WO2002070763A1 - Titanium alloy bar and method for production thereof - Google Patents

Titanium alloy bar and method for production thereof Download PDF

Info

Publication number
WO2002070763A1
WO2002070763A1 PCT/JP2002/001710 JP0201710W WO02070763A1 WO 2002070763 A1 WO2002070763 A1 WO 2002070763A1 JP 0201710 W JP0201710 W JP 0201710W WO 02070763 A1 WO02070763 A1 WO 02070763A1
Authority
WO
WIPO (PCT)
Prior art keywords
rolling
titanium alloy
less
phase
type titanium
Prior art date
Application number
PCT/JP2002/001710
Other languages
French (fr)
Japanese (ja)
Inventor
Hideaki Fukai
Atsushi Ogawa
Kuninori Minakawa
Original Assignee
Jfe Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfe Steel Corporation filed Critical Jfe Steel Corporation
Priority to EP02703899A priority Critical patent/EP1382695A4/en
Priority to JP2002570785A priority patent/JP4013761B2/en
Publication of WO2002070763A1 publication Critical patent/WO2002070763A1/en
Priority to US10/418,252 priority patent/US20030223902A1/en
Priority to US10/968,521 priority patent/US20050051245A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals

Definitions

  • the present invention relates to a titanium alloy bar excellent in ductility, fatigue characteristics and workability, particularly to an a + i3 type titanium alloy bar and a method for manufacturing the same.
  • BACKGROUND ART Titanium alloys are used as structural materials in chemical plants, generators, aircraft, and other fields because of their high strength, lightness, and excellent corrosion resistance.
  • ⁇ +] 3 type titanium alloys that have high strength and relatively good workability.
  • Products using titanium alloy include various shapes such as thin plates, thick plates and bars.
  • the rod is used in its original shape, but in some cases it is processed into a complex shape, such as a threaded part of Porto, or it is used as a forged material. Excellent workability is required in addition to ductility and fatigue properties.
  • Figure 1 shows a typical method of manufacturing a bar.
  • the temperature of the material to be rolled increases during hot rolling due to the heat generated during processing, so that stable hot rolling cannot be performed and ductility and fatigue properties
  • the temperature of the material to be rolled rises to the i3 transformation point or higher, the ⁇ ⁇ Therefore, excellent ductility and fatigue properties cannot be obtained.
  • the transformation point is high, the temperature of the material to be rolled hardly becomes higher than the i3 transformation point due to the heat generated during processing. Ductile, fatigue properties and workability cannot be obtained.
  • Japanese Patent Application Laid-Open No. 59-82101 discloses a method of reducing the cross-sectional reduction rate per rolling pass at 0: zone temperature and + / 3 zone temperature to 40% or less. Is disclosed.
  • Japanese Patent Application Laid-Open No. 58-25465 discloses a method of water-cooling a material to be rolled in order to suppress a rise in temperature due to heat generated during processing.
  • Paper 1 “Hot Bar Rolling of Ti-6A1-4V in a Controllable Continuous Mill (Titanium '92 Science and Technology)”, the rolling speed is used to suppress the heat generated during processing.
  • Figure 3 shows the relationship between the temperature of the material to be rolled and the rolling time in bar rolling of the Ti-6A4V alloy and the Ti-44.5Al-3V-2Fe-2Mo alloy.
  • the heating temperature is 950 ° for the Ti-6A4 4V alloy (: for the Ti-4.5A3 3V-2Fe-2 ⁇ 'alloy, the j3 transformation point of which is 100 ° C lower than the Ti-6A4V alloy)
  • the temperature was lowered to 850 ° C by the difference between the three transformation points.
  • Rolling was performed using a reverse mill and a tandem mill, and the rolling speed, rolling reduction, and pass schedule were the same for both alloys. Rolling on a reverse rolling mill was 2.7 mI sec for both alloys, and rolling 3 ⁇ 4i in the tandem rolling mill was 2.25 m / sec for both alloys in the final rolling pass, which was the fastest.
  • the rolling speed is lower than the rolling speed (6 m / sec) described in the above paper 1.
  • the cross-sectional reduction rate is set to 26% at maximum for both alloys.
  • the a + jS type titanium alloy bar has a process of hot rolling the titanium alloy of the above component so that the surface temperature is always below the ⁇ transformation point. It can be manufactured by a method. Brief description of the drawings- FIG. 1 is a diagram showing a typical method of manufacturing a bar.
  • A1 It is an essential element for stabilizing the phase and also contributes to high strength. If it is less than 4, high strength is not sufficiently achieved, and if it exceeds 5%, ductility deteriorates.
  • V An element that stabilizes the three phases and also contributes to high strength. If it is less than 2.5%, high strength is not sufficiently achieved, and) the three phases are not stable. If it exceeds 3.5%, the transformation temperature range is reduced due to the decrease of the 0 transformation point, and the cost is increased. Invite.
  • the temperature rise due to the heat generated during the process causes coarsening of crystal grains and formation of a needle-like structure. Furthermore, the reason why the finished surface temperature, which is the surface temperature immediately after the rolled material has completed the final rolling pass, is in the range of -300) ° C or more and (T 3-100) ° C or less is ⁇ -300) ° c If it is less than the above, cracking sensitivity and deformation resistance will increase, and if it exceeds (Tjs-loo) ° c, crystal grains will be coarse.
  • hot rolling is performed in a plurality of rolling passes, it is preferable to reduce the rolling reduction per rolling pass to 40% or less in order to prevent a temperature rise due to heat generated during processing.
  • the rolling speed is preferably set to 6 m / sec or less in order to prevent a temperature rise due to heat generated during processing.
  • Rolled material of 125 thigh angle was cut out from titanium alloys AO1 (within the scope of the present invention) and A02 (outside the scope of the present invention) of the chemical composition shown in Table 1 and A02 (within the scope of the present invention). Under the indicated rolling conditions B01-B18, rods having a diameter of 0 strokes or 50 bars were manufactured.
  • the time between rolling passes in Table 2 is ⁇ when the time between rolling passes is 0.167 XS 1/2 sec or more in all rolling passes and X when not.
  • Table 3-Table 20 show the cross-sectional area S, rolling reduction, 0.167 XS 1/2 time between rolling passes, surface temperature and rolled body of the material to be rolled in each rolling pass under each rolling condition.
  • R represents a reverse rolling mill
  • T represents a tandem rolling mill.
  • Tensile tests were performed on the manufactured rods after annealing at 700 ° C or more and 720 ° C or less, and the yield strength (0.2 3 ⁇ 4PS), tensile strength (UTS), extension (El), and drawing (RA) were measured.
  • Table 21 shows the results.
  • the absence of the crystal grain size in the microstructures in the table means that the site consisted only of the ⁇ -structure mainly composed of acicular a, and no equiaxed pro-eutectoid ⁇ -phase could be observed.
  • the finished surface temperature is lower than (T) 3-300) ° C, the temperature of the material to be rolled is too low, the workability is reduced, and cracks occur during rolling.
  • the surface temperature is higher than (T) 3-100), as in the rolling conditions # 04, # 05 and # 07, the microstructure cannot be refined and the ductility and fatigue properties deteriorate.
  • the surface temperature of the material to be rolled is lower than (T j8-300) ° C, the surface temperature of the material to be rolled is too low and cracks occur during rolling.
  • the surface temperature of the material to be rolled is higher than ( ⁇ ⁇ -50) ° C, the center of the roll and the 1 / 4D yarn 13 ⁇ 4 are stitched as in the rolling conditions B02-B05, B07 and B11. It becomes a ⁇ -yarn mainly composed of a shape and has poor ductility and fatigue properties.
  • ⁇ + type titanium alloys in which the volume fraction of proeutectoid ⁇ phase is 50% or more and 80% or less and the average crystal grain size of proeutectoid phase is 6 m or less
  • Kt 3) fatigue strength of 200 MPa.
  • the bar manufactured using rolling conditions B10 and B12 using A02 whose chemical composition is out of the range of the present invention since the rolling conditions were within the range of the present invention, the heat generation during processing was suppressed. Since the particle size exceeds 10, sufficient ductility and fatigue strength cannot be obtained.
  • a cylindrical test piece of ⁇ 8 thigh ⁇ 12 thigh was collected from the radial center of the bar manufactured under the rolling conditions B0-B18 in Example 1 and heated to 800 ° C., compressed by 70%, and compressed. The hot forgeability was evaluated by examining the surface for cracks and rough surfaces.
  • Bars manufactured under rolling conditions B01, B06, B08, B09, B16, ⁇ , and B18 in which the microfilament falls within the scope of the present invention did not cause cracking or roughening, and obtained good hot forgeability.
  • rods manufactured under rolling conditions B10 and B12 in which the crystal grain size of the pro-eutectoid ⁇ phase exceeded 10 m did not crack, but roughened the surface.
  • both the cracks and the rough surface occurred in the bars manufactured under the rolling conditions ⁇ 02, ⁇ 03, ⁇ 04, ⁇ 05, ⁇ 07, Bll, ⁇ 14, and B15 in which the center and the 1 / 4D part consisted of only / 3 phase. .
  • the crystal grain size and the volume fraction of the pro-eutectoid ⁇ phase are within the range of the present invention, but the aspect ratio of the crystal grains in a cross section parallel to the rolling direction is determined. With rolling condition B13 exceeding 4, the surface roughness still occurred c
  • the unit is mass%

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metal Rolling (AREA)

Abstract

An α + β type titanium alloy bar which has a substantial chemical composition in mass %: Al: 4 to 5 %, V: 2.5 to 3.5 %, Fe: 1.5 to 2.5 %, Mo: 1.5 to 2.5 % and balance: Ti, and a structure wherein a pro-eutectoid a phase accounts for a volume percentage of 10 % to 90 %, has an average crystal grain size of 10 νm or less, and exhibits an aspect ratio of a grain of 4 or less in the cross section parallel to the rolling direction. The α + β type titanium alloy bar is excellent in ductility, fatigue characteristics and formability.

