and aluminum alloy material for powder metallurgy
JP2711296B2 (en) Heat resistant aluminum alloy
JPH10500453A (en) Nickel-aluminum-base alloy between metals
CN100439534C (en) High tenacity casting magnesium alloy
JP2003201530A (en) High-strength titanium alloy with excellent hot workability

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130509

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20140509

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20151209

Year of fee payment: 19