JP3057987B2 - Titanium alloy material excellent in stamping workability and stamping method - Google Patents

Titanium alloy material excellent in stamping workability and stamping method

Info

Publication number
JP3057987B2
JP3057987B2 JP5328116A JP32811693A JP3057987B2 JP 3057987 B2 JP3057987 B2 JP 3057987B2 JP 5328116 A JP5328116 A JP 5328116A JP 32811693 A JP32811693 A JP 32811693A JP 3057987 B2 JP3057987 B2 JP 3057987B2
Authority
JP
Japan
Prior art keywords
punching
titanium alloy
punched
alloy material
stamping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5328116A
Other languages
Japanese (ja)
Other versions
JPH07179966A (en
Inventor
正之 堀江
孝司 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18206671&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3057987(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP5328116A priority Critical patent/JP3057987B2/en
Publication of JPH07179966A publication Critical patent/JPH07179966A/en
Application granted granted Critical
Publication of JP3057987B2 publication Critical patent/JP3057987B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Punching Or Piercing (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、冷間での打抜加工性が
優れたチタン合金材およびその打抜加工方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a titanium alloy material having excellent cold workability and a method for punching the same.

【0002】[0002]

【従来の技術】チタン、チタン合金は、軽量、高強度、
且つ高耐蝕性といった優れた物理特性を有する。しかし
ながら、冷間加工性は困難な部類に属する金属である。
チタン合金材の打抜加工は、図5(a)に示すようなダ
イ1上の被加工材2をパンチ3で打抜く場合の慣用打抜
法、および図5(b)に示すダイ1上の被加工材2を板
押え4で周囲を押圧し、エジェクタ5で逆圧をかけて打
抜くファインブランキング法の何れも、鋼材の打抜加工
と同等なものである。特に Ti-6Al-4V合金のような高強
度材を打抜加工する場合には、図6(a)に示すよう
に、パンチ当接面6と反対側のダイス当接面7周囲のだ
れ8近傍部分に微細な割れ9が生じる。この割れ9の亀
裂が切口面10にまで伝播すると欠け11に至ることと
なる。割れや欠けを生じた打抜材は、そのままでは製品
に適用できず、割れおよび欠けを除去できる仕上代分だ
け打抜寸法を大きくして打抜き、切口面全面をグライン
ダ等で仕上げることが行われている。だれ8部分に発生
する割れおよび欠けは、1.5mm以上の厚肉材で顕著であ
り、通常の打抜加工法ではファインブランキング法も含
めて不可避である。このような技術的状況から、現状で
は 1.5mm 以上のチタン合金板からブランクを製造する
場合には、ワイヤカット等の放電加工法を適用すること
がおこなわれている。剪断加工部に生じる欠陥を防止す
る技術としては、特開平1−177906号公報があ
る。同公報には、チタン合金材料を剪断により切断する
方法において、材料の切断位置のノッチを形成した後
に、そこに剪断応力を加えるもので、剪断加工時にノッ
チの先端から剪断方向に向かって、選択的にクラックが
入るので、切断面の傾斜を小さくでき、切断荷重が減少
するので剪断刃の負荷が低減され、また、かえりの発生
を抑制できることが記載されている。
2. Description of the Related Art Titanium and titanium alloys are lightweight, high strength,
And it has excellent physical properties such as high corrosion resistance. However, cold workability is a metal belonging to a difficult class.
The punching process of the titanium alloy material is performed by a conventional punching method when a workpiece 2 on a die 1 is punched by a punch 3 as shown in FIG. 5A, and on a die 1 shown in FIG. In the fine blanking method in which the workpiece 2 is pressed by the plate retainer 4 at the periphery thereof and the ejector 5 applies a reverse pressure to punch the workpiece 2, any of the fine blanking methods is equivalent to the punching processing of the steel material. In particular, when punching a high-strength material such as a Ti-6Al-4V alloy, as shown in FIG. 6A, a droop 8 around the die contact surface 7 opposite to the punch contact surface 6. Fine cracks 9 occur in the vicinity. When the crack of the crack 9 propagates to the cut surface 10, the crack 9 is reached. The punched material that has cracked or chipped cannot be applied to the product as it is, but it is necessary to increase the punching dimensions by the finishing allowance that can remove cracks and chips, and to punch out, and finish the entire cut surface with a grinder etc. ing. Cracks and chippings occurring in 8 portions are remarkable in a thick material having a thickness of 1.5 mm or more, and are inevitable in a normal punching method including a fine blanking method. From such a technical situation, when manufacturing a blank from a titanium alloy plate of 1.5 mm or more at present, an electric discharge machining method such as wire cutting is applied. Japanese Patent Application Laid-Open No. 1-177906 discloses a technique for preventing defects generated in a sheared portion. According to the same publication, in a method of cutting a titanium alloy material by shearing, after forming a notch at a cutting position of the material, a shear stress is applied thereto, and a shearing direction is selected from the tip of the notch in a shearing direction during shearing. It is described that since cracks are formed, the inclination of the cut surface can be reduced, and the cutting load decreases, so that the load on the shearing blade can be reduced and the generation of burrs can be suppressed.