Description

明細書 チタン合金棒材およびその製造方法 技術分野 本発明は、 延性、 疲労特性および加工性に優れたチタン合金棒材、 特に、 a + i3 型チタン合金棒材およびその製造方法に関する。 背景技術 チタン合金は、高強度で、 軽く、 その上耐食性にも優れているので、 化学プラン ト、 発電機、 航空機などの分野で構造用材料として用いられている。 なかでも、 高 強度であり、 比較的良好な加工性を備えている α + ]3型チタン合金が多角されてい る。  TECHNICAL FIELD The present invention relates to a titanium alloy bar excellent in ductility, fatigue characteristics and workability, particularly to an a + i3 type titanium alloy bar and a method for manufacturing the same. BACKGROUND ART Titanium alloys are used as structural materials in chemical plants, generators, aircraft, and other fields because of their high strength, lightness, and excellent corrosion resistance. Among them, there are various α +] 3 type titanium alloys that have high strength and relatively good workability.
チタン合金を用いた製品には、 薄板、 厚板ゃ棒材など様々な形状のものがある。 棒材には、 そのままの形状で使用される場合もあるが、 ポルトのネジ部のように複 雑な形状に加工されたり、 鍛造素材として使用される場合もあるので、 棒材自体の 優れた延性や疲労特性の他 、 優れた加工性も要求される。  Products using titanium alloy include various shapes such as thin plates, thick plates and bars. In some cases, the rod is used in its original shape, but in some cases it is processed into a complex shape, such as a threaded part of Porto, or it is used as a forged material. Excellent workability is required in addition to ductility and fatigue properties.
図 1に、 棒材の代表的な製造方法を示す。  Figure 1 shows a typical method of manufacturing a bar.
溶解により製造されたインゴットは、 鍛造によりビレツトに加工され圧延素材と なる。 図 2Α、 2Β に示すように、 圧延は、 ビレットを加熱炉で加熱後、 リバース型 圧延機あるいはタンデム型圧延機により行われ、 必要に応じて中間加熱炉により圧 延可能な温度まで再加熱される。  The ingot produced by melting is processed into a billet by forging and becomes a rolled material. As shown in Figs. 2Α and 2Β, rolling is performed by heating a billet in a heating furnace and then by a reverse type rolling mill or tandem type rolling mill.If necessary, the billet is reheated to a temperature at which rolling can be performed by an intermediate heating furnace. You.
しカ 、 チタン合金棒材、 特に、 α + 型チタン合金棒材では、 加工発熱により 熱間圧延中に被圧延材の温度が上昇するため、 安定した熱間圧延ができず、 延性、 疲労特性、 加工性ともに優れたチタン合金棒材が得られないのが実状である。 例え ば、 被圧延材の温度が i3変態点以上まで上昇すると、 針状の α相が主体の 挪戠と なるため、 優れた延性や疲労特性が得られない。 また、 変態点が高いため、 加工 発熱により被圧延材の温度が i3変態点以上になり難い Ti-6A卜 4V合金の場合でも、 加工発熱により圧延温度が上昇すると粒成長が促進され、 優れた延性、 疲労特性お よび加工性が得られない。 In the case of rods made of titanium and titanium alloys, especially α + type titanium alloy rods, the temperature of the material to be rolled increases during hot rolling due to the heat generated during processing, so that stable hot rolling cannot be performed and ductility and fatigue properties In fact, it is not possible to obtain a titanium alloy rod having excellent workability. For example, when the temperature of the material to be rolled rises to the i3 transformation point or higher, the 挪 戠 Therefore, excellent ductility and fatigue properties cannot be obtained. In addition, since the transformation point is high, the temperature of the material to be rolled hardly becomes higher than the i3 transformation point due to the heat generated during processing. Ductile, fatigue properties and workability cannot be obtained.
加工発熱による温度上昇の問題を解決する方法として、 特開昭 59-82101 号公報 には、 0:域温度およびひ + /3域温度での 1圧延パス当たりの断面減少率を 40 %以 下にする圧延方法が開示されている。 また特開昭 58-25465号公報には、 加工発熱 による温度上昇を抑えるために被圧延材を水冷する方法が開示されている。 さらに、 論文 1 : 「Hot Bar Rol l ing of Ti-6A1-4V in a Cont inuous Mi l l (Ti tanium '92 Sc ience and Technology)」 には、 加工発熱自体を抑制するために圧延速度を使用 する圧延機の性能限界まで低速化することが記載されている。 しかしながら、 特開昭 59-82101号公報および特開昭 58-25465号公報の方法では、 延性、 疲労特性および加工性ともに優れたチタン合金棒材が得られない。  As a method of solving the problem of the temperature rise due to the heat generated during processing, Japanese Patent Application Laid-Open No. 59-82101 discloses a method of reducing the cross-sectional reduction rate per rolling pass at 0: zone temperature and + / 3 zone temperature to 40% or less. Is disclosed. Japanese Patent Application Laid-Open No. 58-25465 discloses a method of water-cooling a material to be rolled in order to suppress a rise in temperature due to heat generated during processing. In addition, in Paper 1: “Hot Bar Rolling of Ti-6A1-4V in a Controllable Continuous Mill (Titanium '92 Science and Technology)”, the rolling speed is used to suppress the heat generated during processing. It is described that the speed is reduced to the performance limit of the rolling mill. However, according to the methods disclosed in JP-A-59-82101 and JP-A-58-25465, a titanium alloy bar excellent in ductility, fatigue properties and workability cannot be obtained.
また、 特開昭 59-82102号公報の方法により 1圧延パス当たり 40 %以下の断面減 少率としても、 合金の種類によっては加工発熱の抑制が不充分の場合もある。 さら に、 特開昭 58-25465号公報の方法では、 水冷しているため水素吸収による材質劣 化が生じたり、 急速冷却による歪みのために正確な温度制御が困難になるという問 題もある。  Further, even if the cross-sectional reduction rate is 40% or less per rolling pass according to the method disclosed in JP-A-59-82102, suppression of heat generation during processing may be insufficient depending on the type of alloy. Furthermore, in the method disclosed in Japanese Patent Application Laid-Open No. 58-25465, there are also problems that the material is deteriorated due to hydrogen absorption due to water cooling, and that accurate temperature control becomes difficult due to distortion due to rapid cooling. .
論文 1に記載の方法は、 対象が T卜 6Aト 4V合金であって、 以下に示すように、 加 ェ発熱が大きくより低温域で圧延される合金に対しては必ずしも当てはまらず、 優 れた延 '1生、 疲労特性および加工性が得られない。  The method described in Paper 1 is not always applicable to alloys that are subject to T6A4T4V alloys and have a large heating value and are rolled at lower temperatures, as shown below. No fatigue life and workability can be obtained.
図 3に、 Ti- 6A卜 4V合金および Ti- 4· 5Al-3V-2Fe-2Mo合金の棒材圧延における被 圧延材の温度と圧延時間の関係を示す。  Figure 3 shows the relationship between the temperature of the material to be rolled and the rolling time in bar rolling of the Ti-6A4V alloy and the Ti-44.5Al-3V-2Fe-2Mo alloy.
ここで、 加熱温度は、 Ti-6A卜 4V合金では 950 ° (:、 j3変態点が Ti-6A卜 4V合金よ り 100 °C低い Ti- 4. 5A卜 3V-2Fe- 2Μο '合金では )3変態点の差の分だけ下げて 850 °C とした。 圧延は、 リバース型圧延機およびタンデム型圧延機を用いて行い、 圧延速 度、 圧下率、 パススケジュールは両合金とも同じにした。 リバ一ス圧延機での圧延 は両合金とも 2. 7 m I sec, タンデム圧延機での圧延 ¾i は最も速くなる最終 圧延パスで両合金とも 2. 25 m / sec とした。 なお、 この圧延 は上記の論文 1 に記載の圧延速度 (6 m / sec) よりさらに低い速度である。 断面減少率は、 両合 金ともに最大で 26 %とした。 Here, the heating temperature is 950 ° for the Ti-6A4 4V alloy (: for the Ti-4.5A3 3V-2Fe-2Μο 'alloy, the j3 transformation point of which is 100 ° C lower than the Ti-6A4V alloy) The temperature was lowered to 850 ° C by the difference between the three transformation points. Rolling was performed using a reverse mill and a tandem mill, and the rolling speed, rolling reduction, and pass schedule were the same for both alloys. Rolling on a reverse rolling mill Was 2.7 mI sec for both alloys, and rolling ¾i in the tandem rolling mill was 2.25 m / sec for both alloys in the final rolling pass, which was the fastest. The rolling speed is lower than the rolling speed (6 m / sec) described in the above paper 1. The cross-sectional reduction rate is set to 26% at maximum for both alloys.
