JPH08103831A - Punching method for titanium alloy plate material - Google Patents

Punching method for titanium alloy plate material

Info

Publication number
JPH08103831A
JPH08103831A JP24105994A JP24105994A JPH08103831A JP H08103831 A JPH08103831 A JP H08103831A JP 24105994 A JP24105994 A JP 24105994A JP 24105994 A JP24105994 A JP 24105994A JP H08103831 A JPH08103831 A JP H08103831A
Authority
JP
Japan
Prior art keywords
punching
titanium alloy
plate material
alloy plate
cracks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24105994A
Other languages
Japanese (ja)
Inventor
Masayuki Horie
正之 堀江
Koji Suzuki
孝司 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP24105994A priority Critical patent/JPH08103831A/en
Publication of JPH08103831A publication Critical patent/JPH08103831A/en
Pending legal-status Critical Current

Links

Landscapes

  • Punching Or Piercing (AREA)

Abstract

PURPOSE: To provide a punching method, for a plate material of titanium alloy, which is capable of preventing punching defects such as cracks and chips generating in corner parts. CONSTITUTION: Assuming (d) (μm) as a crystal grain size of a titanium alloy plate material, (t) (mm) as its plate thickness and R (mm) as the radius of curvature of a corner part in punching, the punching method for the titanium alloy plate material is such that punching is performed under the conditions in which (d) is 7μm or larger and also satisfies the following equation: R/t>=0.20×1n(d)+0.1... formula.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、チタン合金板材の打抜
加工方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for punching a titanium alloy sheet material.

【0002】[0002]

【従来の技術】一般にチタン合金は軽量、高強度で優れ
た耐食性を有するが、その冷間加工性は乏しく、打抜加
工ではその板厚が1mmを越えると、板厚の増大ととも
に表面に割れが発生したり、割れが嵩じて欠けが生じた
りする頻度が高くなる。特にコーナー部では、その周辺
の応力状態の特殊性から割れや欠けの発生頻度がより顕
著になる。
2. Description of the Related Art Generally, titanium alloys are lightweight, have high strength, and have excellent corrosion resistance, but their cold workability is poor. When punching, if the plate thickness exceeds 1 mm, the surface cracks as the plate thickness increases. The frequency of occurrence of cracks and cracks is high. Especially at the corners, the frequency of cracks and chips becomes more remarkable due to the peculiarity of the stress state around the corners.

【0003】こうしたチタン合金の打抜加工性の問題に
対する直接的な解決方法ではないが、特開平1ー177
906号公報には、打抜加工の場合と同様な剪断応力を
利用したチタン合金の切断方法が提案されている。これ
は材料の切断位置にノッチを設け、切断時にこのノッチ
部に剪断応力を集中させて切断し易くし、切断面に生じ
るかえりや傾斜などの欠陥を減少させる方法である。ま
た技術文献「塑性と加工」(vol.15、No.6
4、1964)には、炭素鋼板の打抜加工方法が提示さ
れており、コーナー部の曲率半径Rを鋼板板厚の0.3
1倍以上にすることによりコーナー部の打抜不良を解決
できることが述べられている。
Although this is not a direct solution to the problem of punching workability of titanium alloys, it is disclosed in JP-A-1-177.
Japanese Patent Publication No. 906 proposes a method for cutting a titanium alloy using the same shear stress as in the punching process. This is a method in which a notch is provided at the cutting position of the material, and shear stress is concentrated at the notch portion during cutting to facilitate cutting, and defects such as burrs and inclinations occurring on the cut surface are reduced. In addition, technical literature “Plasticity and processing” (vol. 15, No. 6)
4, 1964), a method of stamping a carbon steel sheet is presented, and the radius of curvature R of the corner portion is set to 0.3 of the steel sheet thickness.
It is described that the punching failure at the corner can be solved by increasing the amount to 1 time or more.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、特開平
1ー177906号公報に記載された方法では、ノッチ
を形成する工程が増えコスト高になるとともに、ノッチ
形成部に正確に剪断応力を加えるためには高精度の位置
決め技術が必要になる。特に、複雑な形状のものを打抜
加工するときは、大幅なコスト増を招くとともに生産性
が著しく低下する。また前記の技術文献「塑性と加工」
に記載された方法は、鉄鋼材料やアルミ材料に関しては
有効な指針を与えてくれるが、こうした材料に比べ冷間
加工性の劣るチタン材料にはそのままでは適用できな
い。
However, in the method described in Japanese Patent Laid-Open No. 177906/1990, the number of steps for forming a notch increases and the cost increases, and in order to accurately apply shear stress to the notch forming portion. Requires high-precision positioning technology. In particular, when punching a complicated shape, the cost is greatly increased and the productivity is significantly reduced. In addition, the above-mentioned technical literature "Plasticity and processing"
Although the method described in (1) gives effective guidelines for steel materials and aluminum materials, it cannot be applied as it is to titanium materials, which are inferior in cold workability to these materials.