【0003】[0003]

【発明が解決しようとする課題】上記のような従来技術
で、Ti−6Al−4V合金のような高強度材を打抜い
たときに発生する微細な割れ、および割れの亀裂が切口
面にまで伝播することにより切口面に欠けが生じた打抜
材は、そのまま適用できず、切口面全面をグラインダ仕
上げする等工程が増えてしまう欠点がある。また、打抜
加工においては、逆圧パンチも含めて、パンチとダイス
の間にクリアランスがあるために、切口面近傍ではだれ
が生じ、だれの表層部分では曲げ変形による引張応力の
発生は避けられない。逆圧パンチを使用した場合には、
だれが抑制される傾向にあるが、完全に抑制されるもの
ではなく、切口面全面をグラインダ仕上げする等工程が
増えてしまう欠点がある。また、材料の剪断位置にノッ
チを形成する方法においては、加工工程が増加するので
生産性の面から排除したい工程である。
In the prior art as described above, fine cracks and cracks generated when a high-strength material such as a Ti-6Al-4V alloy is punched are cut to the cut surface. A punched material in which a cut surface is chipped due to propagation cannot be applied as it is, and there is a drawback that the number of steps increases, such as finishing the entire cut surface with a grinder. Also, in punching, including back pressure punches, there is clearance between the punch and the die, so that drooping occurs near the cut surface, and tensile stress due to bending deformation can be avoided at the surface layer of anybody. Absent. When using a back pressure punch,
Although this tends to be suppressed, it is not completely suppressed, and there is a drawback that the number of processes such as grinding the entire cut surface is increased. Further, in the method of forming a notch at a shear position of a material, the number of processing steps is increased, and thus it is a step to be excluded from the viewpoint of productivity.

【0004】本発明は、上記のように、チタン合金を打
抜く際に生じる、割れや欠けにともなう切口面近傍の不
良に関する問題点を解決するためになされたもので、α
+β型チタン合金等の高強度チタン合金においても、慣
用打抜法を用いて、良好な打抜加工を可能にする技術を
提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the problem related to the defect near the cut surface due to cracking or chipping that occurs when punching a titanium alloy as described above.
It is an object of the present invention to provide a technique that enables a good punching process using a conventional punching method even for a high-strength titanium alloy such as a + β-type titanium alloy.

【0005】[0005]