Ti - 6A卜 4V合金の圧延の場合には、 この合金の /3変態点である 1000 °Cより充分 に低温域で圧延が行われ、 良好な が得られる。 一方、 Ti-4. 5Al-3V-2Fe-2Mo合 金の場合には、 /3変態点が低い分だけカロ熱温度を低下させたにもかかわらず、 低温 圧延により変形抵抗が増大して加工発熱が大きくなり、 β変態点を超える温度域ま で被圧延材の温度が上昇して良好な組織が得られない。 したがって、 優れた延性、 疲労特性および加工性が得られないことになる。 このことは、 圧延 のみならず、 圧延温度、 圧下率、 圧延パス間時間などの圧延条件を考慮する必要のあることを示 唆している。 発明の開示 本発明の目的は、 延性、 疲労特性および加工性に優れた高強度チタン合金棒材ぉ よびその製造方法を提供することにある。 この目的は、 実質的に、 質量%で、 A1: 4 %以上 5 %以下、 V: 2. 5 %以上 3. 5 %以 下、 Fe: 1. 5 %以上 2. 5 %以下、 Mo: 1. 5 %以上 2. 5 ¾以下、 残部: Tiからなり、 か つ初析ひ相の体積分率が 10 %以上 90 %以下、 初析 α相の平均結晶粒径が 10 m 以下、 圧延方向に平行な断面における初析ひ相の結晶粒のァスぺクト比が 4以下で ある α + /3型チ夕ン合金棒材によつて達成される。  In the case of rolling a Ti-6A4V alloy, rolling is performed at a temperature sufficiently lower than 1000 ° C, which is the / 3 transformation point of this alloy, and a good value is obtained. On the other hand, in the case of Ti-4.5Al-3V-2Fe-2Mo alloy, the deformation resistance increased due to low-temperature rolling, although the caloric heat temperature was lowered by the low / 3 transformation point. Heat generation increases, and the temperature of the material to be rolled rises to a temperature range exceeding the β transformation point, so that a good structure cannot be obtained. Therefore, excellent ductility, fatigue properties and workability cannot be obtained. This suggests that it is necessary to consider not only rolling conditions but also rolling conditions such as rolling temperature, rolling reduction, and time between rolling passes. DISCLOSURE OF THE INVENTION An object of the present invention is to provide a high-strength titanium alloy rod having excellent ductility, fatigue properties and workability, and a method for producing the same. This purpose is, in mass%, substantially: A1: 4% to 5%, V: 2.5% to 3.5%, Fe: 1.5% to 2.5%, Mo: 1.5% or more, 2.5% or less, balance: Ti, volume fraction of proeutectoid phase is 10% or more and 90% or less, average grain size of proeutectoid α phase is 10m or less, rolling This is achieved by α + / 3 type titanium alloy rods in which the aspect ratio of the grains of the proeutectoid phase in a cross section parallel to the direction is 4 or less.
この a + jS型チタン合金棒材は、 上記成分のチタン合金を、 その表面温度が常に β変態点以下になるように熱間圧延する工程を有する α + ]3型チタン合金棒材の製 造方法により製造できる。 図面の簡単な説明 - 図 1は、 棒材の代表的な製造方法を示す図である。 The a + jS type titanium alloy bar has a process of hot rolling the titanium alloy of the above component so that the surface temperature is always below the β transformation point. It can be manufactured by a method. Brief description of the drawings- FIG. 1 is a diagram showing a typical method of manufacturing a bar.
図 2は、 棒材圧延の工程を示す図である。  FIG. 2 is a diagram showing a bar rolling process.
図 3は、 Ti- 6A卜 4V合金および Ti- 4. 5Al-3V-2Fe-2Mo合金の棒材圧延における被 圧延材の温度と圧延時間の関係を示す図である。  FIG. 3 is a diagram showing the relationship between the temperature of the material to be rolled and the rolling time in bar rolling of the Ti-6A4V alloy and the Ti-44.5Al-3V-2Fe-2Mo alloy.
図 4は、 初析 0;相の平均結晶粒径と高温引張試験による全伸びとの関係を示す図 である。  FIG. 4 is a diagram showing the relationship between the average crystal grain size of the primary 0; phase and the total elongation by a high-temperature tensile test.
図 5は、 初析ひ相の平均結晶粒径と疲労試験における 108回での疲労強度との関 係を示す図である。 Figure 5 is a diagram showing a relationship between fatigue strength at 10 8 times in the fatigue test and the average crystal grain size of Hatsu析Hi phase.
図 6は、 表層部と中心部の温度の経時変化を示す図である。  FIG. 6 is a diagram showing changes over time in the temperature of the surface layer portion and the central portion.
図 7は、 被圧延材の断面積と、 表層部と中心部の温度差との関係を示す図である。 発明の実施の形態 まず、 本発明者等は、 α + 型チタン合金棒材の纖をどのような繊にすれば、 優れた延性、 疲労特性および加工性が得られるかを検討した。 その結果、 以下のこ とが明らかになった。  FIG. 7 is a diagram showing the relationship between the cross-sectional area of the material to be rolled and the temperature difference between the surface portion and the central portion. BEST MODE FOR CARRYING OUT THE INVENTION First, the present inventors studied what kind of fiber of α + type titanium alloy rod should be made to obtain excellent ductility, fatigue properties and workability. As a result, the following became clear.
+ /3型チタン合金は初析 a相と変態 i3相から成るが、 すべり系が少ない HCP構 造を有する a相の体積分率が極めて多くなつたり、 針状 α;相を内部に有する変態 β 相の体積分率が極めて多くなつても加工性や延性が低下するので、 初析 相の体積 分率は 10 %以上 90 %以下とする。 なお、 熱間加工の加熱時にひ相と ]3相との体積 分率が等しいか、 あるいは近い場合にはさらに加工性は良好となるので、 初析 a相 の体積分率は 50 %以上 80 %以下が望ましい。  + / 3 type titanium alloys consist of proeutectoid a phase and transformation i3 phase, but have an HCP structure with few slip systems.The volume fraction of a phase becomes extremely large, and transformation with acicular α; phase inside. Since the workability and ductility decrease even when the volume fraction of the β phase is extremely large, the volume fraction of the proeutectoid phase should be 10% or more and 90% or less. If the volume fractions of the sphing phase and the] 3 phase are equal or close to each other during heating in hot working, the workability is further improved, and the volume fraction of the primary a phase is 50% or more. % Or less is desirable.
図 4に、 初析ひ相の平均結晶粒径と高温引張試験による全伸びとの関係を示す。 初析ひ相の平均結晶粒径が 10 mを超えると、 高温引張試験による全伸びが急 激に低下する。 また、 それにともない加工性が低下する。  Figure 4 shows the relationship between the average crystal grain size of the proeutectoid phase and the total elongation by a high-temperature tensile test. If the average crystal grain size of the proeutectoid phase exceeds 10 m, the total elongation in the high-temperature tensile test decreases sharply. In addition, the workability decreases accordingly.
図 5に、 初析ひ相の平均結晶粒径と疲労試験における 108回での疲労強度との関 係を示す。 初析ひ相の平均結晶粒径が 10 ; mを超えると、 疲労強度が低下する。 また、 初 析 相の平均結晶粒径が 6 mより小さいと、 より高い疲労強度が得られる。 Figure 5 shows the relationship between the fatigue strength at 10 8 times in the fatigue test and the average crystal grain size of Hatsu析Hi phase. If the average grain size of the proeutectoid phase exceeds 10 m, the fatigue strength decreases. Further, when the average crystal grain size of the primary phase is smaller than 6 m, higher fatigue strength can be obtained.
棒材を鍛造する場合、 金型に接しない自由変形面では結晶粒の形状、 すなわち結 晶粒のアスペクト比に起因して肌荒れが発生する。 一般に棒材の場合は、 結晶粒が 圧延方向に展伸する傾向にある。 特に、 アップセット鍛造のような塌合には、 展伸 した組織が自由変形面となる棒材の側面表面に現れるため、 鍛造後の製品の肌荒れ を防ぐには、 鍛造時のアスペクト比が大きくなり過ぎないように、 具体的には棒材 の圧延方向に平行な断面での初析 a相の結晶粒のァスぺクト比を 4以下にする必要 がある。  When a bar is forged, rough surface is generated on a free deformation surface not in contact with the mold due to the shape of the crystal grains, that is, the aspect ratio of the crystal grains. Generally, in the case of a rod, the crystal grains tend to spread in the rolling direction. In particular, in the case of upset forging, the expanded structure appears on the side surface of the bar that becomes the free-deformation surface.To prevent roughening of the product after forging, the aspect ratio during forging must be large. Specifically, the aspect ratio of the crystal grains of the primary e-phase a in the cross section parallel to the rolling direction of the rod needs to be 4 or less so as not to be excessive.
以上のことから、 初析 a相の体積分率を 10 %以上 90 %以下、 より好ましくは 50 %以上 80 %以下、 初析 a相の平均結晶粒径を 10 m以下、 より好ましくは 6 以下、 さらに圧延方向に平行な断面での初析 a相の結晶粒のアスペクト比を 4 以下にすれば、 延性、 疲労特性および加工性に優れた高強度チタン合金棒材が得ら れる。  From the above, the volume fraction of primary a-phase a is 10% or more and 90% or less, more preferably 50% or more and 80% or less, and the average crystal grain size of the primary a-phase a is 10 m or less, more preferably 6 or less. If the aspect ratio of the crystal grains of the proeutectoid a phase in the cross section parallel to the rolling direction is 4 or less, a high-strength titanium alloy bar excellent in ductility, fatigue properties and workability can be obtained.
このような繊を有する a + 3型チタン合金棒材は、 実質的に、 質量%で、 A1: 4 %以上 5 %以下、 V: 2. 5 以上 3. 5 %以下、 Fe: 1. 5 %以上 2. 5 %以下、 Mo: 1. 5 ¾ 以上 2. 5 %以下、 残部: Tiからなる成分とする必要がある。 各元素の含有量の限定 理由を以下に説明する。  The a + 3 type titanium alloy bar material having such a fiber is substantially in mass%, A1: 4% to 5%, V: 2.5 to 3.5%, Fe: 1.5 % Or more and 2.5% or less, Mo: 1.5% or more and 2.5% or less, and the balance: It must be a component composed of Ti. The reasons for limiting the content of each element will be described below.
A1: ひ相を安定化させるのに必須の元素であり、 高強度化にも寄与する元素であ る。 4 未満では高強度が十分に達成されず、 5 %を超えると延性が劣化する。  A1: It is an essential element for stabilizing the phase and also contributes to high strength. If it is less than 4, high strength is not sufficiently achieved, and if it exceeds 5%, ductility deteriorates.
V: ]3相を安定ィ匕させる元素であり、 高強度化にも寄与する元素である。 2. 5 %未 満では高強度が十分に達成されないとともに、 )3相が安定せず、 3. 5 %を超えると 0変態点の低下により加工温度領域が狭くなることに加え、 高コスト化を招く。  V:] An element that stabilizes the three phases and also contributes to high strength. If it is less than 2.5%, high strength is not sufficiently achieved, and) the three phases are not stable. If it exceeds 3.5%, the transformation temperature range is reduced due to the decrease of the 0 transformation point, and the cost is increased. Invite.