【0005】本発明はこのような問題を解決するために
なされたもので、特別な手段を用いず、コーナー部に発
生する割れや欠けの打抜不良を防止できるチタン合金板
材の打抜加工方法を提供することを目的とする。
The present invention has been made to solve the above problems, and a punching method for a titanium alloy sheet material capable of preventing a punching defect such as a crack or a chip occurring at a corner portion without using any special means. The purpose is to provide.

【0006】[0006]

【課題を解決するための手段】上記課題は、チタン合金
板材の結晶粒径をd(μm)、その板厚をt(mm)、
打抜加工におけるコーナー部の曲率半径をR(mm)と
するとき、dが7μm以下でかつ式(1)を満足する条
件で打抜加工することを特徴とするチタン合金板材の打
抜加工方法によって解決される。 R/t≧0.20×ln(d)+0.1・・・(1)
Means for Solving the Problems The above-mentioned problems are as follows: the crystal grain size of a titanium alloy plate is d (μm), the plate thickness is t (mm),
A method of punching a titanium alloy plate material, characterized in that when the radius of curvature of the corner portion in the punching process is R (mm), the punching process is performed under the condition that d is 7 μm or less and the formula (1) is satisfied. Will be solved by. R / t ≧ 0.20 × ln (d) +0.1 (1)

【0007】[0007]

【作用】打抜時の割れは、基本的には材料の延性に係わ
る問題である。したがって材料の組織、特に結晶粒径と
なんらかの関連があることが推察される。また前記した
ように鉄鋼材料では、コーナー部の打抜不良に対してコ
ーナー部の曲率半径と鋼板板厚の比をある値以上にする
ことが有効であるので、チタン材料においてもコーナー
部の曲率半径と板厚の比が打抜加工性を左右している可
能性がある。そこで以下に示すように、チタン合金の結
晶粒径dと板厚tおよび打抜コーナー部の曲率半径Rを
意識的に変えて打抜加工性の検討を行った。
FUNCTION The cracking during punching is basically a problem related to the ductility of the material. Therefore, it is inferred that there is some relation with the structure of the material, especially the crystal grain size. Further, as described above, in the case of steel materials, it is effective to make the ratio of the curvature radius of the corner portion to the plate thickness of the steel sheet more than a certain value against the punching failure of the corner portion. The ratio of the radius to the plate thickness may affect punching workability. Therefore, as shown below, the punching workability was examined by consciously changing the crystal grain size d and the plate thickness t of the titanium alloy and the radius of curvature R of the punching corner portion.

【0008】Tiー4.5Alー3Vー2Feー2Mo
系のα+β型チタン合金を溶製し、熱延条件や熱延後の
熱処理温度を変えて種々の結晶粒径dを有する熱延板を
作成した。それらの熱延板から機械加工により1mm以
上の範囲で板厚tの異なるサンプルを作成した。そして
100mm×100mmの素板を切り出し、種々のコー
ナー部のRを有する60mm×60mmの正方形のダイ
スを用いて打抜加工を行った。そして打抜片のコーナー
部を観察し割れや欠けの有無を判定した。
Ti-4.5Al-3V-2Fe-2Mo
A system α + β type titanium alloy was melted, and hot-rolled sheets having various crystal grain sizes d were prepared by changing the hot-rolling conditions and the heat treatment temperature after hot-rolling. From these hot-rolled sheets, samples having different sheet thickness t were prepared by machining in the range of 1 mm or more. Then, a 100 mm × 100 mm blank plate was cut out and punched using a 60 mm × 60 mm square die having various corner Rs. Then, the corners of the punched pieces were observed to determine the presence or absence of cracks or chips.