【課題を解決するための手段】本発明に係る打抜加工性
が優れたチタン合金材および打抜加工方法の第1の発明
は、冷間で打抜加工するα+β型チタン合金材の平均結
晶粒径が、7μm以下の結晶組織であることを特徴とす
るものである。第2の発明は、冷間で打抜加工するチタ
ン合金材の打抜加工を下記(1)式の条件とすることを
特徴とするものである。 c/t−4.4ln d+23.0 かつ d≦7.0 ………(1) ただし、c:クリアランス(mm) t:被打抜材の厚さ(mm) d:被打抜材の平均結晶粒径(μm) 第3の発明は、冷間で打抜加工するチタン合金材の打抜
加工を下記(2)式の条件とすることを特徴とするもの
である。 c/t−4.4ln d+25.7 かつ d≦7.0 ………(2) ただし、c:クリアランス(mm) t:被打抜材の厚さ(mm) d:被打抜材の平均結晶粒径(μm)
SUMMARY OF THE INVENTION A first invention of a titanium alloy material excellent in stamping workability and a stamping method according to the present invention is an average crystal of an α + β type titanium alloy material stamped in a cold state. It has a crystal structure having a particle size of 7 μm or less. The second invention is characterized in that the punching of a titanium alloy material to be punched in the cold is performed under the condition of the following formula (1). c / t −4.4 ln d + 23.0 and d ≦ 7.0 (1) where c: clearance (mm) t: thickness of punched material (mm) d: average crystal of punched material Particle size (μm) The third invention is characterized in that the punching process of a titanium alloy material to be punched cold is performed under the condition of the following formula (2). c / t −4.4 ln d + 25.7 and d ≦ 7.0 (2) where c: clearance (mm) t: thickness of punched material (mm) d: average crystal of punched material Particle size (μm)

【0006】[0006]

【作用】チタン合金材として、α結晶組織とβ結晶組織
が混在するα+β型チタン合金は、等軸晶のα+β結晶
組織で、単一のβ結晶組織の場合に比較して延性が大き
い。α+β型チタン合金では、初析α晶の体積分率が通
常30〜70%の範囲において、初析α晶の粒径を平均
化して、平均結晶粒径を求めるが、平均結晶粒径が細か
くなるにつれて、延性が徐々に向上する。Ti−6Al
−4V合金では、通常10μmであるが4μmまでは細
粒化が可能であり、Ti−4.5Al−3V−2Mo−
2Fe合金では通常5μm程度で、2μm以下の細粒化
が可能である。細粒化による延性の向上という点に関し
ては、引張試験での全伸び値の対応が考えられるが、引
張試験と打抜加工時のだれ部分の変形特性の違いから、
全伸び値が一対一で対応せず、打抜性に対しては打抜加
工において検証しなければならないのが現状である。本
発明では、α+β型チタン合金の中でも結晶粒径を7μ
m以下の細粒に制御した素板を適用することにより、打
抜加工のだれ近傍に発生する割れ、ひいては割れのき裂
が切口面に伝播して生じる欠けを防止し、チタン合金の
打抜加工を可能にするものである。また、打抜加工のc
/tを板厚に関係なく、下記(1)式の範囲とすること
により、割れ及び欠けが発生しないことが確認された。 c/t−4.4ln d+23.0 かつ d≦7.0 ………(1) ただし、c:クリアランス(mm) t:被打抜材の厚さ(mm) d:被打抜材の平均結晶粒径(μm) また、逆厚を付加した打抜加工の場合には、c/tの範
囲を下記(1)式を満足する範囲とすることにより、割
れ及び欠けが発生しないことが確認された。 c/t−4.4ln d+25.7 かつ d≦7.0 ………(2) ただし、c:クリアランス(mm) t:被打抜材の厚さ(mm) d:被打抜材の平均結晶粒径(μm)
The titanium alloy material has an α + β type titanium alloy having an α crystal structure and a β crystal structure mixed with each other, and has an equiaxed α + β crystal structure, which has higher ductility than a single β crystal structure. In the case of the α + β type titanium alloy, the average crystal grain size is determined by averaging the grain size of the pro-eutectoid α crystal when the volume fraction of the pro-eutectoid α crystal is usually in the range of 30 to 70%. As it becomes, the ductility gradually improves. Ti-6Al
-4V alloy is usually 10 μm, but can be refined up to 4 μm, and Ti-4.5Al-3V-2Mo-
In the case of a 2Fe alloy, the grain size can be reduced to about 5 μm and 2 μm or less. Regarding the improvement of ductility due to grain refinement, it is conceivable to correspond to the total elongation value in the tensile test, but due to the difference in deformation characteristics of the droop part during the tensile test and punching,
At present, the total elongation value does not correspond one-to-one, and the punching property must be verified in the punching process. In the present invention, among α + β type titanium alloys, the crystal grain size is 7 μm.
By applying a base plate controlled to fine grains of m or less, it is possible to prevent cracks that occur near the drooping part of the punching process, and thereby prevent chipping caused by the propagation of cracks to the cut surface, and punching of titanium alloy This enables processing. In addition, c
It was confirmed that cracking and chipping did not occur by setting / t to the range of the following expression (1) regardless of the plate thickness. c / t −4.4 ln d + 23.0 and d ≦ 7.0 (1) where c: clearance (mm) t: thickness of punched material (mm) d: average crystal of punched material Particle diameter (μm) In the case of punching with an added reverse thickness, it was confirmed that cracking and chipping did not occur by setting the range of c / t to a range satisfying the following expression (1). Was. c / t −4.4 ln d + 25.7 and d ≦ 7.0 (2) where c: clearance (mm) t: thickness of the punched material (mm) d: average crystal of the punched material Particle size (μm)