Mo : /3相を安定化させる元素であり、 高強度ィ匕にも寄与する元素である。 1. 5 ¾ 未満では高強度ィ匕が十分に達成されないとともに、 jS相が安定せず、 2. 5%を超える と β変態点の低下により加工温度領域が狭くなることに加え、 高コスト化を招く。  Mo: An element that stabilizes the / 3 phase and also contributes to high-strength siding. If it is less than 1.5%, the high strength steel is not sufficiently achieved, and the jS phase is not stable. If it exceeds 2.5%, the processing temperature range becomes narrow due to the decrease in β transformation point and the cost increases. Invite.
Fe : /3相を安定化させる元素であり、 高強度化にも寄与する元素である。 また、 拡散速度が速く加工性を改善する効果を有するが、 1. 5 %未満では高強度化が十分 に達成されないとともに、 J3相が安定せず、 優れた加工性が得られない。 2. 5 %を 超えると /3変態点の低下により加工温度領域が狭くなることに加え、 偏析による特 性の劣化を招く。 Fe: An element that stabilizes the / 3 phase and also contributes to high strength. In addition, it has the effect of improving the workability with a high diffusion rate, but if it is less than 1.5%, it is not sufficient And the J3 phase is not stable, and excellent workability cannot be obtained. If it exceeds 2.5%, the / 3 transformation point will decrease and the processing temperature range will be narrowed, and the characteristics will also deteriorate due to segregation.
本発明の α + 3型チタン合金棒材は、 上記の成分の α + (3型チタン合金を、 加熱 温度、 圧延温度域、 圧下率、 圧延速度、 パス間時間などの圧延条件を調整して加工 発熱による温度上昇を抑制しながら、 その表面温度が常に) 3変態点以下になるよう に熱間圧延する方法により製造できる。 例えば、 /3変態点が Τ 3 。(:である《 + ]3型 チダン合金を、 表面温度が (Τ β - 150) °C以上 °C以下の範囲になるように加 熱する工程と、 加熱された 型チタン合金を、 圧延中の被圧延材の表面温度が (T )S - 300) °C以上 (Τ β - 50) °C以下の範囲に、 仕上表面温度が (T /3 - 300) °C以上 (Τ - 100) °C以下の範囲になるように熱間圧延する工程を有する方法で ある。  The α + 3 type titanium alloy bar of the present invention is obtained by adjusting the rolling conditions such as heating temperature, rolling temperature range, rolling reduction, rolling speed, inter-pass time, etc. It can be manufactured by hot rolling so that the surface temperature is always below the (3) transformation point while suppressing the temperature rise due to heat generation. For example, the / 3 transformation point is Τ3. (: << +] Type 3 tidan alloy is heated so that the surface temperature is in the range of (Τβ-150) ° C or more and ° C or less, and the heated type titanium alloy is being rolled. When the surface temperature of the material to be rolled is (T) S-300) ° C or more (Cβ-50) ° C or less, the finishing surface temperature is (T / 3-300) ° C or more (Τ-100) This is a method having a step of hot rolling so that the temperature falls within the range of ° C or lower.
ここで、 圧延前に表面温度を (T /3 - 150) °C以上 Ί β °C以下の範囲に加熱する 理由は、 (T /3 - 150) 未満だと圧延最終段階における被圧延材の温度低下が大き くなり割れ感受性や変形抵抗の上昇を引き起こし、 Τ β °Cを超えると被圧延材の組 織が針状 を主体とする β となり延性や加工性が劣ィ匕するためである。 また、 圧延中の被圧延材の表面温度を (Τ ]3 - 300) °C以上 (Τ - 50) °C以下の範囲に する理由は、 (T i3 - 300) °C未満だと熱間加工性が低下し割れなどの問題が生じ、 (Ί β - 50) °Cを超えると加工発熱による温度上昇で結晶粒の粗大化や針状組織の 形成を招くためである。 さらに、 被圧延材が最終圧延パスを終えた直後の表面温度 である仕上表面温度を - 300) °C以上 (T 3 - 100) °C以下の範囲にする理由 は、 αβ - 300) °c未満だと割れ感受性や変形抵抗が上昇し、 (Tjs - loo) °cを超 えると結晶粒の粗大ィ匕を招くためである。  Here, the reason for heating the surface temperature before rolling to (T / 3-150) ° C or more and Ίβ ° C or less is that if it is less than (T / 3-150), This is because the temperature drop increases, causing cracking sensitivity and deformation resistance to increase.If the temperature exceeds Τβ ° C, the structure of the rolled material becomes β mainly composed of needles, and ductility and workability deteriorate. . The reason why the surface temperature of the material to be rolled during rolling is (圧 延) 3-300) ° C or more and (Τ-50) ° C or less is that (Ti3-300) ° C or less This is because the workability is reduced and problems such as cracks occur. If the temperature exceeds (Ίβ-50) ° C, the temperature rise due to the heat generated during the process causes coarsening of crystal grains and formation of a needle-like structure. Furthermore, the reason why the finished surface temperature, which is the surface temperature immediately after the rolled material has completed the final rolling pass, is in the range of -300) ° C or more and (T 3-100) ° C or less is αβ-300) ° c If it is less than the above, cracking sensitivity and deformation resistance will increase, and if it exceeds (Tjs-loo) ° c, crystal grains will be coarse.
熱間圧延は複数回の圧延パスにより行われるが、 加工発熱による温度上昇を防ぐ ために、 1圧延パス当りの圧下率を 40 %以下にすることが好ましい。  Although hot rolling is performed in a plurality of rolling passes, it is preferable to reduce the rolling reduction per rolling pass to 40% or less in order to prevent a temperature rise due to heat generated during processing.
熱間圧延をリバース型圧延機を用いて行うとき、 加工発熱による温度上昇を防ぐ ために、 圧延速度を 6 m / sec以下にすることが好ましい。 また、 タンデム型圧延 機を用いて行うときは、 圧延 ¾ ^を 1. 5 m I sec以下にすることが好ましい。 各圧延パス後、 被圧延材は表面から冷却されるので、 加工発熱による温度上昇が あっても、 被圧延材表層部では次の圧延パスまでにある程度の温度低下がある。 し かし、 図 6に示すように、 被圧延材の径が大きい場合は (直径 106 画の場合) 被 圧延材の中心部での温度低下が小さいため、 被圧延材の表層部と中心部で大きな温 度差が現れる。 中心部の温度低下が小さい場合は、 中心部の温度が低下する前に次 の圧延パスを受け、 加工発熱によってさらに温度が上昇する。 この現象が続けば、 中心部は初期温度より高温で圧延されることになる。 このため、 被圧延材の径が大 きい場合は、 十分な圧延パス間時間を取って中心部を冷却する必要がある。 When hot rolling is performed using a reverse type rolling mill, the rolling speed is preferably set to 6 m / sec or less in order to prevent a temperature rise due to heat generated during processing. In addition, when using a tandem type rolling mill, it is preferable to set the rolling length ¾ ^ to 1.5 mIsec or less. After each rolling pass, the material to be rolled is cooled from the surface. Therefore, even if the temperature rises due to the heat generated during processing, the temperature of the surface layer of the material to be rolled will decrease to some extent by the next rolling pass. However, as shown in Fig. 6, when the diameter of the material to be rolled is large (106 diameters), the temperature drop at the center of the material to be rolled is small, so the surface layer and the center of the material to be rolled are small. A large temperature difference appears. If the temperature drop in the central part is small, it undergoes the next rolling pass before the temperature in the central part falls, and the temperature rises further due to the heat generated during processing. If this phenomenon continues, the center will be rolled at a higher temperature than the initial temperature. For this reason, when the diameter of the material to be rolled is large, it is necessary to cool down the central part with sufficient time between rolling passes.
そこで、 本発明者らが表層部と中心部の温度差について詳細に検討したところ、 図 7 に示すように、 温度差は被圧延材の圧延方向と直角方向の断面積が 3500 mm2 以上で顕著に大きくなり、 そのような大きな断面積を有する被圧延材を断面積が S 画2となるように圧延したとき、 次の圧延を開始するまでの時間を 0. 167XS1/2 sec 以上にすることが温度差を小さくでき、 均一な特性の棒材を製造する上で好ましい ことを見出した。 Accordingly, the present inventors have studied in detail the temperature difference between the surface portion and the central portion, as shown in FIG. 7, the temperature difference in the cross-sectional area of the rolling direction and perpendicular direction of the rolled material is 3500 mm 2 or more When the material to be rolled having such a large cross-sectional area is rolled so that the cross-sectional area becomes S-picture 2 , the time to start the next rolling is 0.167XS 1/2 sec or more. Has been found to be preferable in that a temperature difference can be reduced and a rod having uniform characteristics is produced.
なお、 本発明の製造方法においては、 被圧延材の表面温度が常に 13変態点以下に なるように圧延するため、 圧延パス間時間や被圧延材の径によっては被圧延材の表 面温度が圧延中に適切な圧延温度域より低温側に外れる可能性がある。 そのような 場合は、 高周波加熱設備などにより再加熱することも可能である。 · 実施例 1  In the production method of the present invention, since rolling is performed so that the surface temperature of the material to be rolled is always 13 or less, the surface temperature of the material to be rolled may vary depending on the time between rolling passes and the diameter of the material to be rolled. During rolling, the temperature may deviate from the appropriate rolling temperature range to a lower temperature side. In such a case, it is also possible to reheat by high frequency heating equipment. · Example 1