【0009】その結果、7μmを越えた結晶粒径dを有
するサンプルでは、その板厚tやダイスのコーナー部の
Rとは無関係に割れや欠けが認められた。図1に結晶粒
径dが7μm以下のサンプルにおけるR/t、dと割れ
や欠け発生の有無との関係を示す。結晶粒径dが7μm
以下の場合は、式(1)を満足するようにR、t、dが
調整されていれば割れや欠けの発生を抑制できる。
As a result, in the sample having the crystal grain size d exceeding 7 μm, cracks and chips were recognized irrespective of the plate thickness t and the radius R of the corner portion of the die. FIG. 1 shows the relationship between R / t, d and the presence or absence of cracks or chips in a sample having a crystal grain size d of 7 μm or less. Crystal grain size d is 7 μm
In the following cases, if R, t, and d are adjusted so as to satisfy the expression (1), the occurrence of cracks and chips can be suppressed.

【0010】[0010]

【実施例】Tiー4.5Alー3Vー2Feー2Mo系
およびTiー6Alー4V系のα+β型チタン合金を溶
製し、表1に示すように熱延条件や熱延後の熱処理温度
を変えて2〜10μmの結晶粒径dを有する熱延板を作
成した。これらの熱延板から機械加工により板厚が1.
5、3.2、5.0mmで100mm×100mmの素
板を切り出し、コーナー部のRを0.3、0.6、1.
5、3.0mmと変えた60mm×60mmの正方形の
ダイスを用いて打抜加工を行った。なおパンチの寸法は
直片部におけるダイスとの隙間が板厚の12.5%とな
るように調整されている。そして打抜片のコーナー部を
観察し割れや欠けの有無を判定した。
[Example] Ti-4.5Al-3V-2Fe-2Mo type and Ti-6Al-4V type α + β type titanium alloys were melted and the hot rolling conditions and the heat treatment temperature after hot rolling were set as shown in Table 1. Instead, a hot-rolled sheet having a crystal grain size d of 2 to 10 μm was prepared. The thickness of these hot-rolled sheets was machined to 1.
A 100 mm × 100 mm blank plate was cut out at 5, 3.2, and 5.0 mm, and the corner portion R was 0.3, 0.6, 1.
Punching was performed using a 60 mm × 60 mm square die that was changed to 5, 3.0 mm. The size of the punch is adjusted so that the gap between the punch and the die is 12.5% of the plate thickness. Then, the corners of the punched pieces were observed to determine the presence or absence of cracks or chips.

【0011】[0011]

【表1】 [Table 1]

【0012】図2にTiー4.5Alー3Vー2Feー
2Mo系における、また図3にTiー6Alー4V系に
おけるR/t、dと割れや欠け発生の有無との関係を示
す。いずれの成分系のサンプルにおいても、結晶粒径d
が7μm以下でかつ式(1)を満足するようにR、t、
dが調整されていれば割れや欠けの発生を防止できる。
FIG. 2 shows the relationship between R / t and d in the Ti-4.5Al-3V-2Fe-2Mo system and FIG. 3 in the Ti-6Al-4V system and the presence or absence of cracks and chips. The crystal grain size d in any of the component system samples
Is 7 μm or less and satisfies the expression (1), R, t,
If d is adjusted, cracks and chips can be prevented from occurring.

【0013】[0013]

【発明の効果】本発明は以上説明したように構成されて
いるので、特別な手段を用いず、コーナー部に発生する
割れや欠けの打抜不良を防止できるチタン合金板材の打
抜加工方法を提供できる。
EFFECTS OF THE INVENTION Since the present invention is constructed as described above, there is provided a method of punching a titanium alloy sheet material capable of preventing a punching defect such as a crack or a chip occurring at a corner portion without using any special means. Can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】結晶粒径dが7μm以下のサンプルにおけるR
/t、dと割れや欠け発生の有無との関係を表す図であ
る。
FIG. 1 shows R in a sample having a crystal grain size d of 7 μm or less.
It is a figure showing the relationship between / t and d and the presence or absence of a crack or chipping.

【図2】Tiー4.5Alー3Vー2Feー2Mo系の
α+β型チタン合金板材におけるR/t、dと割れや欠
け発生の有無との関係を表す図である。
FIG. 2 is a diagram showing a relationship between R / t and d and presence / absence of cracking or chipping in a Ti-4.5Al-3V-2Fe-2Mo type α + β type titanium alloy plate material.

【図3】Tiー6Alー4V系のα+β型チタン合金板
材におけるR/t、dと割れや欠け発生の有無との関係
を表す図である。
FIG. 3 is a diagram showing a relationship between R / t and d in a Ti-6Al-4V type α + β type titanium alloy plate material and the presence or absence of cracking or chipping.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 チタン合金板材の結晶粒径をd(μ
m)、その板厚をt(mm)、打抜加工におけるコーナ
ー部の曲率半径をR(mm)とするとき、dが7μm以
下でかつ式(1)を満足する条件で打抜加工することを
特徴とするチタン合金板材の打抜加工方法。 R/t≧0.20×ln(d)+0.1・・・(1)
1. The crystal grain size of a titanium alloy sheet is d (μ
m), the plate thickness is t (mm), and the radius of curvature of the corner portion in the punching process is R (mm), the punching process is performed under the condition that d is 7 μm or less and the formula (1) is satisfied. A method for punching a titanium alloy sheet, characterized by: R / t ≧ 0.20 × ln (d) +0.1 (1)
JP24105994A 1994-10-05 1994-10-05 Punching method for titanium alloy plate material Pending JPH08103831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24105994A JPH08103831A (en) 1994-10-05 1994-10-05 Punching method for titanium alloy plate material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24105994A JPH08103831A (en) 1994-10-05 1994-10-05 Punching method for titanium alloy plate material

Publications (1)

Publication Number Publication Date
JPH08103831A true JPH08103831A (en) 1996-04-23

Family

ID=17068701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24105994A Pending JPH08103831A (en) 1994-10-05 1994-10-05 Punching method for titanium alloy plate material

Country Status (1)

Country Link
JP (1) JPH08103831A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002070763A1 (en) * 2001-02-28 2002-09-12 Jfe Steel Corporation Titanium alloy bar and method for production thereof
US7878925B2 (en) 2005-02-23 2011-02-01 Jfe Steel Corporation Golf club head

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002070763A1 (en) * 2001-02-28 2002-09-12 Jfe Steel Corporation Titanium alloy bar and method for production thereof
US7878925B2 (en) 2005-02-23 2011-02-01 Jfe Steel Corporation Golf club head

Similar Documents

Publication Publication Date Title
US10920300B2 (en) Titanium composite material and titanium material for hot rolling
EP0192105B1 (en) Method for hot-forming at least one metal sheet of hardly deformable material
EP0196447B1 (en) Process for enhancing the oxidation and corrosion resistance of a component made from a dispersion-hardened superalloy by means of a surface treatment
EP3357598B1 (en) Method for cutting using press die
EP1345728B1 (en) Method of making a composite aluminium sheet
US4876870A (en) Method for manufacturing tubes
TWI632959B (en) Titanium composite and titanium for hot rolling
WO2008004906A1 (en) Method for producing sheet semifinished product from a titanium alloy
EP1733065B1 (en) Refractory metal pots
JPH08103831A (en) Punching method for titanium alloy plate material
JP3168836B2 (en) Manufacturing method of stainless steel and aluminum clad material
JP2005021899A (en) Metal clad plate and its producing method
JP2985679B2 (en) Forging method of titanium ingot
JPS5996245A (en) Material for lead frame and its manufacture
JP2885057B2 (en) Evaluation method for bonding strength of clad steel sheet
TWI626093B (en) Titanium composite and titanium for hot rolling
JPH0857557A (en) Punching die of metal sheet and method therefor
JPH11319970A (en) Ferritic stainless steel/aluminum clad plate excellent in deep drawability
JP3396925B2 (en) Hot rolling method of pure titanium
JP3057987B2 (en) Titanium alloy material excellent in stamping workability and stamping method
JPH10110226A (en) Production of copper or copper alloy
JPH03264108A (en) Method for hot-extruding al containing ti alloy
JPH11319981A (en) Punching method of high silicon steel plate
Yao et al. Investigation of stamping and heat treatment processes on the microstructure and blanking characteristics of Au80Sn20 eutectic alloy
JPH0899131A (en) Method for blanking metallic plate and blanking die

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20011218