【0007】[0007]

【実施例】以下に本発明の実施例について説明する。表
1に示す化学成分のチタン合金A材およびB材を、真空
アーク溶解後、熱間圧延により板厚7mmとし、熱処理を
施し、供試材を得た。
Embodiments of the present invention will be described below. The titanium alloy materials A and B having the chemical components shown in Table 1 were melted by vacuum arc, hot-rolled to a thickness of 7 mm, and heat-treated to obtain test materials.

【0008】[0008]

【表1】 熱間圧延は圧下比3.75、2.86の2回とし、2回目の熱間
圧延時の素材加熱温度を変化させた。熱間圧延温度条件
(2水準)、および熱処理条件(加熱時間を3水準)と
各供試材の結晶粒径、引張特性の関係を表2に示す。
[Table 1] The hot rolling was performed twice at a reduction ratio of 3.75 and 2.86, and the material heating temperature during the second hot rolling was changed. Table 2 shows the relationship between the hot rolling temperature conditions (two levels), the heat treatment conditions (three heating levels), the crystal grain size of each test material, and the tensile properties.

【0009】[0009]

【表2】 [Table 2]

【0010】結晶粒径は切断法(顕微鏡倍率800倍、
線分長さ50μm 、視野数5)にて測定し、圧延方向
と、圧延方向に直交する方向における値の平均である。
供試材番号A1〜A5およびB1〜B5の素材について
は粒状α晶、A6およびB6の素材についてはβ粒から
変態生成した針状α晶を有しており、もとのβ晶粒径を
求めた。引張試験は板厚3mm、平行部幅6mm、ゲージ長
25mm、平行部長さ32mmの板状試験片により求めた。
打抜実験はこれら供試材を機械加工により、板厚1.5mm
、3.2mm 、5.0mm としたものを用い、100 ×100mm 素
板からφ60mmの円形を打抜いた。表3〜表8に打抜条件
及び打抜結果を示す。供試材の一部は逆圧を付加して打
抜を行った。逆圧打抜パンチと同一径であり、逆圧力は
打抜力の10%に設定した。表9は逆圧を付加した場合
の打抜条件及び打抜結果である。
The crystal grain size is determined by a cutting method (microscope magnification 800 times,
It is measured with a line segment length of 50 μm and the number of fields of view 5), and is an average of values in a rolling direction and a direction perpendicular to the rolling direction.
The materials of test material numbers A1 to A5 and B1 to B5 have granular α crystals, and the materials of A6 and B6 have acicular α crystals transformed and formed from β grains. I asked. The tensile test was performed using a plate-shaped test piece having a thickness of 3 mm, a width of the parallel portion of 6 mm, a gauge length of 25 mm, and a length of the parallel portion of 32 mm.
In the punching test, these test materials were machined to a thickness of 1.5 mm.
, 3.2 mm and 5.0 mm, and a circle of φ60 mm was punched from a 100 × 100 mm base plate. Tables 3 to 8 show punching conditions and punching results. A part of the test material was punched by applying a reverse pressure. The diameter was the same as that of the back pressure punch, and the back pressure was set to 10% of the punch force. Table 9 shows the punching conditions and the punching results when a back pressure was applied.