表 1 に示す化学成分のひ + i3型チタン合金 AO 1 (本発明範囲内) および A02 (本 発明範囲外) より 125 腿角の圧延素材を切り出し、 力リバ一圧延機を用いて表 2 に示す圧延条件 B01- B18で直径 0 画または 50 廳の棒材を製造した。 表 2におけ る圧延パス間時間は、 各圧延条件において、 全ての圧延パスで圧延パス間時間が 0. 167 XS1/2 sec以上になっている場合を〇で、 なっていない場合を Xで示してある。 また、 各圧延条件におけるそれぞれめ圧延パスでの被圧延材の断面積 S、 圧下率、 0. 167 X S1/2 圧延パス間時間、 表面温度および圧延體を表 3 -表 20に示した。 表中の圧延設備欄の Rはリバース圧延機、 Tはタンデム圧延機を表す。 製造した棒材を 700 °C以上 720 °C以下で焼鈍後引張試験を行い、 降伏強度 (0. 2 ¾PS) , 引張強度 (UTS)、 のび (El)、 絞り (RA) を測定した。 また、 平滑試験 (条件: Kt = 1) および切欠試験 (条件: Kt = 3) を行い、 疲労強度を測定した。 さらに、 微細繊を調べるために、 棒材の中心部および直径の 1/4位置 (1/4D) の ミクロ組織の観察を行い、 初析 α相の結晶粒径、 その体積分率および圧延方向に平 行な断面での結晶粒のァスぺクト比を測定した。 Rolled material of 125 thigh angle was cut out from titanium alloys AO1 (within the scope of the present invention) and A02 (outside the scope of the present invention) of the chemical composition shown in Table 1 and A02 (within the scope of the present invention). Under the indicated rolling conditions B01-B18, rods having a diameter of 0 strokes or 50 bars were manufactured. The time between rolling passes in Table 2 is 〇 when the time between rolling passes is 0.167 XS 1/2 sec or more in all rolling passes and X when not. Indicated by Also, Table 3-Table 20 show the cross-sectional area S, rolling reduction, 0.167 XS 1/2 time between rolling passes, surface temperature and rolled body of the material to be rolled in each rolling pass under each rolling condition. In the rolling equipment column in the table, R represents a reverse rolling mill, and T represents a tandem rolling mill. Tensile tests were performed on the manufactured rods after annealing at 700 ° C or more and 720 ° C or less, and the yield strength (0.2 ¾PS), tensile strength (UTS), extension (El), and drawing (RA) were measured. In addition, a smoothness test (condition: Kt = 1) and a notch test (condition: Kt = 3) were performed to measure the fatigue strength. Furthermore, in order to examine the fine fibers, the microstructure at the center of the rod and at the 1/4 position (1 / 4D) of the diameter was observed, and the crystal grain size of the primary α phase, its volume fraction and rolling direction Next, the aspect ratio of the crystal grains in the parallel section was measured.
結果を表 21 に示す。 表のミクロ組織で結晶粒径の記載がないところは、 その部 位が針状 aを主体とする β組織のみからなり、 等軸の初析 α相を観測できなかつた ためである。  Table 21 shows the results. The absence of the crystal grain size in the microstructures in the table means that the site consisted only of the β-structure mainly composed of acicular a, and no equiaxed pro-eutectoid α-phase could be observed.
表面の加熱温度が (T j3 - 150) °C未満の場合は、 被圧延材の表面温度が低過ぎ、 圧延荷重が超過して圧延できなかった。 また、 加熱温度が T )S °Cより高い場合は、 圧延条件 B02および B11のように、 圧延パス間時間が本発明範囲内であっても被圧 延材の表面温度が高過ぎるため、 加工発熱によって被圧延材の表面温度が T j6を超 え、 中心部の垂が針状 αを主体とする jS繊となり、 延性や疲労特性が劣化する。 仕上表面温度が (T )3 - 300) °C未満の場合は、 被圧延材の温度が低過ぎ、 加工 性が低下して圧延中に割れが生じる。 また、 仕上表面温度が (T )3 - 100) より 高い場合は、 圧延条件 Β04、 Β05および Β07のように、 組織の微細化が図れず延性 や疲労特性が劣化する。  When the heating temperature of the surface was lower than (T j3 -150) ° C, the surface temperature of the material to be rolled was too low, and the rolling load was too high to roll. If the heating temperature is higher than T) S ° C, the surface temperature of the rolled material is too high even if the time between rolling passes is within the range of the present invention, as in the rolling conditions B02 and B11. The heat generated causes the surface temperature of the material to be rolled to exceed Tj6, and the sag at the center becomes jS fibers mainly composed of needle-like α, deteriorating ductility and fatigue properties. If the finished surface temperature is lower than (T) 3-300) ° C, the temperature of the material to be rolled is too low, the workability is reduced, and cracks occur during rolling. On the other hand, when the surface temperature is higher than (T) 3-100), as in the rolling conditions # 04, # 05 and # 07, the microstructure cannot be refined and the ductility and fatigue properties deteriorate.
圧延中の被圧延材の表面温度が (T j8 - 300) °C未満の場合は、 被圧延材の表面 温度が低過ぎ、 圧延中に割れが生じる。 また、 被圧延材の表面温度が (Ί β - 50) °Cより高い場合は、 圧延条件 B02- B05、 B07および B11のように、 圧延後の中心部 や 1/4D部の糸 1¾が針状 を主体とする β糸 となり延性や疲労特性が劣ィ匕する。  If the surface temperature of the material to be rolled is lower than (T j8-300) ° C, the surface temperature of the material to be rolled is too low and cracks occur during rolling. When the surface temperature of the material to be rolled is higher than (Ί β-50) ° C, the center of the roll and the 1 / 4D yarn 1¾ are stitched as in the rolling conditions B02-B05, B07 and B11. It becomes a β-yarn mainly composed of a shape and has poor ductility and fatigue properties.
1圧延パスの圧下率が 40 %を超えると、 加工発熱が大きくなり、 被圧延材の温度 が Τ βを超え∞の微細化が図れなかった。  When the rolling reduction in one rolling pass exceeded 40%, the heat generated during processing increased, and the temperature of the material to be rolled exceeded Τβ, making it impossible to achieve finer ∞.
圧延条件 Β のようにリバース型圧延機を用い、 圧延速度が 6 m / secを超える と、 また圧延条件 B15のようにタンデム型圧延機を用い、 圧延 ¾! が 1. 5 m / sec を超えると、 加工発熱が大きくなり、 被圧延材の表面温度が T jSを超え、 組織の微 細化が図れなかった。 圧延パス間時間が本発明範囲外の場合は、 加工発熱による被圧延材の表面温度上 昇が放冷による温度低下に勝り、 被圧延材の表面温度が T )8を超え、 糸職の微細化 が図れなかった。 When the rolling speed exceeds 6 m / sec using a reverse type rolling mill as in rolling condition Β, and when the tandem type rolling mill as in rolling condition B15, the rolling ¾! Exceeds 1.5 m / sec. As a result, the heat generated during processing increased, the surface temperature of the material to be rolled exceeded TjS, and the structure could not be miniaturized. When the time between rolling passes is out of the range of the present invention, the surface temperature of the material to be rolled rises due to the heat generated from the processing, and the temperature of the material to be rolled exceeds T) 8. Could not be achieved.
化学成分が本発明範囲内の A01 を用い、 圧延条件 BOK B06、 B08、 B09、 B16、 B17および B18によって製造した棒材では、 初析ひ相の結晶粒径が 10 以下の 均一な微細糸 Ιϋが観察され、 優れた延性や疲労特性が得られる。 これらは、 伸びが 15 %以上、 絞りが 40 %以上、 平滑の疲労強度が 500 MPa以上でかつ切欠 (Kt=3) の疲労強度が 200 MPaというより優れた延性や疲労特性が得られる。 さらに、 圧延 条件 B01、 B06、 B08および B09のように初析 α相の体積分率が 50 %以上 80 %以下、 初析ひ相の平均結晶粒径が 6 m以下である α + 型チタン合金棒材によって、 伸 びが 20 %以上、 絞りが 50 以上、 平滑の疲労強度が 550 MPa以上でかつ切欠 (Kt=3) の疲労強度が 200 MPaというさらに優れた延性や疲労特性が得られる。 一方、 化学成分が本発明範囲外の A02を用い、 圧延条件 B10および B12によって 製造した棒材では、 圧延条件が本発明範囲内であるため加工発熱は抑制されたが、 初析ひ相の結晶粒径が 10 を超えたため、 十分な延性や疲労強度が得られない。 実施例 2  In the bar manufactured using A01 whose chemical composition is within the range of the present invention and under the rolling conditions of BOK B06, B08, B09, B16, B17 and B18, a uniform fine yarn having a crystal grain size of proeutectoid phase of 10 or less. Are observed, and excellent ductility and fatigue properties are obtained. These have more excellent ductility and fatigue properties with elongation of 15% or more, drawing of 40% or more, smooth fatigue strength of 500 MPa or more, and notch (Kt = 3) fatigue strength of 200 MPa. Furthermore, as in rolling conditions B01, B06, B08 and B09, α + type titanium alloys in which the volume fraction of proeutectoid α phase is 50% or more and 80% or less and the average crystal grain size of proeutectoid phase is 6 m or less The rods provide even better ductility and fatigue properties with an elongation of at least 20%, a drawing of at least 50, a smooth fatigue strength of at least 550 MPa and a notched (Kt = 3) fatigue strength of 200 MPa. On the other hand, in the bar manufactured using rolling conditions B10 and B12 using A02 whose chemical composition is out of the range of the present invention, since the rolling conditions were within the range of the present invention, the heat generation during processing was suppressed. Since the particle size exceeds 10, sufficient ductility and fatigue strength cannot be obtained. Example 2
実施例 1で圧延条件 B0卜 B18により製造した棒材の径方向中心部より Φ 8腿 X高 さ 12腿 の円柱試験片を採取し、 800 °Cに加熱して 70 %圧縮し、 圧縮後の表面に おける割れや肌荒れの発生の有無を調べて、 熱間鍛造性の評価を行った。  A cylindrical test piece of Φ8 thigh × 12 thigh was collected from the radial center of the bar manufactured under the rolling conditions B0-B18 in Example 1 and heated to 800 ° C., compressed by 70%, and compressed. The hot forgeability was evaluated by examining the surface for cracks and rough surfaces.