【0011】[0011]

【表3】 [Table 3]

【0012】[0012]

【表4】 [Table 4]

【0013】[0013]

【表5】 [Table 5]

【0014】[0014]

【表6】 [Table 6]

【0015】[0015]

【表7】 [Table 7]

【0016】[0016]

【表8】 [Table 8]

【0017】[0017]

【表9】 [Table 9]

【0018】供試材A6およびB6はβ粒から変態生成
した針状α+β組織を有しており、切口面近傍のだれ部
分の割れ、および切口面の欠けが大きく生じており、打
抜加工に適しないことが明らかである。一方、粒状α+
β組織を有するA1〜A5およびB1〜B5の供試材
は、割れあるいは欠けが軽微であり、打抜加工に適して
いることがわかる。
The test materials A6 and B6 have a needle-like α + β structure formed by transformation from β grains, and cracks near the cut surface and cracks in the cut surface are largely generated. Obviously not suitable. On the other hand, granular α +
test material A1~A5 and B1~B5 with β tissue, cracking or chipping is minor, it can be seen that are suitable for stamping.

【0019】図1〜図3は粒状α+β組織を有する供試
材番号A1〜A5について、結晶粒径とc/t(クリア
ランス/板厚×100:%)の関係を板厚毎に示したも
のである。同図から明らかなように、結晶粒径が8μm
以上では、c/tにかかわらず割れや欠けが生じる。結
晶粒径が7μm以下とすると、割れや欠けの生じないc
/tの範囲が存在する。そして、結晶粒径が7μm以下
での割れや欠けの生じないc/tの範囲は、板厚に関係
なくほぼ一定している。このことから、α+β型チタン
合金材は、打抜加工条件を下記(1)式を満足する範囲
とすることにより、割れ及び欠けが発生せず、良好な状
態で打抜加工を実施できることが確認された。 c/t−4.4ln d+23.0 かつ d≦7.0 ………(1) ただし、c:クリアランス(mm) t:被打抜材の厚さ(mm) d:被打抜材の平均結晶粒径(μm) また、図4は粒状α+β組織を有する供試材番号A1〜
A5およびB1〜B5について、逆を付加した場合で
ある。同図から明らかなように、平均結晶粒径が8μm
以上とすると、割れや欠けが発生することは図1〜図3
と同一の傾向であるが、打抜可能なc/tの範囲は大幅
に拡大され、打抜加工条件を下記(2)式を満足する範
囲とすることにより、割れ及び欠けが発生せず、良好な
状態で打抜加工を実施できることが確認された。 c/t−4.4ln d+25.7 かつ d≦7.0 ………(2) ただし、c:クリアランス(mm) t:被打抜材の厚さ(mm) d:被打抜材の平均結晶粒径(μm)
FIGS. 1 to 3 show the relationship between the crystal grain size and c / t (clearance / plate thickness × 100:%) for each plate thickness for specimen numbers A1 to A5 having a granular α + β structure. It is. As is clear from the figure, the crystal grain size is 8 μm.
Above, cracks and chips occur regardless of c / t. When the crystal grain size is 7 μm or less, no cracking or chipping occurs c
/ T range. The range of c / t at which the crystal grain size is 7 μm or less and in which cracking or chipping does not occur is substantially constant regardless of the plate thickness. From this, it has been confirmed that the α + β type titanium alloy material can be punched in a good state without cracking and chipping by setting the punching condition in a range satisfying the following equation (1). Was done. c / t −4.4 ln d + 23.0 and d ≦ 7.0 (1) where c: clearance (mm) t: thickness of punched material (mm) d: average crystal of punched material FIG. 4 shows specimen numbers A1 to A1 having a granular α + β structure.
This is a case where a reverse pressure is applied to A5 and B1 to B5. As is clear from the figure, the average crystal grain size is 8 μm.
In this case, the occurrence of cracks and chips is not shown in FIGS.
However, the range of c / t that can be punched is greatly expanded, and by setting the punching condition to a range that satisfies the following expression (2) , cracks and chipping do not occur. It was confirmed that punching could be performed in a good condition. c / t −4.4 ln d + 25.7 and d ≦ 7.0 (2) where c: clearance (mm) t: thickness of punched material (mm) d: average crystal of punched material Particle size (μm)

【0020】[0020]

【発明の効果】以上のように、本発明によれば、慣用打
抜、および逆圧を付加した打抜加工において、打抜加工
に適する結晶粒径を持つα+β型チタン合金板を用い、
かつ板厚に応じて最適クリアランスを適用することによ
り、従来不可能とされた高強度チタン合金材の慣用打抜
を可能にする優れた効果がある。また、打抜パンチと反
対側の面に逆圧付加用のパンチを配置し、逆圧を付加す
ることにより、チタン合金材の打抜加工条件範囲を拡大
し、打抜加工をより容易にする優れた効果がある。
As described above, according to the present invention, in a conventional blanking and a blanking process to which a reverse pressure is applied, an α + β type titanium alloy plate having a crystal grain size suitable for the blanking process is used.
In addition, by applying the optimum clearance according to the thickness of the sheet, there is an excellent effect of enabling the conventional punching of a high-strength titanium alloy material, which has been impossible in the past. In addition, a punch for applying a reverse pressure is arranged on the surface on the opposite side of the punch and the reverse pressure is applied, thereby expanding the range of punching conditions for the titanium alloy material and making the punching process easier. Has an excellent effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】α+β型チタン合金材を慣用打抜法で打抜いた
場合の平均結晶粒径とクリアランスに対する割れおよび
欠け発生状況の関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the average crystal grain size and the state of occurrence of cracks and chips with respect to clearance when an α + β type titanium alloy material is punched by a conventional punching method.

【図2】α+β型チタン合金材を慣用打抜法で打抜いた
場合の平均結晶粒径とクリアランスに対する割れおよび
欠け発生状況の関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the average crystal grain size and the state of occurrence of cracks and chips with respect to clearance when an α + β type titanium alloy material is punched by a conventional punching method.

【図3】α+β型チタン合金材を慣用打抜法で打抜いた
場合の平均結晶粒径とクリアランスに対する割れおよび
欠け発生状況の関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the average crystal grain size and the state of occurrence of cracks and chips with respect to clearance when an α + β type titanium alloy material is punched by a conventional punching method.

【図4】α+β型チタン合金を逆圧を付加して打抜いた
場合の平均結晶粒径とクリアランスに対する割れおよび
欠け発生状況の関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the average crystal grain size and the state of occurrence of cracks and chips with respect to clearance when an α + β type titanium alloy is punched by applying a reverse pressure.

【図5】打抜加工状態を示す断面図ある。FIG. 5 is a sectional view showing a punching state.

【図6】打抜加工材の割れおよび欠けの発生状態を示す
説明図である。
FIG. 6 is an explanatory diagram showing a state of occurrence of cracks and chips in a punched material.

【符号の説明】[Explanation of symbols]

1 ダイ 2 被加工材 3 パンチ 4 板押え 5 エジェクタ 9 割れ 11 欠け Reference Signs List 1 die 2 workpiece 3 punch 4 plate holder 5 ejector 9 crack 11 chipping