結果を表 21に示す。  The results are shown in Table 21.
ミクロ糸慮が本発明範囲内に入る圧延条件 B01、 B06、 B08、 B09、 B16、 ΒΠ、 B18 で製造された棒材では、 割れや肌荒れが発生せず良好な熱間鍛造性が得られた。 一方、 初析 α相の結晶粒径が 10 mを超える圧延条件 B10、 B12で製造された棒 材では、 割れは発生しなかったが肌荒れが発生した。 また、 中心部や 1/4D部が /3 相のみからなる圧延条件 Β02、 Β03、 Β04、 Β05、 Β07、 Bl l、 Β14、 B15で製造された 棒材では、 割れと肌荒れの両方が発生した。 さらに、 初析 α相の結晶粒径および体 積分率は本発明範囲内であるが、 圧延方向に平行な断面での結晶粒のァスぺクト比 が 4を超える圧延条件 B13では、 やはり肌荒れが生じた c Bars manufactured under rolling conditions B01, B06, B08, B09, B16, ΒΠ, and B18 in which the microfilament falls within the scope of the present invention did not cause cracking or roughening, and obtained good hot forgeability. . On the other hand, rods manufactured under rolling conditions B10 and B12 in which the crystal grain size of the pro-eutectoid α phase exceeded 10 m did not crack, but roughened the surface. In addition, both the cracks and the rough surface occurred in the bars manufactured under the rolling conditions Β02, Β03, Β04, Β05, Β07, Bll, Β14, and B15 in which the center and the 1 / 4D part consisted of only / 3 phase. . Further, the crystal grain size and the volume fraction of the pro-eutectoid α phase are within the range of the present invention, but the aspect ratio of the crystal grains in a cross section parallel to the rolling direction is determined. With rolling condition B13 exceeding 4, the surface roughness still occurred c
表 1table 1
Figure imgf000012_0001
Figure imgf000012_0001
単位は質量% The unit is mass%
表 2 Table 2
Figure imgf000013_0001
Figure imgf000013_0001
下線を付した数値は本発明の範囲外であることを示す。 Underlined values indicate that they are outside the scope of the present invention.
' tfc延柒件: ■ ■ パス数 断面積 圧下率 0.167V S ス間時間 圧延速度 'tfc extension: ■ ■ Number of passes Cross-sectional area Reduction rate 0.167V S Time between strips Rolling speed
(.mm ) (%) sec) sec) vm/sec) rc)  (.mm) (%) sec) sec) vm / sec) rc)
15625  15625
1 16.8 25 2.7 790 R 1 16.8 25 2.7 790 R
13000 19.0 13000 19.0
2 15.4 25 2.7 796 R 2 15.4 25 2.7 796 R
1 1000 17.5 1 1000 17.5
3 13.6 25 2.7 801 R 3 13.6 25 2.7 801 R
9500 16.3 9500 16.3
4 15.8 25 2.7 803 R 4 15.8 25 2.7 803 R
8000 14.9 8000 14.9
5 18.8 25 2.7 81 1 R 5 18.8 25 2.7 81 1 R
6500 13.5 6500 13.5
6 20.0 25 2.7 801 R 6 20.0 25 2.7 801 R
5200 12.0 5200 12.0
7 20.2 25 2.7 779  7 20.2 25 2.7 779
4150 10.8  4150 10.8
8 20.5 25 2.7 761 R 8 20.5 25 2.7 761 R
3300 9.6 3300 9.6
g 25.8 25 2.7 738 R g 25.8 25 2.7 738 R
2450 8.3 2450 8.3
10 24.5 25 2.7 719 R 10 24.5 25 2.7 719 R
1850 7.2 1850 7.2
1 1 21.6 5 . 0-35ひ..: 721 T 1 1 21.6 5 .0-35h ..: 721 T
1450 6.4 1450 6.4
12 20.7 5 0,466 732 T 12 20.7 5 0,466 732 T
1150 5.7 1150 5.7
13 21.7 5 Q.581 739 T  13 21.7 5 Q.581 739 T
900 5.0  900 5.0
14 22.2 5 0.733 745 T  14 22.2 5 0.733 745 T
700 4.4  700 4.4
15 21.4 5 0.871 741 T  15 21.4 5 0.871 741 T
550 3.9  550 3.9
16 23.6 5 0.982 730 T  16 23.6 5 0.982 730 T
420 3.4  420 3.4
17 23.8 1.125 714 τ  17 23.8 1.125 714 τ
320 320
Figure imgf000015_0001
Figure imgf000015_0001
- tfciik条件: BtW -tfciik condition: BtW
ハス数 断 ¾積 l± f毕 0.167 S 1、ス間時 f*日, tt延: 1≤度 圧延  Lotus number cross section l ± f 毕 0.167 S 1, f * days between strips, tt roll: 1≤ degree rolling
(mm ノ (%) (sec) (sec) (m/sec) C) 設備 (mm (%) (sec) (sec) (m / sec) C)
15625 15625
1 16.8 25 2.7 890 R 1 16.8 25 2.7 890 R
13000 19.0 13000 19.0
2 15.4 25 2.7 894 R 2 15.4 25 2.7 894 R
11000 17.5 11000 17.5
3 13.6 25 2.7 899 R 3 13.6 25 2.7 899 R
9500 16.3 9500 16.3
4 15.8 25 2.7 906 R 4 15.8 25 2.7 906 R
8000 14.9 8000 14.9
5 18.8 25 2.7 911 R 5 18.8 25 2.7 911 R
6500 13.5 6500 13.5
6 20.0 25 2.7 902 R 6 20.0 25 2.7 902 R
5200 12.0 5200 12.0
7 20.2 25 2.7 889 R 7 20.2 25 2.7 889 R
4150 10.8 4150 10.8
8 20.5 25 2.7 881 R 8 20.5 25 2.7 881 R
3300 9.6 3300 9.6
9 25.8 25 2.7 867 R 9 25.8 25 2.7 867 R
2450 8.3 2450 8.3
10 24.5 25 . 2.7 ; 860 R  10 24.5 25. 2.7; 860 R
1850 7.2  1850 7.2
1 1 21.6 5 . 0;350 852 丁  1 1 21.6 5.0; 350 852
1450 6.4  1450 6.4
12 20.7 5 : ,0.466 . 839 T  12 20.75:, 0.466.839 T
1150 5.7  1150 5.7
13 21.7 5 .0.5&1 830 T  13 21.7 5 .0.5 & 1 830 T
900 5.0  900 5.0
14 22.2 5 o,?3a 820 T  14 22.2 5 o,? 3a 820 T
700 4.4  700 4.4
15 21.4 5 0.871; ■ 803 T  15 21.4 5 0.871; ■ 803 T
550 3.9  550 3.9
16 23.6 5 .0.982 784 T  16 23.6 5 .0.982 784 T
420 3.4  420 3.4
17 23.8 1.t25 764 T  17 23.8 1.t25 764 T
320 320
Figure imgf000017_0001
Figure imgf000017_0001
Figure imgf000018_0001
Figure imgf000018_0001
Figure imgf000019_0001
Figure imgf000019_0001
W W
18 表 9 18 Table 9
Figure imgf000020_0001
Figure imgf000020_0001
Figure imgf000021_0001
Figure imgf000021_0001
Figure imgf000022_0001
Figure imgf000022_0001
Figure imgf000023_0001
Figure imgf000023_0001
Figure imgf000024_0001
Figure imgf000024_0001
Figure imgf000025_0001
Figure imgf000025_0001
Figure imgf000026_0001
Figure imgf000026_0001
Si拏 Sialla
OlLlO/ZOdT/lDd
Figure imgf000027_0001
OlLlO / ZOdT / lDd
Figure imgf000027_0001
Figure imgf000028_0001
Figure imgf000028_0001
Figure imgf000029_0001
Figure imgf000029_0001
Figure imgf000030_0001
Figure imgf000030_0001
一 fcv:l2 OAV One fcv: l2 OAV
o o
Figure imgf000031_0001
Figure imgf000031_0001
表 21 Table 21
0. 2%  0.2%
PS UTS El RA 疲労強度 ミクロ組織 鍛造特性 圧延条件 平;-骨試験 切欠試験 1 /4D 中心 割れの 肌荒れの 備考 結晶粒径体積分率 ァスへ "ク卜 結晶粒径体積分率 ァスへ'ゥト 発生 発生  PS UTS El RA Fatigue strength Microstructure Forging properties Rolling conditions Flat;-Bone test Notch test 1 / 4D center Cracked rough skin Remarks Grain size fraction To ass "Cut grain size to fraction" Occurrence Occurrence
(MPa) (MPa) (¾) ( ) (Kt=1 ) (Kt=3) ( Ai m) (%) 比 ( U m) (%) 比  (MPa) (MPa) (¾) () (Kt = 1) (Kt = 3) (Aim) (%) ratio (U m) (%) ratio
B01 931 1030 20.4 51.9 565 230 2.5 66 1.5 2.7 66 1.8 なし なし 本発明例 B01 931 1030 20.4 51.9 565 230 2.5 66 1.5 2.7 66 1.8 None None Example of the present invention
B02 885 1009 3.5 12.3 350 120 3.7 59 4.1 —— —— —— ぁリ fcリ 比較例B02 885 1009 3.5 12.3 350 120 3.7 59 4.1 —— —— —— Peri fc Comparative Example
B03 879 1010 4.1 13.5 355 125 3.4 58 . 4.4 —— —— ぁリ feu 比較例B03 879 1010 4.1 13.5 355 125 3.4 58. 4.4 —— —— Peri feu Comparative example
B04 881 101 1 4.1 1 1.6 365 1 15 —— —— ' —— —— .—— , おり おり 比較例B04 881 101 1 4.1 1 1.6 365 1 15 —— —— '—— —— .——,
B05 874 1014 3.8 1 1.1 360 100 3.8 29 ; 4.2 —— —— ~-. リ お 比較例B05 874 1014 3.8 1 1.1 360 100 3.8 29; 4.2 —— —— ~-.
B06 921 1020 20.0 50.8 560 5.4 60 2.1 5.8 68 2.2 な 1 な I 本発明例B06 921 1020 20.0 50.8 560 5.4 60 2.1 5.8 68 2.2
B07 887 1005 3.7 12.1 5.9 31 4.3 —— C U J 比較例B07 887 1005 3.7 12.1 5.9 31 4.3 --- C U J Comparative example
B08 930 1030 20.5 52.3 ク 1.7 67 1.9 1.9 69 2.3 な ' 1し し 本発明例B08 930 1030 20.5 52.3 ark 1.7 67 1.9 1.9 69 2.3
B09 929 1027 20.1 50.1 u ク i n 4.1 62 1.7 4.9 64 2.1 'よし ' し 本発明例B09 929 1027 20.1 50.1 u in 4.1 4.1 1.7 1.7 4.9 64 2.1
B10 91 1 1019 14.8 43.3 480 185 1 1.4 89 2.8 12.0 88 3.2 なし あり 比較例B10 91 1 1019 14.8 43.3 480 185 1 1.4 89 2.8 12.0 88 3.2 No Yes Comparative example
B1 1 863 1012 3.6 9.8 230 95 13.2 85 < 2:9 あり あり 比較例B1 1 863 1012 3.6 9.8 230 95 13.2 85 <2: 9 Yes Yes Comparative example
B12 902 101 1 13.8 42.1 440 175 14.5 80 3.0 15.0 89 3.4 なし あり 比較例B12 902 101 1 13.8 42.1 440 175 14.5 80 3.0 15.0 89 3.4 No Yes Comparative example
B13 899 987 12.1 38.2 395 155 5.5 85 4.2 5.8 87 4.5 なし 比較例B13 899 987 12.1 38.2 395 155 5.5 85 4.2 5.8 87 4.5 None Comparative example
B14 884 971 13.7 34.5 345 1 15 ,:: 5.2 84: 4.2 あり -あり 比較例B14 884 971 13.7 34.5 345 1 15, :: 5.2 84: 4.2 Yes-Yes Comparative example
B15 .894 955 1 1.9 33.3 340 120 5.3 81 . 4.3 あり あり it較例B15 .894 955 1 1.9 33.3 340 120 5.3 81 .4.3 Yes Yes it comparative example
B16 910 1014 17.4 40.1 505 205, 6.2 63 2.5 6.4 60 2.7 なし なし 本堯明例B16 910 1014 17.4 40.1 505 205, 6.2 63 2.5 6.4 60 2.7 None None Takaaki Moto
B1 7 914 1021 18.3 42.3 510 205 5.8 64 2.7 6.3 61 2.9 なし なし 本発明例B1 7 914 1021 18.3 42.3 510 205 5.8 64 2.7 6.3 61 2.9 None None Example of the present invention
B18 902 1008 15.6 40.1 500 200 6.5 60 3.1 6.6 60 3.3 なし なし 本発明例 B18 902 1008 15.6 40.1 500 200 6.5 60 3.1 6.6 60 3.3 None None Example of the present invention

Claims

請求の範囲 The scope of the claims
1. 実質的に、 質量 rc、 A1: 4 ¾以上 5 ¾以下、 V: 2.5 ¾以上 3.5 ¾以下、 Fe: 1.5 以上 2.5 以下、 Mo : 1.5 ¾以上 2.5 以下、 残部: Tiからなり、 かつ初析 α 相の体積分率が 10 ¾以上 90 ¾以下、 前記初析 α相の平均結晶粒径が 10 / m以下、 圧延方向に平行な断面における前記初析 α相の結晶粒のァスぺク卜比が 4以下であ る " + )3型チタン合金棒材。 1. Substantially, mass rc, A1: 4 to 5 mm, V: 2.5 to 3.5 mm, Fe: 1.5 to 2.5, Mo: 1.5 to 2.5, balance: Ti The volume fraction of the precipitated α-phase is 10 to 90%, the average crystal grain size of the primary α-phase is 10 / m or less, and the phase of the primary α-phase crystal grains in a cross section parallel to the rolling direction. "+) 3 type titanium alloy bar with cut ratio of 4 or less.
2. 初析ひ相の体積分率が 50 ¾以上 80 ¾以下、 前記初析 α相の平均結晶粒径が 6 tm以下である請求の範囲 1の α+ 型チタン合金棒材。 2. The α + -type titanium alloy rod according to claim 1, wherein the volume fraction of the pro-eutectoid phase is not less than 50 ° and not more than 80 °, and the average crystal grain size of the pro-eutect α phase is not more than 6 tm.
3. 実質的に、 質量 ¾で、 A1: 4 以上 5 ¾以下、 V: 2.5 ¾以上 3.5 ¾以下、 Fe: 1.5 以上 2.5 ¾以下、 Mo: 1.5 ¾以上 2.5 以下、 残部: Tiからなる α + 3型チタ ン合金を、 その表面温度が常に 13変態点以下になるように熱間圧延する工程を有す る α + 0型チタン合金棒材の製造方法。 3. Substantially, by mass A, A1: 4 to 5 ¾, V: 2.5 to 3.5 ¾, Fe: 1.5 to 2.5 、, Mo: 1.5 to 2.5 、, balance: Ti + A method for producing an α + 0 type titanium alloy bar, comprising a step of hot rolling a type 3 titanium alloy so that its surface temperature is always 13 or lower.
4. β変態点が Ίβ ^である α + β型チタン合金を、 表面温度が - 150) で以 上 Τ で以下の範囲になるように加熱する工程と、 4. a step of heating an α + β type titanium alloy having a β transformation point of ^ β ^ so that the surface temperature is -150) and 上 is in the following range:
前記加熱された α + 型チタン合金を、 圧延中の被圧延材の表面温度が (Τ/3 - 300) 以上 (Τ3 - 50) 以下の範囲に、 最終圧延パスを終えた直後の表面温度 である仕上表面温度が (Τ - 300) で以上 (Τ/3 - 100) で以下の範囲になるよう に熱間圧延する工程と、  When the surface temperature of the material to be rolled during the rolling of the heated α + -type titanium alloy is in the range of (Τ / 3-300) or more and (Τ3-50) or less, the surface temperature immediately after the final rolling pass is completed. Hot-rolling such that a given surface temperature is above (Τ-300) and above (Τ / 3-100) and below
を有する請求の範囲 3の α + ]3型チタン合金棒材の製造方法。 3. The method for producing an α +] 3 type titanium alloy rod according to claim 3, comprising:
5. 熱間圧延する工程において、 1 圧延パス当りの圧下率を 40 ¾以下とする請求の 範囲 4の α + /3型チタン合金棒材の製造方法。 5. The method for producing an α + / 3 type titanium alloy rod according to claim 4, wherein the reduction ratio per rolling pass is 40 ° or less in the hot rolling step.
6. 熱間圧延をリバース型圧延機で行う場合、 圧延 i ^を 6 m / sec 以下とする請 求の範囲 4の α + iS型チタン合金棒材の製造方法。 6. When hot rolling is performed with a reverse type rolling mill, make sure that rolling i ^ is 6 m / sec or less. A method for producing an α + iS type titanium alloy bar according to claim 4.
7. 熱間圧延をタンデム型圧延機で行う場合、 圧延速度を 1. 5 m / sec 以下とする 請求の範囲 4のひ + 3型チタン合金棒材の製造方法。 7. The method of claim 4 wherein the rolling speed is 1.5 m / sec or less when hot rolling is performed using a tandem rolling mill.
8. 熱間圧延工程において、 3500 mm2以上の圧延方向に垂直方向の断面積を有す る被圧延材を前記断面積が S 匪2となるように圧延したとき、 次の圧延を開始する までの時間を 0. 167XS1/2 sec以上とする請求の範囲 4の + /3型チタン合金棒材 の製造方法。 8. In the hot rolling process, when a material to be rolled having a cross-sectional area perpendicular to the rolling direction of 3500 mm 2 or more is rolled so that the cross-sectional area becomes S bandage 2 , the next rolling is started. 4. The method for producing a + / 3 type titanium alloy bar according to claim 4, wherein the time until the time is 0.167XS 1/2 sec or more.
9. 熱間圧延工程において、 被圧延材を圧延中に再加熱する請求の範囲 4 の α + β 型チタン合金棒材の製造方法。 9. The method according to claim 4, wherein the material to be rolled is reheated during rolling in the hot rolling step.
PCT/JP2002/001710 2001-02-28 2002-02-26 Titanium alloy bar and method for production thereof WO2002070763A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP02703899A EP1382695A4 (en) 2001-02-28 2002-02-26 Titanium alloy bar and method for production thereof
JP2002570785A JP4013761B2 (en) 2001-02-28 2002-02-26 Manufacturing method of titanium alloy bar
US10/418,252 US20030223902A1 (en) 2001-02-28 2003-04-17 Titanium alloy bar and method for manufacturing the same
US10/968,521 US20050051245A1 (en) 2001-02-28 2004-10-18 Method for manufacturing a titanium alloy bar

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-054809 2001-02-28
JP2001054809 2001-02-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/418,252 Continuation US20030223902A1 (en) 2001-02-28 2003-04-17 Titanium alloy bar and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2002070763A1 true WO2002070763A1 (en) 2002-09-12

Family

ID=18915085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/001710 WO2002070763A1 (en) 2001-02-28 2002-02-26 Titanium alloy bar and method for production thereof

Country Status (6)

Country Link
US (2) US20030223902A1 (en)
EP (1) EP1382695A4 (en)
JP (1) JP4013761B2 (en)
RU (1) RU2259413C2 (en)
TW (1) TWI293987B (en)
WO (1) WO2002070763A1 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015101749A (en) * 2013-11-22 2015-06-04 東邦チタニウム株式会社 α+β TYPE TITANIUM ALLOY AND METHOD FOR PRODUCING THE ALLOY
US9523137B2 (en) 2004-05-21 2016-12-20 Ati Properties Llc Metastable β-titanium alloys and methods of processing the same by direct aging
US9616480B2 (en) 2011-06-01 2017-04-11 Ati Properties Llc Thermo-mechanical processing of nickel-base alloys
US9624567B2 (en) 2010-09-15 2017-04-18 Ati Properties Llc Methods for processing titanium alloys
CN107138523A (en) * 2017-06-29 2017-09-08 西部超导材料科技股份有限公司 A kind of TB9 titanium alloy wires bar and its milling method
US9765420B2 (en) 2010-07-19 2017-09-19 Ati Properties Llc Processing of α/β titanium alloys
US9777361B2 (en) 2013-03-15 2017-10-03 Ati Properties Llc Thermomechanical processing of alpha-beta titanium alloys
US9796005B2 (en) 2003-05-09 2017-10-24 Ati Properties Llc Processing of titanium-aluminum-vanadium alloys and products made thereby
US9869003B2 (en) 2013-02-26 2018-01-16 Ati Properties Llc Methods for processing alloys
US10053758B2 (en) 2010-01-22 2018-08-21 Ati Properties Llc Production of high strength titanium
US10094003B2 (en) 2015-01-12 2018-10-09 Ati Properties Llc Titanium alloy
CN109283205A (en) * 2018-10-19 2019-01-29 中国航发北京航空材料研究院 The measuring method of primary alpha phase volume fraction in a kind of titanium alloy tissue
US10337093B2 (en) 2013-03-11 2019-07-02 Ati Properties Llc Non-magnetic alloy forgings
US10435775B2 (en) 2010-09-15 2019-10-08 Ati Properties Llc Processing routes for titanium and titanium alloys
US10502252B2 (en) 2015-11-23 2019-12-10 Ati Properties Llc Processing of alpha-beta titanium alloys
US10513755B2 (en) 2010-09-23 2019-12-24 Ati Properties Llc High strength alpha/beta titanium alloy fasteners and fastener stock
WO2020101008A1 (en) * 2018-11-15 2020-05-22 日本製鉄株式会社 Titanium alloy wire rod and method for manufacturing titanium alloy wire rod
US11111552B2 (en) 2013-11-12 2021-09-07 Ati Properties Llc Methods for processing metal alloys

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4264411B2 (en) * 2004-04-09 2009-05-20 新日本製鐵株式会社 High strength α + β type titanium alloy
RU2269584C1 (en) * 2004-07-30 2006-02-10 Открытое Акционерное Общество "Корпорация Всмпо-Ависма" Titanium-base alloy
JP4655666B2 (en) * 2005-02-23 2011-03-23 Jfeスチール株式会社 Golf club head
RU2383654C1 (en) * 2008-10-22 2010-03-10 Государственное образовательное учреждение высшего профессионального образования "Уфимский государственный авиационный технический университет" Nano-structural technically pure titanium for bio-medicine and method of producing wire out of it
WO2012115243A1 (en) 2011-02-24 2012-08-30 新日本製鐵株式会社 HIGH-STRENGTH α+β TYPE HOT-ROLLED TITANIUM ALLOY WITH EXCELLENT COIL HANDLING PROPERTIES WHEN COLD, AND PRODUCTION METHOD THEREFOR
JP5182452B2 (en) 2011-02-24 2013-04-17 新日鐵住金株式会社 Α + β-type titanium alloy plate excellent in cold-rolling property and cold handling property and its manufacturing method
CN103732770B (en) * 2011-06-17 2016-05-04 钛金属公司 For the manufacture of the method for alpha-beta TI-AL-V-MO-FE alloy sheets
CN102586639A (en) * 2012-03-16 2012-07-18 广州有色金属研究院 Method for preparing titanium alloy through high-speed pressing formation
CN104532057B (en) * 2014-12-11 2017-01-04 西部超导材料科技股份有限公司 A kind of Ti6242 titanium alloy and the preparation method of small-sized bar thereof
CN105251804B (en) * 2015-10-28 2018-05-08 西部超导材料科技股份有限公司 A kind of milling method of six square rod of TC6 titanium alloys
CN108472703B (en) * 2015-12-22 2021-01-01 切佩茨基机械厂股份公司 Method for producing rods from titanium alloys
CN111545574A (en) * 2020-05-20 2020-08-18 攀钢集团攀枝花钛材有限公司江油分公司 TA15 hot rolling plate structure control method
CN114535343B (en) * 2022-04-26 2022-08-30 西部宝德科技股份有限公司 Titanium fiber preparation method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5825465A (en) * 1981-08-05 1983-02-15 Sumitomo Metal Ind Ltd Manufacture of rolled titanium alloy material having excellent structure
JPH05295502A (en) * 1992-04-21 1993-11-09 Nkk Corp Production of alpha plus beta titanium alloy sheet for superplastic working
JPH08103831A (en) * 1994-10-05 1996-04-23 Nkk Corp Punching method for titanium alloy plate material
JPH10306335A (en) * 1997-04-30 1998-11-17 Nkk Corp Alpha plus beta titanium alloy bar and wire rod, and its production

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5982101A (en) * 1982-11-01 1984-05-12 Sumitomo Metal Ind Ltd Production of titanium alloy bar
US5362441A (en) * 1989-07-10 1994-11-08 Nkk Corporation Ti-Al-V-Mo-O alloys with an iron group element
DE69024418T2 (en) * 1989-07-10 1996-05-15 Nippon Kokan Kk Titanium-based alloy and process for its superplastic shaping
US5346217A (en) * 1991-02-08 1994-09-13 Yamaha Corporation Hollow metal alloy wood-type golf head
JP3083225B2 (en) * 1993-12-01 2000-09-04 オリエント時計株式会社 Manufacturing method of titanium alloy decorative article and watch exterior part
JP3114503B2 (en) * 1994-07-14 2000-12-04 日本鋼管株式会社 Method for producing (α + β) type titanium alloy having locally excellent wear resistance
JP3319195B2 (en) * 1994-12-05 2002-08-26 日本鋼管株式会社 Toughening method of α + β type titanium alloy
JP4655666B2 (en) * 2005-02-23 2011-03-23 Jfeスチール株式会社 Golf club head

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5825465A (en) * 1981-08-05 1983-02-15 Sumitomo Metal Ind Ltd Manufacture of rolled titanium alloy material having excellent structure
JPH05295502A (en) * 1992-04-21 1993-11-09 Nkk Corp Production of alpha plus beta titanium alloy sheet for superplastic working
JPH08103831A (en) * 1994-10-05 1996-04-23 Nkk Corp Punching method for titanium alloy plate material
JPH10306335A (en) * 1997-04-30 1998-11-17 Nkk Corp Alpha plus beta titanium alloy bar and wire rod, and its production

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1382695A4 *

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9796005B2 (en) 2003-05-09 2017-10-24 Ati Properties Llc Processing of titanium-aluminum-vanadium alloys and products made thereby
US9523137B2 (en) 2004-05-21 2016-12-20 Ati Properties Llc Metastable β-titanium alloys and methods of processing the same by direct aging
US10422027B2 (en) 2004-05-21 2019-09-24 Ati Properties Llc Metastable beta-titanium alloys and methods of processing the same by direct aging
US10053758B2 (en) 2010-01-22 2018-08-21 Ati Properties Llc Production of high strength titanium
US10144999B2 (en) 2010-07-19 2018-12-04 Ati Properties Llc Processing of alpha/beta titanium alloys
US9765420B2 (en) 2010-07-19 2017-09-19 Ati Properties Llc Processing of α/β titanium alloys
US9624567B2 (en) 2010-09-15 2017-04-18 Ati Properties Llc Methods for processing titanium alloys
US10435775B2 (en) 2010-09-15 2019-10-08 Ati Properties Llc Processing routes for titanium and titanium alloys
US10513755B2 (en) 2010-09-23 2019-12-24 Ati Properties Llc High strength alpha/beta titanium alloy fasteners and fastener stock
US9616480B2 (en) 2011-06-01 2017-04-11 Ati Properties Llc Thermo-mechanical processing of nickel-base alloys
US10287655B2 (en) 2011-06-01 2019-05-14 Ati Properties Llc Nickel-base alloy and articles
US9869003B2 (en) 2013-02-26 2018-01-16 Ati Properties Llc Methods for processing alloys
US10570469B2 (en) 2013-02-26 2020-02-25 Ati Properties Llc Methods for processing alloys
US10337093B2 (en) 2013-03-11 2019-07-02 Ati Properties Llc Non-magnetic alloy forgings
US10370751B2 (en) 2013-03-15 2019-08-06 Ati Properties Llc Thermomechanical processing of alpha-beta titanium alloys
US9777361B2 (en) 2013-03-15 2017-10-03 Ati Properties Llc Thermomechanical processing of alpha-beta titanium alloys
US11111552B2 (en) 2013-11-12 2021-09-07 Ati Properties Llc Methods for processing metal alloys
JP2015101749A (en) * 2013-11-22 2015-06-04 東邦チタニウム株式会社 α+β TYPE TITANIUM ALLOY AND METHOD FOR PRODUCING THE ALLOY
US10808298B2 (en) 2015-01-12 2020-10-20 Ati Properties Llc Titanium alloy
US10094003B2 (en) 2015-01-12 2018-10-09 Ati Properties Llc Titanium alloy
US10619226B2 (en) 2015-01-12 2020-04-14 Ati Properties Llc Titanium alloy
US11851734B2 (en) 2015-01-12 2023-12-26 Ati Properties Llc Titanium alloy
US11319616B2 (en) 2015-01-12 2022-05-03 Ati Properties Llc Titanium alloy
US10502252B2 (en) 2015-11-23 2019-12-10 Ati Properties Llc Processing of alpha-beta titanium alloys
CN107138523A (en) * 2017-06-29 2017-09-08 西部超导材料科技股份有限公司 A kind of TB9 titanium alloy wires bar and its milling method
CN107138523B (en) * 2017-06-29 2019-07-02 西部超导材料科技股份有限公司 A kind of TB9 titanium alloy wire bar and its milling method
CN109283205A (en) * 2018-10-19 2019-01-29 中国航发北京航空材料研究院 The measuring method of primary alpha phase volume fraction in a kind of titanium alloy tissue
CN109283205B (en) * 2018-10-19 2021-03-26 中国航发北京航空材料研究院 Method for measuring volume fraction of primary alpha phase in titanium alloy structure
WO2020101008A1 (en) * 2018-11-15 2020-05-22 日本製鉄株式会社 Titanium alloy wire rod and method for manufacturing titanium alloy wire rod
JP7024861B2 (en) 2018-11-15 2022-02-24 日本製鉄株式会社 Titanium alloy wire rod and titanium alloy wire rod manufacturing method
CN113039299A (en) * 2018-11-15 2021-06-25 日本制铁株式会社 Titanium alloy wire rod and method for manufacturing titanium alloy wire rod
CN113039299B (en) * 2018-11-15 2022-07-19 日本制铁株式会社 Titanium alloy wire rod and method for manufacturing titanium alloy wire rod
JPWO2020101008A1 (en) * 2018-11-15 2021-02-15 日本製鉄株式会社 Titanium alloy wire rod and titanium alloy wire rod manufacturing method

Also Published As

Publication number Publication date
US20030223902A1 (en) 2003-12-04
EP1382695A1 (en) 2004-01-21
JPWO2002070763A1 (en) 2004-07-02
TWI293987B (en) 2008-03-01
US20050051245A1 (en) 2005-03-10
EP1382695A4 (en) 2004-08-11
RU2003126234A (en) 2005-03-10
JP4013761B2 (en) 2007-11-28
RU2259413C2 (en) 2005-08-27

Similar Documents

Publication Publication Date Title
WO2002070763A1 (en) Titanium alloy bar and method for production thereof
EP2868759B1 (en) ALPHA + BETA TYPE Ti ALLOY AND PROCESS FOR PRODUCING SAME
CA2525084C (en) Processing of titanium-aluminum-vanadium alloys and products made thereby
JP6965986B2 (en) Manufacturing method of α + β type titanium alloy wire and α + β type titanium alloy wire
US20030168138A1 (en) Method for processing beta titanium alloys
JP7448776B2 (en) Titanium alloy thin plate and method for producing titanium alloy thin plate
JP7401760B2 (en) Manufacturing method of α+β type titanium alloy bar material
Ari-Gur et al. Evolution of microstructure, macrotexture and microtexture during hot rolling of Ti-6A1-4V
JP7448777B2 (en) Production method of α+β type titanium alloy bar and α+β type titanium alloy bar
JP4019668B2 (en) High toughness titanium alloy material and manufacturing method thereof
JP2010082688A (en) METHOD FOR MANUFACTURING beta-TYPE TITANIUM ALLOY PLATE, AND beta-TYPE TITANIUM ALLOY PLATE
JP6673121B2 (en) α + β type titanium alloy rod and method for producing the same
JPH07180011A (en) Production of alpha+beta type titanium alloy extruded material
TWI796118B (en) Titanium alloy plate and titanium alloy coil and manufacturing method of titanium alloy plate and titanium alloy coil
KR20230095259A (en) Method for manufacturing thin titanium plates with fine and equiaxed grains and thin titanium plates manufactured by using the same
WO2021149155A1 (en) Method for producing processed titanium material
JP3951564B2 (en) Hot rolled titanium plate for surface member of electrolytic deposition drum and method for producing the same
JPS61253354A (en) Manufacture of alpha+beta type titanium alloy sheet
KR20240096117A (en) High strength titanium alloy plate and method of manufacturing thereof
JPH1085804A (en) Manufacture of seamless tube consisting of alpha-type or alpha+beta type titanium alloy containing substance for inhibiting coarsening of structure
AU2004239246B2 (en) Processing of titanium-aluminum-vanadium alloys and products made thereby
JP2023092454A (en) Titanium alloy, titanium alloy bar, titanium alloy plate, and engine valve
JPH02112804A (en) Production of seamless pipe consisting of alpha+beta type titanium alloy
JPS6367550B2 (en)
Hailiang et al. Special rolling techniques for improvement of mechanical properties of ultrafine-grained metal sheets: a review

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP RU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002570785

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10418252

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2002703899

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002703899

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2002703899

Country of ref document: EP