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 冷間で打抜加工するα+β型チタン合金
材の平均結晶粒径が、7μm以下の結晶組織であること
を特徴とする打抜加工性が優れたチタン合金材。
1. A titanium alloy material excellent in punching work, characterized in that the α + β type titanium alloy material to be cold-punched has an average crystal grain size of 7 μm or less.
【請求項2】 冷間で打抜加工するα+β型チタン合金
材の打抜加工を、下記(1)式の条件とすることを特徴
とする打抜加工性が優れたチタン合金材の打抜加工方
法。 c/t−4.4ln d+23.0 かつ d≦7.0 ………(1) ただし、c:クリアランス(mm) t:被打抜材の厚さ(mm) d:被打抜材の平均結晶粒径(μm)
2. The punching of a titanium alloy having excellent punching characteristics, wherein the punching of an α + β type titanium alloy material to be punched in the cold is performed under the condition of the following formula (1). Processing method. c / t −4.4 ln d + 23.0 and d ≦ 7.0 (1) where c: clearance (mm) t: thickness of punched material (mm) d: average crystal of punched material Particle size (μm)
【請求項3】 冷間で逆圧を付加して打抜加工するα+
β型チタン合金材の打抜加工を下記(2)式の条件とす
ることを特徴とする打抜加工性が優れたチタン合金材の
打抜加工方法。 c/t−4.4ln d+25.7 かつ d≦7.0 ………(2) ただし、c:クリアランス(mm) t:被打抜材の厚さ(mm) d:被打抜材の平均結晶粒径(μm)
3. An α + which is subjected to blanking by applying a reverse pressure in a cold state.
A punching method for a titanium alloy material excellent in punching workability, wherein the punching of a β-type titanium alloy material is performed under the following condition (2). c / t −4.4 ln d + 25.7 and d ≦ 7.0 (2) where c: clearance (mm) t: thickness of punched material (mm) d: average crystal of punched material Particle size (μm)
JP5328116A 1993-12-24 1993-12-24 Titanium alloy material excellent in stamping workability and stamping method Expired - Fee Related JP3057987B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5328116A JP3057987B2 (en) 1993-12-24 1993-12-24 Titanium alloy material excellent in stamping workability and stamping method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5328116A JP3057987B2 (en) 1993-12-24 1993-12-24 Titanium alloy material excellent in stamping workability and stamping method

Publications (2)

Publication Number Publication Date
JPH07179966A JPH07179966A (en) 1995-07-18
JP3057987B2 true JP3057987B2 (en) 2000-07-04

Family

ID=18206671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5328116A Expired - Fee Related JP3057987B2 (en) 1993-12-24 1993-12-24 Titanium alloy material excellent in stamping workability and stamping method

Country Status (1)

Country Link
JP (1) JP3057987B2 (en)

Also Published As

Publication number Publication date
JPH07179966A (en) 1995-07-18

Similar Documents

Publication Publication Date Title
TWI385257B (en) Fabrication method of magnesium alloy plate and the magnesium alloy plate
US7373857B2 (en) Composite metal article and method of making
US7708845B2 (en) Method for manufacturing thin sheets of high strength titanium alloys description
US5820999A (en) Trimmed aluminum sheet
TWI705148B (en) Copper alloy plate and its manufacturing method
KR20100068484A (en) High-strength high-conductive copper wire rod
WO1998017836A1 (en) Method of processing titanium alloys and the article
JP6368518B2 (en) Cu-Ti copper alloy sheet, method for producing the same, and energized component
JP2004124151A (en) Heat treatment method for aluminum alloy
US6589371B1 (en) Method of processing titanium metal alloys
JP3438993B2 (en) Al-Mg based alloy sheet excellent in bending workability and method for producing the same
JP3057987B2 (en) Titanium alloy material excellent in stamping workability and stamping method
JP5685055B2 (en) Aluminum alloy plate
JP2932918B2 (en) Manufacturing method of α + β type titanium alloy extruded material
JP3819255B2 (en) Method for producing martensitic stainless steel strip with excellent punchability
JPH11319970A (en) Ferritic stainless steel/aluminum clad plate excellent in deep drawability
US12053810B2 (en) Methods of sheet metal production and sheet metal products produced thereby
JP7531289B2 (en) Cu-Ni-Co-Si copper alloy sheet material, its manufacturing method, and current-carrying parts
JP6794585B1 (en) Manufacturing method of titanium material for hot rolling
JPH11319981A (en) Punching method of high silicon steel plate
JP3358136B2 (en) Ultra-low carbon fine-grained hot-rolled steel sheet and method for producing the same
JP2009191296A (en) Steel fine wire or thin band steel sheet excellent in plastic workability
CN115003426A (en) Processed titanium material and method for producing same
JPH0135915B2 (en)
WO2019093399A1 (en) Steel material having high toughness, method for producing same, and structural steel plate using said steel material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees