JP5685055B2 - Aluminum alloy plate - Google Patents

Aluminum alloy plate Download PDF

Info

Publication number
JP5685055B2
JP5685055B2 JP2010247612A JP2010247612A JP5685055B2 JP 5685055 B2 JP5685055 B2 JP 5685055B2 JP 2010247612 A JP2010247612 A JP 2010247612A JP 2010247612 A JP2010247612 A JP 2010247612A JP 5685055 B2 JP5685055 B2 JP 5685055B2
Authority
JP
Japan
Prior art keywords
temperature
compound
less
treatment
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010247612A
Other languages
Japanese (ja)
Other versions
JP2012097337A (en
Inventor
松本 克史
克史 松本
有賀 康博
康博 有賀
英雅 常石
英雅 常石
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to JP2010247612A priority Critical patent/JP5685055B2/en
Publication of JP2012097337A publication Critical patent/JP2012097337A/en
Application granted granted Critical
Publication of JP5685055B2 publication Critical patent/JP5685055B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は成形性に優れたAl−Mg系アルミニウム合金板に関するものである。本発明で言うアルミニウム合金板とは、冷間圧延板であって、溶体化処理および焼入れ処理などの調質が施されたアルミニウム合金板を言う。また、以下、アルミニウムをAlとも言う。   The present invention relates to an Al—Mg-based aluminum alloy plate excellent in formability. The aluminum alloy plate referred to in the present invention is a cold-rolled plate and refers to an aluminum alloy plate that has been subjected to tempering such as solution treatment and quenching treatment. Hereinafter, aluminum is also referred to as Al.
近年、地球環境などへの配慮から、自動車等の車両の軽量化の社会的要求はますます高まってきている。かかる要求に答えるべく、自動車パネル、特にフード、ドア、ルーフなどの大型ボディパネル(アウタパネル、インナパネル)の材料として、鋼板等の鉄鋼材料にかえてアルミニウム合金材料の適用が検討されている。   In recent years, due to consideration for the global environment and the like, social demands for weight reduction of vehicles such as automobiles are increasing. In order to meet such demands, the application of aluminum alloy materials instead of steel materials such as steel plates is being studied as materials for automobile panels, particularly large body panels (outer panels, inner panels) such as hoods, doors, and roofs.
Al−Mg系のJIS5052合金やJIS5182合金等の5000系アルミニウム合金板(以下、Al−Mg系合金板とも言う)は、延性および強度に優れることから、従来から、これら大型ボディパネル用のプレス成形素材として使用されている。   Since aluminum-based aluminum alloy plates such as Al-Mg-based JIS 5052 alloy and JIS 5182 alloy (hereinafter also referred to as Al-Mg-based alloy plates) are excellent in ductility and strength, they have been conventionally press-formed for these large body panels. Used as a material.
しかし、特許文献1などに開示される通り、これらAl−Mg系合金板について引張試験を行なえば、応力−歪曲線上の降伏点付近で降伏伸びが生じる場合があり、また降伏点を越えた比較的高い歪量(例えば引張伸び2%以上)で応力−歪曲線に鋸歯状もしくは階段状のセレーション(振動)が生じる場合がある。これらの応力−歪曲線上の現象は、実際のプレス成形において、いわゆるストレッチャーストレイン(以下SSマークとも記す)の発生を招き、成形品である大型ボディパネル、特に外観が重要なアウタパネルにとって、商品価値を損なう大きな問題となる。   However, as disclosed in Patent Document 1 and the like, if a tensile test is performed on these Al—Mg alloy plates, yield elongation may occur in the vicinity of the yield point on the stress-strain curve, and a comparison beyond the yield point may occur. In some cases, a serrated or stepped serration (vibration) occurs in the stress-strain curve at a particularly high strain (for example, a tensile elongation of 2% or more). These phenomena on the stress-strain curve cause the so-called stretcher strain (hereinafter also referred to as the SS mark) in actual press molding, which is a commercial value for large body panels that are molded products, especially outer panels whose appearance is important. It becomes a big problem that damages.
このSSマークは、公知のように、歪量の比較的低い部位で発生する火炎状の如き不規則な帯状模様のいわゆるランダムマークと、歪量の比較的高い部位で引張方向に対し、約50°をなすように発生する平行な帯状模様のパラレルバンドとに分けられる。前者のランダムマークは降伏点伸びに起因し、また後者のパラレルバンドは段落0004で記載した応力−歪曲線上のセレーション(振動)に起因することが知られている。   As is well known, this SS mark is a so-called random mark having an irregular belt-like pattern such as a flame that occurs at a relatively low amount of strain, and about 50 with respect to the tensile direction at a relatively high amount of strain. It can be divided into parallel bands of parallel strips that form so as to form an angle. It is known that the former random mark is caused by elongation at yield point, and the latter parallel band is caused by serration (vibration) on the stress-strain curve described in paragraph 0004.
従来から、これらSSマークを解消する方法が種々提案されている。例えば、主な手法としては、Al−Mg系合金板の結晶粒をある程度粗大に調整する方法が知られている。ただ、このような結晶粒の調整方法は、SSマークのうちでも、段落0004で記載したパラレルバンドの発生防止には有効ではない。また、結晶粒が粗大になり過ぎれば、プレス成形において表面に肌荒れが発生するなど、却って別の問題が生じる。   Conventionally, various methods for eliminating these SS marks have been proposed. For example, as a main technique, a method of adjusting the crystal grains of an Al—Mg alloy plate to a certain degree of coarseness is known. However, such a method for adjusting crystal grains is not effective in preventing the occurrence of parallel bands described in paragraph 0004 even among SS marks. On the other hand, if the crystal grains become too coarse, another problem arises, such as roughening of the surface in press molding.
また、別のSSマークの解消方法として、Al−Mg系合金板のO材(軟質材)もしくはT4処理材などの調質材に、大型ボディパネルへのプレス成形前に、予めスキンパス加工あるいはレベリング加工等の加工(予加工)を加えて、若干の歪み(予歪み)を与えておくことも知られている。ただ、このような予加工法でも、加工度が高くなりすぎた場合には、段落0004で記載した応力−歪曲線上のセレーション(振動)が生じやすくなり、実際のプレス成形時においても、幅の広い明瞭なパラレルバンドの発生につながりやすい。このため、予加工の加工度には大きな制約があり、加工度を小さくした場合には安定してランダムマークの発生を防止することができなくなる。したがって、この予加工法では、パラレルバンドの発生防止と、ランダムマーク発生防止との最適加工度が相反するために、これら両者を同時に防止することができない。   Another method for eliminating the SS mark is to apply a skin pass or leveling to O-material (soft material) of Al-Mg alloy plate or tempered material such as T4 treatment material before press molding to large body panels. It is also known to give some distortion (pre-strain) by adding processing (pre-processing) such as processing. However, even with such a pre-processing method, when the degree of processing becomes too high, serration (vibration) on the stress-strain curve described in paragraph 0004 is likely to occur, and even during actual press forming, It is easy to generate a wide and clear parallel band. For this reason, there is a great restriction on the degree of pre-processing, and when the degree of processing is reduced, it becomes impossible to stably prevent the generation of random marks. Therefore, in this pre-machining method, since the optimum degree of machining between the prevention of the generation of parallel bands and the prevention of the generation of random marks is contradictory, both cannot be prevented at the same time.
これに対して、前記した特許文献1では、ランダムマークの発生とともに、広幅のパラレルバンドの発生も抑制した、SSマークの発生が少ないAl−Mg系合金板の製法が提案されている。具体的には、Al−Mg系合金の圧延板に、急速冷却を伴なう特定条件での溶体化・焼入れ処理を施し、その後特定条件での予加工としての冷間加工を行ない、さらに特定条件での最終焼鈍を施す。そして、平均結晶粒径が55μm以下でかつ150μm以上の粗大結晶粒が実質的に存在しない最終板を得るものである。   On the other hand, the above-mentioned Patent Document 1 proposes a method for producing an Al—Mg alloy plate with less SS mark generation that suppresses the generation of random marks and the generation of wide parallel bands. Specifically, a rolled sheet of Al-Mg alloy is subjected to solution treatment and quenching treatment under specific conditions with rapid cooling, and then cold working as pre-processing under specific conditions is performed, and further identification Apply final annealing under conditions. Then, a final plate having an average crystal grain size of 55 μm or less and substantially free of coarse crystal grains of 150 μm or more is obtained.
ここで、Al−Mg系合金板の分野において、必ずしもSSマークの発生抑制には直接言及してはいないが、合金板の熱的変化を示差熱分析(DSC)により測定して得られた、室温からの加熱曲線の吸熱ピークの位置や、その高さを、その板のプレス成形性向上の指標とすることも公知である。   Here, in the field of Al—Mg-based alloy plates, although it is not necessarily mentioned directly to suppress the generation of SS marks, it was obtained by measuring the thermal change of the alloy plates by differential thermal analysis (DSC). It is also known that the endothermic peak position of the heating curve from room temperature and its height are used as an index for improving the press formability of the plate.
例えば、特許文献2では、Al−Mg系合金板の示差熱分析(DSC)により得られた、室温からの加熱曲線の特定位置の吸熱ピーク高さによって、プレス成形性向上の指標とすることが提案されている。この示差熱分析(DSC)は、特性に影響するクラスタ(金属間化合物)が、TEMなどのミクロ組織観察では判別や識別ができず、直接存在を裏付けることができない場合に、クラスタの有無などの組織的な違いを、前記加熱曲線の特定位置の吸熱ピーク位置や高さによって、間接的に裏付けたり、指標とするために、アルミニウム合金板の分野で汎用されている。   For example, in Patent Document 2, an index of improvement in press formability can be obtained by the endothermic peak height at a specific position of a heating curve from room temperature obtained by differential thermal analysis (DSC) of an Al—Mg alloy plate. Proposed. In this differential thermal analysis (DSC), if the clusters (intermetallic compounds) that affect the properties cannot be identified or identified by microstructural observation such as TEM and cannot directly confirm the existence of such clusters, It is widely used in the field of aluminum alloy plates to indirectly support or use the difference in structure as an endothermic peak position or height at a specific position on the heating curve.
この特許文献2では、双ロール式連続鋳造によって製造された、8質量%を超える高MgのAl−Mg系合金板において、室温からの加熱曲線の50〜100℃の間の吸熱ピーク高さを50.0μW以上として、プレス成形性を向上させている。この吸熱ピーク高さは、Al−Mg系合金板組織中のβ相と称せられるAl−Mg系金属間化合物の存在形態(固溶、析出状態の安定性)を示していることを根拠としている。   In this patent document 2, the endothermic peak height between 50 and 100 ° C. of the heating curve from room temperature is obtained in an Al—Mg-based alloy plate of high Mg exceeding 8% by mass produced by twin roll type continuous casting. The press formability is improved as 50.0 μW or more. This endothermic peak height is based on the fact that the existence form (solid solution, stability of precipitation state) of an Al—Mg intermetallic compound called β phase in the Al—Mg alloy plate structure is shown. .
しかし、最近の大型ボディパネル、特に外観が重要なアウタパネルでは、表面性状の要求レベルが更に厳しくなってきており、これら特許文献1あるいは特許文献2でも、このような要求に対しては、SSマーク発生の抑制策が不十分である。例えば、特許文献1では、階段状のセレーションを軽微にできるだけであり(特許文献1の実施例の階段状セレーション評価の説明に記載)、そのためSSマークの一つであるパラレルバンドは完全には抑制できない。   However, in recent large body panels, particularly outer panels whose appearance is important, the required level of surface properties has become more severe. In these Patent Documents 1 and 2, the SS mark Insufficient measures to prevent outbreaks. For example, in Patent Document 1, the stepped serration can be made light (described in the description of the stepped serration evaluation in the embodiment of Patent Document 1), and therefore the parallel band that is one of the SS marks is completely suppressed. Can not.
これに対して、特許文献3では、この点を改良し、ランダムマークの発生とともに、パラレルバンドの発生を同時に抑制でき、SSマークを抑制した、自動車パネルへのプレス成形などの成形性に優れたAl−Mg系アルミニウム合金板が提案されている。同文献では、Al−Mg系アルミニウム合金板に対して、特にZnを0.1〜4.0%含有させて、セレーション発生の臨界歪み量(限界歪み量)をより高くする。すなわち、AlとMgとによって形成されるクラスタ(超微細金属間化合物)の形成量を、Zn等の第3元素の含有や添加によって、Zn等も含むクラスタとして増大させ、これらクラスタによる限界ひずみ量増大効果をより一層高めるものである。そして、これによって、セレーションを抑制し、これに起因するパラレルバンドを抑制して、SSマークの発生を抑制するものである。   On the other hand, in Patent Document 3, this point has been improved, the generation of random marks and the generation of parallel bands can be suppressed at the same time, and the SS mark is suppressed, and the formability such as press molding to an automobile panel is excellent. Al-Mg based aluminum alloy plates have been proposed. In this document, the critical strain amount (critical strain amount) of serration generation is further increased by containing 0.1 to 4.0% of Zn in the Al—Mg-based aluminum alloy plate. That is, the formation amount of clusters (ultrafine intermetallic compounds) formed by Al and Mg is increased as a cluster containing Zn or the like by addition or addition of a third element such as Zn, and the limit strain amount due to these clusters is increased. The increase effect is further enhanced. This suppresses serration, suppresses parallel bands resulting from this, and suppresses the generation of SS marks.
このZn等も含むクラスタが、ナノレベル以下の大きさで、10万倍程度のFE−TEMなどのミクロ組織観察では判別や識別できず、直接存在を裏付けることができない。このため、この特許文献3でも、前記特許文献2同様、クラスタの有無などの組織的な違いを、熱的変化を示差熱分析(DSC)により測定した、前記加熱曲線の特定位置の吸熱ピーク位置や高さによって、組織的な違いの指標としている。具体的には、Zn等も含むAl−Mgクラスタが、前記DSC加熱曲線の100〜150℃の間の吸熱ピークの要因であると推測し、この吸熱ピーク高さを200.0μW(マイクロワット)以上としている。   The cluster including Zn or the like has a size of nano-level or less and cannot be identified or identified by microstructural observation such as FE-TEM of about 100,000 times, and cannot directly confirm the existence. For this reason, also in this patent document 3, like the said patent document 2, the systematic difference, such as the presence or absence of a cluster, measured the thermal change by differential thermal analysis (DSC), and the endothermic peak position of the specific position of the said heating curve. It is an indicator of organizational differences depending on the height. Specifically, it is assumed that Al—Mg clusters including Zn and the like are the cause of the endothermic peak between 100 ° C. and 150 ° C. of the DSC heating curve, and the endothermic peak height is 200.0 μW (microwatt). That's it.
特開平7−224364号公報JP-A-7-224364 特開2006−249480号公報JP 2006-249480 A 特開2010−77506号公報JP 2010-77506 A
しかし、これらSSマークの発生抑制効果がある元素としてZnあるいはCuを含有させる、従来のSSマーク発生抑制技術には、その効果の点で、なお改善の余地がある。このような課題に鑑み、本発明の目的は、SSマーク発生を抑制でき、自動車パネルへのプレス成形性を向上させた、Al−Mg系アルミニウム合金板を提供することである。   However, the conventional SS mark generation suppression technology that contains Zn or Cu as an element having an effect of suppressing the generation of SS marks still has room for improvement in terms of the effect. In view of such problems, an object of the present invention is to provide an Al—Mg-based aluminum alloy plate that can suppress the occurrence of SS marks and has improved press formability to an automobile panel.
この目的を達成するために、本発明のアルミニウム合金板の要旨は、質量%で、Mg:3.0〜7.0%を含むとともに、Zn:1.0〜4.0%および/またはCu:1.0%〜3.0%を含み、残部がAlおよび不可避的不純物からなり、450℃以上、570℃以下の温度で180秒以内保持する溶体化処理後、板の温度が前記溶体化温度から100℃までの間の冷却速度を5℃/秒以上とするとともに、板の温度が100℃以下から室温までの冷却速度を1℃/分以下とした焼入れ処理を行い、この焼き入れ処理終了後、7日以上経過後に40℃以上、80℃以下の温度範囲で30分〜240分処理するか、あるいはこの焼き入れ処理終了後に50℃以上、200℃以下の温度範囲で0.5〜48時間処理するかの、いずれかの人工時効硬化処理を行い、その後、板に加工率が1〜5%の予歪みを与える冷間加工を行なったAl−Mg系アルミニウム合金板であって、この板組織におけるAlマトリックスに対するCu−Mg系化合物とZn−Mg系化合物との合計の平均面積率が、エネルギー分散型X線分光器を備えた倍率800倍の走査型電子顕微鏡による観察結果で、1.5%以下(0%を含む)であることとする。 In order to achieve this object, the gist of the aluminum alloy sheet of the present invention is, by mass%, including Mg: 3.0 to 7.0%, Zn: 1.0 to 4.0% and / or Cu. : 1.0% to 3.0%, the balance is made of Al and inevitable impurities, and the solution temperature is maintained at 450 ° C. or higher and 570 ° C. or lower for 180 seconds. The quenching process is performed by setting the cooling rate between the temperature to 100 ° C. to 5 ° C./second or more, and the cooling rate from 100 ° C. or less to room temperature to 1 ° C./min or less. After the completion of 7 days or more, treatment is performed at a temperature range of 40 ° C. or more and 80 ° C. or less for 30 minutes to 240 minutes, or after this quenching treatment is completed, a temperature range of 50 ° C. or more and 200 ° C. or less is 0.5 to 0.5 minutes. Either artificial aging or 48 hours treatment Process carried out, then, a Al-Mg series aluminum alloy sheet working ratio makes a cold working giving a prestrain of 1 to 5 percent plate, Cu-Mg compound to Al matrix in the plate structure The total average area ratio of Zn and Mg—Mg compound is 1.5% or less (including 0%) as a result of observation with a scanning electron microscope having a magnification of 800 times equipped with an energy dispersive X-ray spectrometer. Suppose that there is.
本発明では、SSマークの発生抑制効果がある元素として、Zn、Cuのいずれか1種または2種を含有させる。本発明者らは、含有させたZn、Cuにつき、そのSSマークの発生抑制効果発揮のメカニズムを検討した。その結果、成形品の表面性状(SSマーク)に影響している、素材板の組織因子として、アルミマトリックス中に形成される微細な、ZnあるいはCuの微細なクラスタが影響していることを知見した。   In the present invention, one or two of Zn and Cu are contained as an element having an effect of suppressing the generation of SS marks. The inventors of the present invention have studied the mechanism of exhibiting the effect of suppressing the generation of the SS mark for the contained Zn and Cu. As a result, it has been found that fine clusters of Zn or Cu formed in the aluminum matrix have an influence as a texture factor of the material plate that affects the surface properties (SS mark) of the molded product. did.
ちなみに、この微細クラスタの存在は、実際に直接確認できるわけではない。例えば、Cuを含有し、しかも、Cuのクラスタを生成させることができる特定条件の調質(後述する)を施したAl−Mg系アルミニウム合金板を、10万倍のFE−TEM(透過型電子顕微鏡)を用いて組織観察しても、前記Znを含むクラスタと同様に、このCuのクラスタの存在を知見できなかった。   By the way, the existence of this fine cluster is not actually confirmed directly. For example, an Al—Mg-based aluminum alloy plate containing Cu and subjected to tempering (described later) capable of generating Cu clusters can be produced by a 100,000-fold FE-TEM (transmission electron). Even when the structure was observed using a microscope, the presence of this Cu cluster could not be found as in the case of the cluster containing Zn.
言い換えると、これらのZnあるいはCuの微細なクラスタは、前記特許文献2、3のAl−Mg系金属間化合物などと同じく、ナノレベル以下の微小な大きさであると推考される。したがって、通常の組織観察方法であるSEMやTEMの分析方法では、このような微細クラスタを特定することはできない。   In other words, these fine clusters of Zn or Cu are presumed to be of a minute size below the nano level, similar to the Al—Mg intermetallic compounds of Patent Documents 2 and 3. Therefore, such a fine cluster cannot be specified by an analysis method of SEM or TEM, which is a normal structure observation method.
これらZnあるいはCuの微細なクラスタを組織中に最大限形成させるためには、ZnあるいはCuがMgとの化合物を形成せずに、含有(添加)したZnあるいはCuがMgとの化合物によって消費されないようにすることが特に重要である。このためには、含有(添加)したZnあるいはCuが、Mgとの化合物を一旦形成することは避けがたいにしても、これら化合物の再固溶、すなわち、未固溶で残存するCu−Mg系化合物とZn−Mg系化合物の固溶を促進して、最終的に(再度)前記ZnあるいはCuの微細なクラスタとして「析出させる」ことが必要である。   In order to maximize the formation of these fine clusters of Zn or Cu in the structure, Zn or Cu does not form a compound with Mg, and contained (added) Zn or Cu is not consumed by the compound with Mg. It is particularly important to do so. For this purpose, it is unavoidable that the contained (added) Zn or Cu once forms a compound with Mg, but re-solution of these compounds, that is, Cu-Mg remaining in an undissolved state. It is necessary to promote the solid solution of the Zn-based compound and the Zn-Mg compound, and finally (again) "precipitate" as a fine cluster of Zn or Cu.
しかしながら、ZnかCuを含有させた従来のAl−Mg系合金板の製造条件は、必ずしも、これら元素のMgとの化合物の再固溶、すなわち、未固溶で残存するCu−Mg系化合物とZn−Mg系化合物の固溶促進を充分に図ってはいなかった(固溶促進できる製造条件になっていなかった)。これは、Znを含有した際の微細なクラスタを組織中に最大限形成させる最適製造条件と、Cuを含有した際の微細なクラスタを組織中に最大限形成させる最適製造条件とが、互いに異なることも大きく影響している。   However, the manufacturing conditions of the conventional Al—Mg alloy plate containing Zn or Cu are not necessarily the same as the solid solution of these elements with Mg, that is, the Cu—Mg compound remaining in an insoluble state. The Zn—Mg compound was not sufficiently promoted to dissolve (the production conditions were not sufficient to promote the dissolution). This is because the optimum manufacturing conditions for maximally forming fine clusters in the structure when containing Zn and the optimum manufacturing conditions for maximally forming fine clusters in the structure when containing Cu are different from each other. That also has a big influence.
本発明では、Znおよび/またはCu(以下、Zn、Cuのいずれか1種または2種とも言う)を含有させたAl−Mg系合金板の製造条件、特に、均熱や熱延後の荒鈍などの上工程の制御によって、Zn、Cuのうちのいずれを含有させたAl−Mg系合金板であっても、前記未固溶化合物の固溶を促進でき、前記未固溶化合物量を抑制して、最終的にはクラスタを組織中に最大限形成させることができ、SSマークの発生抑制をさらに向上できることを見出した。   In the present invention, the production conditions of an Al—Mg alloy plate containing Zn and / or Cu (hereinafter also referred to as any one or two of Zn and Cu), in particular, roughening after soaking and hot rolling. Even if it is an Al-Mg alloy plate containing either Zn or Cu by controlling the upper process such as blunting, the solid solution of the insoluble compound can be promoted, and the amount of the insoluble compound can be reduced. It was found that, finally, clusters can be formed to the maximum in the structure, and the suppression of SS mark generation can be further improved.
本発明は、このように、Znおよび/またはCuを含有させたAl−Mg系合金板のSSマーク性を更に優れたものとすることができる。   As described above, the present invention can further improve the SS mark property of the Al—Mg alloy plate containing Zn and / or Cu.
以下に、本発明の実施の形態につき、要件ごとに具体的に説明する。   Hereinafter, embodiments of the present invention will be specifically described for each requirement.
組織:
本発明では、前記した通り、Znおよび/またはCuを含有させたAl−Mg系アルミニウム合金板のCu−Mg系化合物とZn−Mg系化合物の固溶促進を図り、ZnあるいはCuの微細なクラスタを組織中に最大限形成させて、SSマーク性を優れたものとする。そして、これら化合物の固溶促進の指標として、このAl−Mg系アルミニウム合金板組織の、エネルギー分散型X線分光器を備えた倍率800倍の走査型電子顕微鏡による観察結果で、Alマトリックスに対するCu−Mg系化合物とZn−Mg系化合物との合計の平均面積率が1.5%以下であることとする。この1.5%以下とは、これらの化合物の面積を検出できない位に、これらの化合物の再固溶が促進される場合を含むので、請求項の規定では、括弧書きで、0%を含むものとしている。
Organization:
In the present invention, as described above, the solid solution promotion of the Cu—Mg compound and the Zn—Mg compound of the Al—Mg aluminum alloy plate containing Zn and / or Cu is promoted, and a fine cluster of Zn or Cu is obtained. Is formed in the structure to the maximum, and the SS mark property is excellent. Then, as an indicator of the promotion of solid solution of these compounds, the observation result of this Al—Mg based aluminum alloy plate structure by a scanning electron microscope with a magnification of 800 times equipped with an energy dispersive X-ray spectrometer, The total average area ratio of the Mg-based compound and the Zn-Mg-based compound is 1.5% or less. This 1.5% or less includes the case where re-solution of these compounds is promoted to the extent that the area of these compounds cannot be detected. Therefore, in the provisions of the claims, 0% is included in parentheses It is supposed to be.
Al−Mg系アルミニウム合金板のプレス成形の際に生じるSSマーク、特に、応力−歪曲線上のセレーション(振動)に起因するパラレルバンドは、アルミマトリックス中に固溶しているフリーMg原子の転位への固着と離脱の繰り返しによって生じると推定される。これに対して、このAl−Mg系アルミニウム合金板の最終的な特定の調質によって生成する、本発明のZnあるいはCuの微細クラスタが、板の組織中に存在すれば、プレス成形による板の変形の際に、前記フリーMg原子の転位への移動を妨げるために、SSマーク(セレーション)発生が抑制されるものと推測される。   The SS mark generated during press forming of an Al—Mg-based aluminum alloy plate, particularly the parallel band due to serration (vibration) on the stress-strain curve, is transformed to dislocations of free Mg atoms dissolved in the aluminum matrix. It is presumed to be caused by repeated sticking and detachment. On the other hand, if the Zn or Cu fine clusters of the present invention produced by the final specific tempering of the Al—Mg-based aluminum alloy plate are present in the structure of the plate, It is presumed that the SS mark (serration) generation is suppressed in order to prevent the free Mg atoms from moving to dislocations during deformation.
Alマトリックスに対するCu−Mg系化合物とZn−Mg系化合物との合計の平均面積率が1.5%を超えた場合には、これらのMg化合物の再固溶、すなわち、未固溶で残存するCu−Mg系化合物とZn−Mg系化合物の固溶促進が充分に図れない。この結果、従来のZn、Cuを含有させたAl−Mg系アルミニウム合金板と同じとなり、クラスタを組織中に最大限形成させることができずに、SSマークの発生抑制効果が損なわれる。   When the total average area ratio of the Cu—Mg compound and the Zn—Mg compound with respect to the Al matrix exceeds 1.5%, these Mg compounds are re-dissolved, that is, remain undissolved. The solid solution promotion of the Cu—Mg compound and the Zn—Mg compound cannot be sufficiently promoted. As a result, it becomes the same as the conventional Al—Mg-based aluminum alloy plate containing Zn and Cu, and the cluster cannot be formed to the maximum in the structure, and the effect of suppressing the generation of the SS mark is impaired.
ここで、本発明では、Alマトリックスに対するCu−Mg系化合物とZn−Mg系化合物との合計の平均面積率を規定しているが、これは、本発明が、ZnとCuとを各々単独に含む場合だけでなく、ZnとCuとの両方を含有する場合を含むからである。また、ZnとCuのどちらかを合金元素として積極的に添加しない場合(同時添加しない場合)でも、スクラップなどのアルミ溶解原料から、いずれかが不純物として混入し、結果的に、両方の元素が含まれる場合もあるからである。ZnとCuとの両方を規定する範囲の量だけ含有する場合だけでなく、ZnとCuとのいずれかの元素が下限量未満であっても、Cu−Mg系化合物とZn−Mg系化合物との両方が生成する可能性はある。したがって、本発明では、未固溶で残存するCu−Mg系化合物とZn−Mg系化合物の固溶を促進させ、ZnあるいはCuの微細なクラスタを最大限形成させる立場から、Cu−Mg系化合物とZn−Mg系化合物との合計の平均面積率を規定する。   Here, in this invention, although the total area ratio of the sum total of the Cu-Mg type compound and Zn-Mg type compound with respect to Al matrix is prescribed | regulated, this is because this invention makes Zn and Cu each independently. This is because it includes not only the case of inclusion but also the case of containing both Zn and Cu. Moreover, even when either Zn or Cu is not positively added as an alloy element (when not simultaneously added), either one is mixed as an impurity from an aluminum melting raw material such as scrap. As a result, both elements are mixed. It is because it may be included. In addition to the case of containing both Zn and Cu in an amount in a range that defines both, even if any element of Zn and Cu is less than the lower limit, Cu-Mg compound and Zn-Mg compound There is a possibility that both generate. Therefore, in the present invention, from the standpoint of accelerating the solid solution of the Cu—Mg compound and the Zn—Mg compound remaining undissolved and maximally forming fine clusters of Zn or Cu, And the total average area ratio of Zn—Mg-based compounds.
ちなみに、前記特許文献2、3などで言うクラスタと、本発明のクラスタとが、ZnやCuを同様に含む組成の場合に、果たして同じものであるか否かは不明である。ただ、互いの板の製法の違いからすると、組成が異なるクラスタであるということができる。すなわち、これら特許文献2、3では、後述する本発明組織を得るための製法とは、上工程の均質化熱処理温度が500℃未満か、下工程の溶体化および焼入れ処理と付加焼鈍を施した後に、更に板に予歪みを与えてはいない、などが異なる。また、付加焼鈍温度も異なり、Znを含有する特許文献3のAl−Mg系アルミニウム合金板は、本発明のように、100℃以上の温度では付加焼鈍(人工時効処理)を行ってはおらず、選択的に、50〜100℃の低い温度での付加焼鈍を行うのみである。ZnやCuを選択的元素として含有する、特許文献2のAl−Mg系アルミニウム合金板は、本発明のように、溶体化処理(最終焼鈍)後の焼入れ処理時の冷却速度を低温域の緩冷を交えた2段階では制御せずに、500〜300℃の温度範囲を10℃/s以上で急冷するのみである。この冷却速度につき、通常は、生産性を下げないように、100℃以下から室温までを緩冷却にするようなことはしない。したがって、この特許文献2では、100℃以下での冷却速度が明記されてはいないが、通常の5℃/s程度以上の冷却速度であろうと推察される。そして、この特許文献2では、その後、選択的に50〜120℃の温度での付加焼鈍を行うのみである。   Incidentally, it is unclear whether the clusters referred to in Patent Documents 2 and 3 and the cluster of the present invention are the same in the case of a composition containing Zn and Cu in the same manner. However, it can be said that it is a cluster with a different composition from the difference in the manufacturing method of each board. That is, in these Patent Documents 2 and 3, the production method for obtaining the structure of the present invention to be described later is that the homogenization heat treatment temperature in the upper process is less than 500 ° C., or the solution treatment and quenching process and additional annealing in the lower process are performed. Later, the plate is not pre-strained, and so on. Also, the addition annealing temperature is different, and the Al—Mg-based aluminum alloy plate of Patent Document 3 containing Zn is not subjected to addition annealing (artificial aging treatment) at a temperature of 100 ° C. or higher as in the present invention. Optionally, addition annealing is only performed at a low temperature of 50 to 100 ° C. As in the present invention, the Al—Mg-based aluminum alloy plate of Patent Document 2 containing Zn or Cu as a selective element has a low cooling rate during the quenching treatment after the solution treatment (final annealing). In the two stages with cooling, the temperature range of 500 to 300 ° C. is only rapidly cooled at 10 ° C./s or more without control. Normally, the cooling rate is not slow cooling from below 100 ° C. to room temperature so as not to lower the productivity. Therefore, in this patent document 2, although the cooling rate in 100 degrees C or less is not specified, it is guessed that it will be a normal cooling rate of about 5 degrees C / s or more. And in this patent document 2, after that, only the additional annealing at the temperature of 50-120 degreeC is selectively performed.
化合物の平均面積率の測定:
これらの化合物の平均面積率の測定には、倍率800倍の走査型電子顕微鏡(以下、SEMとも言う)を用いるが、AlマトリックスやAl−Mg化合物などの他の化合物と区別して、Cu−Mg系化合物とZn−Mg系化合物との識別が可能なエネルギー分散型X線分光器を備えたものとする。このエネルギー分散型X線分光器はEDS(Energy Dispersive Spectrometer)とも略記される。そして、測定対象の板の表面をバフ研磨した後に、このEDSを備えたSEMによって、0.01mm2 相当の視野を、20視野ずつ画像解析して、板表面における前記Alマトリックスに対するCu−Mg系化合物とZn−Mg系化合物との合計の平均面積率(%)を、これら化合物のAlマトリックスに対する面積占有率(%)として求める。すなわち、視野ごとの面積率を平均化して平均面積率とする。
Measurement of average area ratio of compounds:
For the measurement of the average area ratio of these compounds, a scanning electron microscope (hereinafter also referred to as SEM) with a magnification of 800 times is used, but distinguishing from other compounds such as Al matrix and Al-Mg compound, Cu-Mg. It is assumed that an energy dispersive X-ray spectrometer capable of discriminating between a Zn compound and a Zn-Mg compound is provided. This energy dispersive X-ray spectrometer is also abbreviated as EDS (Energy Dispersive Spectrometer). Then, after buffing the surface of the plate to be measured, the SEM equipped with this EDS was subjected to image analysis of 20 fields of view equivalent to 0.01 mm 2 , and the Cu—Mg system for the Al matrix on the plate surface. The total average area ratio (%) of the compound and the Zn—Mg compound is determined as the area occupation ratio (%) of these compounds with respect to the Al matrix. That is, the area ratio for each visual field is averaged to obtain an average area ratio.
Cu−Mg系化合物とZn−Mg系化合物は、Alマトリックスに対して、灰色あるいは黒色の不定形の第2相分散粒子として観察できるが、これは、他のAl−Mg化合物などの他の化合物も同様で、前記EDSを備えないと、これら化合物同士の識別(区別)ができない。このようなEDSを備えたSEMによる、第2相分散粒子(晶出物、析出物)の面積率や大きさ、個数密度の規定は、アルミニウム合金分野でも、例えば特開2008−127656号公報、特開2006−37129号公報、特開2005−179758号公報、特開2003−166030号公報などで、汎用されている。   The Cu—Mg compound and the Zn—Mg compound can be observed as gray or black amorphous second phase dispersed particles with respect to the Al matrix, but this is not the case with other compounds such as other Al—Mg compounds. Similarly, these compounds cannot be identified (differentiated) without the EDS. The definition of the area ratio, size, and number density of the second phase dispersed particles (crystallized matter, precipitates) by SEM equipped with such EDS is also disclosed in, for example, Japanese Patent Application Laid-Open No. 2008-127656, It is widely used in JP 2006-37129 A, JP 2005-179758 A, JP 2003-166030 A, and the like.
化学成分組成:
本発明アルミニウム合金板の化学成分組成は、後述するZnとCuとの関係を除き、基本的に、Al−Mg系合金であるJIS5000系に相当するアルミニウム合金とする。そして、特に自動車パネル用素材板などとして、プレス成形性、強度、溶接性、耐食性などの諸特性を満足することが好ましい。このため本発明合金板は、5000系アルミニウム合金の中でも、質量%で、Mg:3.0〜7.0%を含むとともに、Zn:1.0〜4.0%および/またはCu:1.0%〜3.0%を含み、残部がAlおよび不可避的不純物からなるAl−Mg系アルミニウム合金板とする。なお、各元素の含有量の%表示は全て質量%の意味である。
Chemical composition:
The chemical composition of the aluminum alloy plate of the present invention is basically an aluminum alloy corresponding to JIS 5000, which is an Al—Mg alloy, except for the relationship between Zn and Cu described later. And it is preferable to satisfy various properties such as press formability, strength, weldability, and corrosion resistance, particularly as a material plate for automobile panels. For this reason, this invention alloy plate contains Mg: 3.0-7.0% by mass% among 5000 series aluminum alloys, Zn: 1.0-4.0% and / or Cu: 1. An Al—Mg-based aluminum alloy plate containing 0% to 3.0% and the balance being Al and inevitable impurities is used. In addition,% display of content of each element means the mass% altogether.
Mg:3.0〜7.0%
Mgは、加工硬化能を高め、自動車パネル用素材板としての必要な強度や耐久性を確保する。また、材料を均一に塑性変形させて破断割れ限界を向上させ、成形性を向上させる。Mgの含有量が3.0%未満では、強度や耐久性が不十分となる。一方、Mgの含有量が7.0%を越えると、板の製造が困難となり、しかもプレス成形時に、却って粒界破壊が発生しやすくなり、プレス成形性が著しく低下する。したがってMgの含有量は3.0〜7.0%、好ましくは4.0〜6.0%の範囲とする。
Mg: 3.0-7.0%
Mg enhances work hardening ability and ensures necessary strength and durability as a material plate for automobile panels. In addition, the material is uniformly plastically deformed to improve the fracture crack limit and improve the formability. If the Mg content is less than 3.0%, the strength and durability are insufficient. On the other hand, if the Mg content exceeds 7.0%, it becomes difficult to produce a plate, and intergranular fracture is more likely to occur during press molding, which significantly reduces press formability. Therefore, the Mg content is in the range of 3.0 to 7.0%, preferably 4.0 to 6.0%.
Zn:1.0〜4.0%:
Znは、前記したZnを主体とする微細なクラスタを形成して、プレス成形の際のSSマークの発生を抑制するものと推測される。Znが1.0%未満と少なすぎる場合は、プレス成形の際のSSマークの発生抑制効果発揮が不十分となる。また、Znを主体とするクラスタの生成量も不足する。一方、Znの含有量が4.0質量%を越えれば、室温での時効硬化が大きくなって、曲げ性やプレス成形性を低下させる。したがって、Znの含有量は1.0〜4.0%、好ましくは1.0〜3.0%の範囲とする。
Zn: 1.0-4.0%:
Zn is presumed to form fine clusters mainly composed of the above-described Zn and suppress the generation of SS marks during press molding. When Zn is too small as less than 1.0%, the effect of suppressing the generation of SS marks during press molding is insufficient. In addition, the amount of clusters mainly composed of Zn is insufficient. On the other hand, if the Zn content exceeds 4.0% by mass, age hardening at room temperature becomes large, and bendability and press formability are lowered. Therefore, the Zn content is in the range of 1.0 to 4.0%, preferably 1.0 to 3.0%.
Cu:1.0〜3.0%:
Cuは、Znと同様、前記したCuを主体とする微細なクラスタを形成して、プレス成形の際のSSマークの発生を抑制するものと推測される。Cuが1.0%未満と少なすぎる場合は、プレス成形の際のSSマークの発生抑制効果発揮が不十分となる。また、Cuを主体とするクラスタの生成量も不足する。一方、Cuの含有量が3.0%を越えれば、粗大な晶出物や析出物の生成量が多くなり、破壊の起点になりやすく、却ってプレス成形性を低下させる。Cuの含有量は1.0〜3.0%、好ましくは1.2〜2.0%の範囲とする。
Cu: 1.0 to 3.0%:
Cu, like Zn, is presumed to form fine clusters mainly composed of Cu as described above and suppress the generation of SS marks during press forming. When Cu is less than 1.0%, the effect of suppressing the generation of SS marks during press molding is insufficient. Also, the amount of clusters mainly composed of Cu is insufficient. On the other hand, if the Cu content exceeds 3.0%, the amount of coarse crystallized substances and precipitates increases, which tends to be the starting point of fracture, and on the contrary, press formability is lowered. The Cu content is 1.0-3.0%, preferably 1.2-2.0%.
ZnとCuとの関係:
ZnとCuを含有した際の、微細なクラスタを組織中に最大限形成させる最適製造条件は、前記した通り、互いに異なる。言い換えると、ZnとCuでは、最適製造条件が異なっているため、互いに実質量含有しても、悪影響は出ない。例えば、Znとしての最適量で最適製造条件であればSSマークの抑制効果を発現し、その際に、Cu含有量は不可避不純物レベルでも良いし、3.0%までなら、含まれていてもSSマーク抑制効果に悪影響はない。逆に、Cuとしての最適量で最適製造条件であればSSマークの抑制効果を発現し、その際、Zn含有量は不可避不純物レベルでも良いし、4.0%までなら、含まれていてもSSマーク抑制効果に悪影響はない。
Relationship between Zn and Cu:
As described above, the optimum manufacturing conditions for forming fine clusters in the structure to the maximum when Zn and Cu are contained are different from each other. In other words, since optimum manufacturing conditions are different between Zn and Cu, even if they are contained in substantial amounts, there is no adverse effect. For example, if the optimum amount of Zn is the optimum production condition, the effect of suppressing the SS mark is exhibited. At that time, the Cu content may be an inevitable impurity level, and if it is up to 3.0%, it may be contained. There is no adverse effect on the SS mark suppression effect. On the other hand, if the optimum production condition is Cu as an optimum production condition, an effect of suppressing the SS mark is exhibited. At that time, the Zn content may be at an inevitable impurity level, or up to 4.0%. There is no adverse effect on the SS mark suppression effect.
その他の元素:
本発明Al−Mg系アルミニウム合金板は、溶解原料としてのアルミニウム合金スクラップなどから混入される、他の不純物元素を含むことを許容する。具体的には、質量%で、Fe:1.0%以下、好ましくは0.7%以下(0%を含む)、Si:0.5%以下、好ましくは0.4%以下(0%を含む)、Mn:1.0%以下、好ましくは0.7%以下(0%を含む)、Cr:0.3%以下(0%を含む)、Zr:0.3%以下(0%を含む)、V:0.3%以下(0%を含む)、Ti:0.1%以下(0%を含む)、このTiに付随して混入しやすいB(ボロン)をTiの含有量未満の範囲で、各々含有することを許容する。更に、これらは、JISの5000系Al合金の規格に準じると、好ましくは、質量%で、Fe:0.7%以下(0%を含む)、Si:0.4%以下(0%を含む)、Mn:0.7%以下(0%を含む)、Cr:0.3%以下(0%を含む)、Ti:0.1%以下(0%を含む)、B:Tiの含有量未満、の範囲とする。
Other elements:
The Al—Mg-based aluminum alloy plate of the present invention is allowed to contain other impurity elements mixed from aluminum alloy scrap as a melting raw material. Specifically, in mass%, Fe: 1.0% or less, preferably 0.7% or less (including 0%), Si: 0.5% or less, preferably 0.4% or less (0% Mn: 1.0% or less, preferably 0.7% or less (including 0%), Cr: 0.3% or less (including 0%), Zr: 0.3% or less (0% Included), V: 0.3% or less (including 0%), Ti: 0.1% or less (including 0%), and B (boron) that easily accompanies Ti is less than the Ti content. In the range of, it is allowed to contain each. Furthermore, these are preferably in mass%, Fe: 0.7% or less (including 0%), Si: 0.4% or less (including 0%) in accordance with the JIS 5000 series Al alloy standard. ), Mn: 0.7% or less (including 0%), Cr: 0.3% or less (including 0%), Ti: 0.1% or less (including 0%), B: Ti content Less than.
(製造方法)
本発明の板の製造方法について、以下に具体的に説明する。
(Production method)
The manufacturing method of the board of this invention is demonstrated concretely below.
通常、5182、5082、5083、5056などの成形用Al−Mg系合金の通常の製造工程による製造方法では、鋳造(DC鋳造法や連続鋳造法)、均質化熱処理、熱間圧延、熱延後で冷延前の中間焼鈍(荒鈍)なしに冷間圧延、この冷延途中において1回または2回以上の中間焼鈍を経て、冷延板の製品板とされる。   Usually, in the manufacturing method by the normal manufacturing process of Al-Mg type alloys for forming such as 5182, 5082, 5083, 5056, etc., casting (DC casting method or continuous casting method), homogenization heat treatment, hot rolling, after hot rolling Thus, cold rolling is performed without intermediate annealing (roughening) before cold rolling, and one or two or more intermediate annealings are performed during the cold rolling to obtain a product sheet of cold rolled sheet.
ただ、このような通常の製造工程では、Zn、Cuのうちのいずれか1種を含有させたAl−Mg系合金板の場合、特に、上工程において、未固溶で残存するCu−Mg系化合物とZn−Mg系化合物の固溶促進を充分に図れていなかった。このため、最終工程における人工時効硬化処理によって、ZnとCuとのクラスタを組織中に最大限形成させることができなかった。   However, in such a normal manufacturing process, in the case of an Al—Mg alloy plate containing any one of Zn and Cu, in particular, in the upper process, the Cu—Mg system remaining undissolved. The solid solution of the compound and the Zn—Mg compound was not sufficiently promoted. For this reason, the cluster of Zn and Cu could not be formed in the structure to the maximum by the artificial age hardening treatment in the final step.
これに対して、本発明では、上工程において、均熱処理(均質化熱処理)温度を高めるとともに、熱延後で冷延前の中間焼鈍(荒鈍)を、好ましくは連続的な熱処理装置によって行い、未固溶で残存するCu−Mg系化合物とZn−Mg系化合物の固溶促進を上工程において充分に図る。これによって、最終工程における人工時効硬化処理によって、ZnとCuとのクラスタを組織中に最大限形成させる。   On the other hand, in the present invention, in the upper step, the soaking (homogenizing heat treatment) temperature is increased, and the intermediate annealing (roughening) after hot rolling and before cold rolling is preferably performed by a continuous heat treatment apparatus. In the upper step, solid solution promotion of the Cu—Mg compound and the Zn—Mg compound remaining undissolved is sufficiently achieved. Thereby, the cluster of Zn and Cu is formed in the structure to the maximum by the artificial age hardening treatment in the final process.
均熱処理:
前記アルミニウム合金組成に溶製後の鋳塊の熱間圧延前の均質化熱処理において、鋳塊の鋳造の際の内部応力を除去し、偏析を軽減して組織の均一化を図るほかに、未固溶で残存するCu−Mg系化合物とZn−Mg系化合物の固溶促進を図る。このために、均質化熱処理温度を500℃以上、固相線温度(鋳塊が溶解あるいは溶損する温度)以下の比較的高温とする。処理温度が500 ℃未満では、従来のように、未固溶で残存するCu−Mg系化合物とZn−Mg系化合物の固溶促進を図れない。処理時間は、処理温度と鋳塊の大きさなどによって適宜選択されるが、2 〜10時間程度とすることが好ましい。
Soaking process:
In the homogenization heat treatment before hot rolling of the ingot after melting to the aluminum alloy composition, internal stress during casting of the ingot is removed, segregation is reduced, and the structure is made uniform. The solid solution promotion of the Cu—Mg compound and the Zn—Mg compound remaining in solid solution is promoted. For this purpose, the homogenizing heat treatment temperature is set to a relatively high temperature of 500 ° C. or higher and a solidus temperature (temperature at which the ingot melts or melts). When the processing temperature is less than 500 ° C., the solid solution promotion of the Cu—Mg compound and the Zn—Mg compound remaining in an insoluble state cannot be promoted as in the prior art. The treatment time is appropriately selected depending on the treatment temperature and the size of the ingot, but is preferably about 2 to 10 hours.
熱間圧延:
熱間圧延は、均熱処理後のスラブを、温度を一旦下げて再加熱することなく、前記均熱温度範囲で、粗圧延機および仕上げ圧延機により、板厚が1.5〜5.0mmであるアルミニウム合金熱延板とされる。
Hot rolling:
In the hot rolling, the slab after the soaking process is reduced to a temperature of 1.5 to 5.0 mm by the rough rolling mill and the finishing mill in the soaking temperature range without lowering the temperature once and reheating. An aluminum alloy hot-rolled sheet is used.
荒鈍:
本発明では、熱延で析出したCu−Mg系化合物とZn−Mg系化合物の固溶促進を上工程において充分に図るために、熱延板を冷延前に荒鈍(中間焼鈍)する。この荒鈍は、バッチ炉ではなく、板の急速加熱と急冷のため、板を連続的に通板しながら熱処理を行う連続焼鈍炉(装置)により行う。この際、処理温度は450℃以上、固相線温度(鋳塊が溶解あるいは溶損する温度)以下の比較的高温とする。処理温度が450 ℃未満では、Cu−Mg系化合物とZn−Mg系化合物の固溶促進を図れない。この処理温度での保持時間(処理時間)は、処理温度や通板速度にもよるが、数秒から2分程度の間であり、この処理温度から2℃/秒(S)以上の冷却速度で室温まで冷却する。この冷却速度が遅いと、一旦固溶したCu−Mg系化合物とZn−Mg系化合物が再析出する。
Dull:
In the present invention, the hot-rolled sheet is roughened (intermediate annealing) before cold rolling in order to sufficiently promote the solid solution of the Cu—Mg-based compound and the Zn—Mg-based compound precipitated by hot rolling. This roughening is performed not by a batch furnace but by a continuous annealing furnace (apparatus) that performs heat treatment while continuously feeding the plates for rapid heating and rapid cooling of the plates. At this time, the treatment temperature is set to a relatively high temperature of 450 ° C. or higher and a solidus temperature (temperature at which the ingot melts or melts). When the treatment temperature is less than 450 ° C., the solid solution of the Cu—Mg compound and the Zn—Mg compound cannot be promoted. The holding time (processing time) at this processing temperature is between a few seconds and about 2 minutes, depending on the processing temperature and the sheet feeding speed, and a cooling rate of 2 ° C./second (S) or more from this processing temperature. Cool to room temperature. When this cooling rate is slow, the Cu—Mg compound and the Zn—Mg compound once dissolved again reprecipitate.
冷間圧延:
冷間圧延は1回あるいはそれ以上行われて、板厚が1.5mm以下の所定の最終製品板厚とする。冷間圧延と冷間圧延との間に行う中間焼鈍は、必要により行われるが、行う場合には、これも前記荒鈍と同様に、高温で短時間処理の前記連続焼鈍炉(装置)により行う。バッチ炉では、冷却速度が遅く、焼鈍温度にもよるが、一旦固溶したCu−Mg系化合物とZn−Mg系化合物が再析出する可能性が高い。
Cold rolling:
Cold rolling is performed once or more to obtain a predetermined final product sheet thickness of 1.5 mm or less. The intermediate annealing performed between the cold rolling and the cold rolling is performed as necessary. However, in the case where the intermediate annealing is performed, the continuous annealing furnace (apparatus) that is processed at a high temperature for a short time is also used. Do. In the batch furnace, although the cooling rate is slow and depends on the annealing temperature, there is a high possibility that the Cu—Mg-based compound and the Zn—Mg-based compound once precipitated again.
調質:
本発明の組織を有する板とするためには、以上のようにして得られた所要の板厚のこれら冷延板に対して、特定条件での溶体化処理と続く2段階冷却という特殊な焼入れ処理および特定条件での付加焼鈍を各々組み合わせた調質を行う。また、SSマークの発生抑制のためには、溶体化・焼入れ処理、付加焼鈍を施した後に、板に予歪を与える冷間加工(予加工)を行なう。
refining:
In order to obtain a plate having the structure of the present invention, a special quenching of these cold-rolled plates of the required thickness obtained as described above, with a solution treatment under specific conditions and subsequent two-stage cooling. Refining is performed by combining treatment and additional annealing under specific conditions. In addition, in order to suppress the occurrence of SS marks, cold working (pre-working) for pre-straining the plate is performed after solution treatment / quenching treatment and additional annealing.
溶体化処理:
先ず、冷延板に対して、急速加熱や急速冷却を伴う溶体化・焼入れ処理を行う。このような溶体化・焼入れ処理を行った材料、いわゆるT4処理材は、比較的緩やかな加熱や冷却を伴うバッチ焼鈍材と比較して、強度と成形性とのバランスに優れる。
Solution treatment:
First, a solution heat treatment and quenching process involving rapid heating and rapid cooling are performed on the cold-rolled sheet. A material subjected to such solution treatment and quenching treatment, so-called T4 treatment material, is excellent in balance between strength and formability as compared with a batch annealed material with relatively gentle heating and cooling.
ここで、溶体化処理温度の適正値は、具体的な合金組成によって異なるが、450℃以上、570℃以下の範囲内とする必要がある。また、この溶体化処理温度での保持は180秒(3分)以内とする必要がある。溶体化処理温度が450℃未満では、合金元素の固溶が不十分となって強度・延性等が低下する恐れがある。また、未固溶で残存するCu−Mg系化合物とZn−Mg系化合物の固溶促進も図れない。一方、溶体化処理温度が570℃を越えれば、結晶粒が過度に粗大化して成形性の低下や成形時の肌荒れの発生が問題となる。また溶体化処理温度での保持時間が180秒を越えれば、結晶粒の過度の粗大化による、成形性の低下や成形時の肌荒れ発生などの問題が生じる。   Here, although the appropriate value of solution treatment temperature changes with specific alloy compositions, it needs to be in the range of 450 degreeC or more and 570 degrees C or less. Further, it is necessary to keep the solution treatment temperature within 180 seconds (3 minutes). If the solution treatment temperature is less than 450 ° C., the alloy elements are not sufficiently dissolved, and the strength and ductility may be reduced. In addition, solid solution promotion of the Cu—Mg compound and the Zn—Mg compound remaining undissolved cannot be promoted. On the other hand, if the solution treatment temperature exceeds 570 ° C., the crystal grains become excessively coarse, which causes problems such as deterioration of moldability and generation of rough skin during molding. On the other hand, if the retention time at the solution treatment temperature exceeds 180 seconds, problems such as deterioration of moldability and generation of rough skin during molding due to excessive coarsening of crystal grains occur.
焼入れ処理:
溶体化処理後の焼入れ処理時の冷却速度は、高温域では急冷、低温域では緩冷の、2段階とする必要がある。先ず、高温域の急冷では、板の温度が溶体化温度から100℃までの間(範囲)の冷却速度は5℃/秒(S)以上とする。この冷却速度が5℃/秒未満では、冷却過程の特に高温域で、粗大な析出物が生成して、クラスタの生成量が少なくなってSSマークの発生を抑制する効果が小さくなる。したがって、この後に、付加焼鈍および予加工を加えて最終板としても、SSマークが発生する恐れがある。
Quenching process:
The cooling rate during the quenching treatment after the solution treatment needs to be two stages: rapid cooling in the high temperature range and slow cooling in the low temperature range. First, in the rapid cooling in the high temperature region, the cooling rate (range) between the solution temperature and 100 ° C. is 5 ° C./second (S) or more. When the cooling rate is less than 5 ° C./second, coarse precipitates are generated particularly in the high temperature range of the cooling process, and the generation amount of clusters is reduced, and the effect of suppressing the generation of SS marks is reduced. Therefore, after this, additional annealing and pre-processing are added, and there is a possibility that the SS mark is generated even as the final plate.
次ぎに、この急冷に続く、板の温度が100℃以下から室温までの低温域の間(範囲)の冷却は緩冷とする必要があり、100℃以下から室温までの冷却速度を1℃/分以下の冷却速度で緩冷却を行う。緩冷とするために、下限値は特に決めないが、生産工程の効率上からは0.01℃/分(m)以上であることが好ましい。   Next, following this rapid cooling, the cooling during the low temperature range (range) from 100 ° C. or lower to room temperature needs to be slow, and the cooling rate from 100 ° C. or lower to room temperature is 1 ° C. / Slowly cool at a cooling rate of less than a minute. In order to achieve slow cooling, the lower limit value is not particularly determined, but is preferably 0.01 ° C./min (m) or more from the standpoint of production process efficiency.
このような焼入れ条件によって、Al−Mg系合金板の組織中に、Cu原子やZn原子を主とする、原子の集合体(クラスタ)が生成すると推考される。したがって、この低温域の冷却を、前記高温領域での急冷速度あるいは前記1℃/分を超える冷却速度とするなど、この焼入れの条件が不適切であれば、後述する付加焼鈍を行っても、SSマークの発生を確実に防止できない。すなわち、この焼入れの条件が不適切であれば、後述する付加焼鈍を行っても、SSマークの発生を確実に防止できる量だけ、Cu原子やZn原子を主とするクラスタが生成させることができていないものと推測される。すなわち、この低温域の冷却が1℃/分を超える冷却速度では、この後に付加焼鈍および予加工を加えて最終板としてもSSマークが発生する恐れがある。   It is inferred that such quenching conditions generate an atomic aggregate (cluster) mainly composed of Cu atoms and Zn atoms in the structure of the Al—Mg alloy plate. Therefore, if this quenching condition is inadequate, such as cooling in this low temperature region, a rapid cooling rate in the high temperature region or a cooling rate exceeding 1 ° C./min, even if additional annealing described later is performed, The SS mark cannot be reliably prevented. In other words, if this quenching condition is inappropriate, even if additional annealing described later is performed, clusters mainly composed of Cu atoms and Zn atoms can be generated in an amount that can reliably prevent the generation of SS marks. It is presumed not. That is, at a cooling rate at which the cooling in this low temperature region exceeds 1 ° C./min, an SS mark may be generated even on the final plate after additional annealing and pre-processing.
人工時効硬化処理(付加焼鈍):
本発明では、この溶体化・焼入れ処理の後に、前記最終焼鈍よりも低温の人工時効硬化処理を行う。ちなみに、この付加焼鈍は、Znを含有した際の微細なクラスタを組織中に最大限形成させる最適条件と、Cuを含有した際の微細なクラスタを組織中に最大限形成させる最適条件とが、互いに異なる。
Artificial age hardening treatment (additional annealing):
In the present invention, after this solution treatment / quenching treatment, an artificial age hardening treatment at a temperature lower than that of the final annealing is performed. Incidentally, in this addition annealing, there are optimum conditions for maximally forming fine clusters in the structure when Zn is contained and optimum conditions for maximally forming fine clusters in the structure when containing Cu. Different from each other.
Znを含有した際の微細なクラスタを組織中に最大限形成させる最適条件としては、前記溶体化および焼き入れ処理終了後、7日以上経過後に、40℃以上、80℃以下の温度範囲で30分〜240分処理する人工時効硬化処理を行う。Znを含有した場合には、このZnによる室温時効が進みやすい。この温度域より高温側では、クラスタが分解して消滅するか、或いは残存したとしても、さらに成長することでSSマークの抑制には効果がない析出物に変化してしまう。人工時効硬化処理は、好ましくは、40℃以上70℃以下が良い。   Optimum conditions for maximally forming fine clusters in the structure when Zn is contained are 30 ° C. and 80 ° C. in a temperature range of 40 ° C. or more and 80 ° C. or less after 7 days or more have elapsed after the solution treatment and quenching treatment. An artificial age hardening treatment is carried out for a treatment of from min to 240 min. When Zn is contained, room temperature aging with Zn tends to proceed. On the higher temperature side than this temperature range, even if the clusters are decomposed and disappear, or if they remain, they are further grown to change to precipitates that are not effective in suppressing the SS mark. The artificial age hardening treatment is preferably 40 ° C. or higher and 70 ° C. or lower.
Cuを含有した際の微細なクラスタを組織中に最大限形成させる最適条件としては、前記溶体化・焼入れ処理後、50℃以上、200℃以下の温度範囲で0.5〜48時間処理する人工時効硬化処理を行う。Cuの場合には、Znのような室温時効の進行はほとんど無いため。Znの場合のような時間的な制約は無いが、微細なクラスタを組織中に最大限形成させるためには、人工時効硬化処理をより高温で長時間にする必要がある。Znの場合も含めて、処理温度が低すぎる、あるいは保持時間が短すぎると、人工時効硬化処理の効果がなく、この工程で微細なクラスタを組織中に最大限形成させることができない。また、この処理温度が高すぎる、あるいは保持時間が長すぎても、微細なクラスタを組織中に最大限形成させることができず、高温の最終焼鈍を行った際と同様に、比較的粗大な析出物が生成する、あるいは、再結晶が進むという問題が生じる。人工時効硬化処理は、好ましくは、100℃以上170℃以下が良い。   The optimum condition for forming fine clusters in the structure to the maximum when Cu is contained is an artificial condition in which treatment is performed for 0.5 to 48 hours in a temperature range of 50 ° C. or more and 200 ° C. or less after the solution treatment and quenching treatment. Perform age hardening. In the case of Cu, room temperature aging hardly progresses like Zn. Although there is no time restriction as in the case of Zn, it is necessary to perform artificial age hardening at a higher temperature for a longer time in order to form fine clusters in the structure to the maximum extent. Including the case of Zn, if the treatment temperature is too low or the holding time is too short, there is no effect of artificial age hardening treatment, and fine clusters cannot be formed in the structure to the maximum in this step. In addition, even if the treatment temperature is too high or the holding time is too long, fine clusters cannot be formed in the structure to the maximum, and it is relatively coarse as in the case of high-temperature final annealing. There arises a problem that precipitates are formed or recrystallization proceeds. The artificial age hardening treatment is preferably 100 ° C. or higher and 170 ° C. or lower.
予歪付与:
SSマークのうち、特にランダムマーク解消のために、これら溶体化・焼入れ処理、付加焼鈍を施した後、更に、板に予歪みを与える冷間加工(予加工)を行なう。この予歪付与自体は、SSマークの特にランダムマーク解消のための後工程として公知である。これらは、例えば、スキンパス圧延、冷間圧延もしくはローラーレベラーによる繰返し曲げ加工などにより行なう。
Pre-distortion:
Among these SS marks, in order to eliminate random marks, in particular, after solution treatment / quenching treatment and additional annealing, cold working (pre-working) for pre-straining the plate is performed. This pre-straining itself is known as a subsequent process for eliminating the random mark of the SS mark. These are performed, for example, by skin pass rolling, cold rolling or repeated bending with a roller leveler.
このように耐力値の増加分が特定の範囲内となるように調整して予加工としての冷間加工を行なうことによって、プレス成形時の降伏伸びの発生を確実に抑制して、SSマーク、特にランダムマークの発生を確実に防止することが可能となる。したがって、本発明Al−Mg系アルミニウム合金板では、予め一定の予歪みを与えられた上でプレス成形されることが前提として好ましい。また、このような予歪付与は、前記溶体化・焼入れ処理後の板の、形状制御や残留応力除去にもなる。   Thus, by adjusting the increment of the proof stress value to be within a specific range and performing cold working as pre-processing, the occurrence of yield elongation during press forming is reliably suppressed, and the SS mark, In particular, it is possible to reliably prevent the generation of random marks. Therefore, it is preferable that the Al—Mg-based aluminum alloy plate of the present invention is pre-formed after being given a certain pre-strain. Further, such prestraining also serves to control the shape and remove residual stress of the plate after the solution treatment and quenching treatment.
予歪の付与量は、耐力値が若干増加するような、従来の一般的なランダムマーク発生防止のために行なわれている予加工と同等で良い。例えば、冷間でのスキンパス圧延、冷間圧延もしくは冷間でのローラーレベラーによる繰返し曲げ加工などでは加工率が1〜5%程度の予歪を付与する。このような予歪(冷間加工)を与えることにより、積極的に材料内に多数の変形帯を導入することができ、降伏伸びの発生を確実に防止し、結晶粒の微細なAl−Mg系合金板でもランダムマークの発生を安定して防止することが可能となる。これ以上の高い加工率では、加工硬化による延性、成形性の低下が懸念され、好ましくない。   The amount of pre-strain applied may be the same as the conventional pre-processing performed to prevent the occurrence of random marks, in which the proof stress value is slightly increased. For example, in the case of cold skin pass rolling, cold rolling, or repeated bending with a cold roller leveler, a pre-strain of about 1 to 5% is applied. By giving such a pre-strain (cold working), it is possible to positively introduce a large number of deformation bands in the material, to reliably prevent the occurrence of yield elongation, and to produce fine Al-Mg crystal grains. It is possible to stably prevent the generation of random marks even in the alloy plate. If the processing rate is higher than this, the ductility and moldability may be lowered due to work hardening, which is not preferable.
本発明では、以上のような溶体化処理条件と、続く2段階冷却という特殊な焼入れ処理条件、および特定条件での付加焼鈍、その後の予歪の付与を各々組み合わせた調質によって、Cuを含むAl−Mg系アルミニウム合金板を、室温時効することなく、Mgが拡散しにくい板組織とすることができる。これによって、板を製造後、1カ月以上経って、パネルにプレス成形する場合でも、Al−Mg系アルミニウム合金板の限界ひずみ量増大効果を高めて、応力−歪曲線上のセレーションを抑制し、これに起因するパラレルバンドを抑制して、ストレッチャーストレインマークの発生を抑制できる。また、SSマークのうち、前記降伏伸びの発生によるランダムマークの発生も防止できる。   In the present invention, Cu is contained by tempering that combines the solution treatment conditions as described above, the special quenching treatment conditions of subsequent two-stage cooling, and additional annealing under specific conditions and subsequent prestraining. The Al—Mg-based aluminum alloy plate can be made into a plate structure in which Mg is difficult to diffuse without being aged at room temperature. Even if one month or more after the plate is manufactured and pressed into a panel, the effect of increasing the limit strain amount of the Al-Mg based aluminum alloy plate is enhanced, and the serration on the stress-strain curve is suppressed. It is possible to suppress the generation of stretcher strain marks by suppressing the parallel band caused by. In addition, among the SS marks, the generation of random marks due to the occurrence of yield elongation can be prevented.
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらは何れも本発明の技術的範囲に含まれる。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. It is also possible to implement, and they are all included in the technical scope of the present invention.
次に、本発明の実施例を説明する。表1に示す発明例、比較例の各組成のAl−Mg系合金板を製造し、表2(表1の続き)に示す条件で調質、製造した後、この調質後の板の組織、機械的な特性を各々測定、評価した。これらの結果を表3(表2の続き)に示す。なお、表1における元素含有量の「−」表記は、その元素の含有量が検出限界以下であることを示す。   Next, examples of the present invention will be described. After manufacturing the Al-Mg type alloy plate of each composition of the invention example shown in Table 1 and a comparative example, and tempering and manufacturing on the conditions shown in Table 2 (continuation of Table 1), the structure | tissue of this plate after this tempering The mechanical properties were measured and evaluated. These results are shown in Table 3 (continuation of Table 2). In addition, "-" description of element content in Table 1 shows that the content of the element is below a detection limit.
熱延板や冷延板の各製造方法(条件)は、各例とも同じ共通条件で行った。即ち、ブックモールド鋳造によって鋳造した50mm厚の鋳塊を、表3に示す条件で均質化熱処理(均熱処理)を行い、その後、その温度にて熱間圧延を開始し、粗圧延機および仕上げ圧延機により、板厚2.5mmの熱延板とした。この熱延板を表3に示す条件で、連続焼鈍炉にて荒鈍後、1.0mmの板厚まで冷間圧延を行った。この冷延途中に、1.35mmの板厚で一旦中間焼鈍を、前記連続焼鈍炉にて、400℃×10s加熱後に水冷する共通する条件で行った。但し、比較例19、20は、熱延開始温度は400℃であり、熱延板の板厚を3.5mmとし、荒鈍を行わずに、この熱延板を1.35mmの板厚まで冷間圧延を行った。そして、硝石炉にて400℃×10sの中間焼鈍を行い、さらに冷間圧延して1.0mmの冷延板とした。また、比較例21、22は、熱間圧延を均質化処理温度にて開始した以外は、比較例19、20と同じ条件で1.0mmの板厚まで製造した。   Each manufacturing method (condition) of a hot rolled sheet and a cold rolled sheet was performed under the same common conditions in each example. That is, a 50 mm-thick ingot cast by book mold casting is subjected to homogenization heat treatment (soaking) under the conditions shown in Table 3, and then hot rolling is started at that temperature, and a roughing mill and finish rolling are started. A hot-rolled sheet having a thickness of 2.5 mm was formed by a machine. The hot-rolled sheet was subjected to cold rolling to a thickness of 1.0 mm after being roughened in a continuous annealing furnace under the conditions shown in Table 3. In the middle of this cold rolling, intermediate annealing was performed once at a plate thickness of 1.35 mm under the common conditions of water cooling after heating at 400 ° C. for 10 seconds in the continuous annealing furnace. However, in Comparative Examples 19 and 20, the hot rolling start temperature is 400 ° C., the thickness of the hot rolled sheet is 3.5 mm, and this hot rolled sheet is reduced to 1.35 mm without being roughened. Cold rolling was performed. Then, intermediate annealing at 400 ° C. × 10 s was performed in a glass stone furnace, and further cold-rolled to obtain a 1.0 mm cold-rolled sheet. Moreover, Comparative Examples 21 and 22 were manufactured to a plate thickness of 1.0 mm under the same conditions as Comparative Examples 19 and 20, except that hot rolling was started at the homogenization temperature.
これら冷延板を、表3示す通り、各々異なる条件で溶体化処理および焼入れ処理を行った。この溶体化処理および焼入れ処理は、連続焼鈍ライン(CAL)等を用いて連続的に行い、強制空冷やミスト冷却を使い分け、板のライン速度とこれらの風量を各温度域で制御して、焼入れ処理時の冷却速度を制御した。   As shown in Table 3, these cold-rolled plates were subjected to solution treatment and quenching treatment under different conditions. This solution treatment and quenching process are performed continuously using a continuous annealing line (CAL), etc., and forced air cooling and mist cooling are used separately, and the line speed of the plate and the air volume are controlled in each temperature range, and quenching is performed. The cooling rate during processing was controlled.
この溶体化処理および焼入れ処理後に、表2に示す通り、各々異なる条件で人工時効硬化処理(付加焼鈍)を行う調質処理を行った。その後、予歪みを与える冷間加工として、加工率3%のスキンパス圧延(軽圧下)を各例とも共通して行った。但し、比較例19〜22は、予歪みを与える加工率3%のスキンパス圧延を行った後で、人工時効硬化処理(付加焼鈍)を行い、予歪みを与える冷間加工と人工時効硬化処理との順序を変えて行った。   After the solution treatment and the quenching treatment, as shown in Table 2, a tempering treatment for performing an artificial age hardening treatment (addition annealing) under different conditions was performed. Thereafter, skin cold rolling (light reduction) with a processing rate of 3% was performed in common in each example as cold working to give pre-strain. However, in Comparative Examples 19 to 22, after performing skin pass rolling with a processing rate of 3% giving pre-strain, artificial age hardening treatment (addition annealing) is performed, and cold work and pre-straining cold work and artificial age hardening treatment are applied. The order was changed.
これら調質処理(製造)後の板から試験片(1.0mm厚)を切り出し、室温時効の影響がない(無視できる)、調質処理後24時間以内に、この試験片(調質後の板)の組織、機械的な特性、SSマーク性を各々測定、評価した。これらの結果を表3に示す。   A test piece (1.0 mm thickness) was cut out from these tempered (manufactured) plates, and there was no influence of aging at room temperature (can be ignored). The structure, mechanical properties, and SS mark property of each plate were measured and evaluated. These results are shown in Table 3.
化合物の平均面積率:
前記試験片の表面をバフ研磨した後に、EDS(堀場製作所製 EMAX7021−H)を備えたSEM(日立製 S−3500N)を用いて撮影した800倍の倍率のSEM写真において、0.01mm2 相当の視野を、20視野ずつ画像解析し、板表面における前記Alマトリックスに対するCu−Mg系化合物とZn−Mg系化合物とを前記EDS分析で識別した上で、これらの合計の平均面積率(%)を、これら化合物のAlマトリックスに対する面積占有率(%)として求めた。すなわち、視野ごとの面積率を平均化して平均面積率とした。
Average area ratio of compounds:
In the SEM photograph at a magnification of 800 times taken using a SEM (Hitachi S-3500N) equipped with EDS (Horiba Seisakusho S-3500N) after buffing the surface of the test piece, equivalent to 0.01 mm 2 20 fields of view were image-analyzed, and the Cu-Mg compound and the Zn-Mg compound for the Al matrix on the plate surface were identified by the EDS analysis, and the average area ratio (%) of these totals. Was determined as the area occupancy (%) of these compounds with respect to the Al matrix. That is, the area ratio for each visual field was averaged to obtain an average area ratio.
機械的特性:
前記試験片の機械的特性の調査として、上記各試験片の引張試験を行い、引張強さ(MPa)、伸び(%)を各々測定した。試験条件は、圧延方向に対して直角方向のJISZ2201の5号試験片(25mm×50mmGL×板厚)を採取し、引張試験を行った。引張試験は、JISZ2241(1980)(金属材料引張り試験方法)に基づき、室温20℃で試験を行い、初期クロスヘッド速度は600mm/分とし、ひずみ量10〜15%まで引張試験を行った。
Mechanical properties:
As an investigation of the mechanical properties of the test piece, a tensile test was performed on each of the test pieces, and tensile strength (MPa) and elongation (%) were measured. As test conditions, a No. 5 test piece (25 mm × 50 mmGL × sheet thickness) of JISZ2201 in a direction perpendicular to the rolling direction was sampled and subjected to a tensile test. The tensile test was performed based on JISZ2241 (1980) (metal material tensile test method) at a room temperature of 20 ° C., the initial crosshead speed was 600 mm / min, and the tensile test was performed up to a strain of 10 to 15%.
SSマーク発生目視評価:
更に、これら引張試験後の試験片を、プレス成形後の板と見立て、引張試験後の試験片表面のSSマークの発生度合いを、表面の砥石がけを施して鮮明にした上で、目視評価した。SSマークが発生していないものを○、小さなSSマークが発生しているが、前記自動車大型ボディパネルとして何とか使えるものを△、明らかに大きなSSマークが発生しており、前記自動車大型ボディパネルとして使えないものを×として評価した。
Visual evaluation of SS mark generation:
Furthermore, these test pieces after the tensile test were regarded as plates after press molding, and the degree of occurrence of SS marks on the surface of the test piece after the tensile test was visually evaluated after the surface was sharpened with a grinding stone. . The one with no SS mark is generated. The small SS mark is generated. The one that can be used as the automobile large body panel is .DELTA., And the obvious large SS mark is generated. Those that could not be used were evaluated as x.
SSマーク性の表面凹凸評価:
また、この引張試験後の試験片表面を板幅方向に3次元形状測定器で形状測定し、試験片表面の凹凸の測定を行い、SSマークの発生状態を評価した。測定に際して、試験片表面のスキャン長さは50mm、測定プローブ先端半径は25μm、測定ピッチは25μmとした。得られた表面凹凸の測定データを、高速フーリエ変換法による周波数解析し、板幅方向に連続する波形における、顕著な(明瞭な)ピークが発生している周期(ピーク間隔:mm)の最小値を表面凹凸の周期と定義して求めた。この間隔が長い方が表面凹凸として目立たず、SSマーク性に優れる。一方、この間隔が短い方が表面凹凸として目立ち、SSマーク性に劣る。
SS mark surface roughness evaluation:
Further, the surface of the test piece after the tensile test was measured with a three-dimensional shape measuring instrument in the plate width direction, the unevenness on the surface of the test piece was measured, and the SS mark generation state was evaluated. During the measurement, the scan length of the test piece surface was 50 mm, the tip radius of the measurement probe was 25 μm, and the measurement pitch was 25 μm. The obtained surface roughness measurement data is subjected to frequency analysis by the fast Fourier transform method, and the minimum value of the period (peak interval: mm) in which significant (clear) peaks occur in the continuous waveform in the plate width direction. Was defined as the period of surface irregularities. Longer intervals are not noticeable as surface irregularities and are excellent in SS mark properties. On the other hand, the one where this space | interval is short is conspicuous as surface unevenness | corrugation, and is inferior to SS mark property.
表1の通り、発明例1〜8は、CuかZnを含有し、本発明のAl−Mg系アルミニウム合金組成規定を満足する。また、上工程において、均熱処理温度を高めたり、荒鈍を行うなど、Cu−Mg系化合物とZn−Mg系化合物の固溶促進を上工程において充分に図っており、下工程の調質条件も好ましく、ZnとCuとのクラスタを組織中に最大限形成させる条件となっている。これによって、各発明例はSSマーク特性に優れている。すなわち、前記引張試験でもSSマークは発生しておらず、この優れたSSマーク特性を、5000系アルミニウム合金板の有する引張強さや伸びなどの、優れた機械的な特性レベルを落とすこと無しに、達成できている。   As shown in Table 1, Invention Examples 1 to 8 contain Cu or Zn and satisfy the Al—Mg-based aluminum alloy composition rule of the present invention. Also, in the upper process, the soaking temperature of the Cu-Mg compound and the Zn-Mg compound is sufficiently promoted in the upper process, such as raising the soaking temperature or roughening, and the tempering conditions of the lower process It is also preferable that the maximum number of Zn and Cu clusters be formed in the structure. Thereby, each invention example is excellent in SS mark characteristic. That is, no SS mark was generated even in the tensile test, and this excellent SS mark characteristic was obtained without reducing the excellent mechanical property level such as tensile strength and elongation of the 5000 series aluminum alloy plate. It has been achieved.
一方、比較例9〜14は、表2の通り、製造条件は好ましい範囲ではあるが、合金組成が発明範囲を外れている。この結果、SSマーク特性か機械的特性かが発明例に比して劣る。
比較例9はMg含有量が少なすぎる。
比較例10はMg含有量が多すぎる。
比較例11はCu含有量が少なすぎる。
比較例12はCu含有量が多すぎる。
比較例13はZn含有量が少なすぎる。
比較例14はZn含有量が多すぎる。
On the other hand, in Comparative Examples 9 to 14, as shown in Table 2, although the production conditions are in a preferable range, the alloy composition is out of the scope of the invention. As a result, SS mark characteristics or mechanical characteristics are inferior to those of the invention examples.
In Comparative Example 9, the Mg content is too small.
Comparative Example 10 has too much Mg content.
The comparative example 11 has too little Cu content.
The comparative example 12 has too much Cu content.
The comparative example 13 has too little Zn content.
The comparative example 14 has too much Zn content.
比較例15、16、18は、表1の通り、発明例3、6と同じ合金組成でありながら、表2の通り、調質条件が好ましい範囲から各々外れている。この結果、比較例15、16、18は、SSマーク特性が発明例に比して著しく低い。
比較例15、16は均熱温度が低すぎ、荒鈍も行っていないなど、上工程がCu−Mg系化合物とZn−Mg系化合物の固溶促進を図るものになっていない。
比較例18は溶体化処理温度が低すぎる。
As shown in Table 1, Comparative Examples 1 5, 16, and 18 have the same alloy composition as Invention Examples 3 and 6, but as shown in Table 2, the tempering conditions deviate from the preferred ranges. As a result, Comparative Examples 15, 16, and 18 have significantly lower SS mark characteristics than the inventive examples.
In Comparative Examples 15 and 16, the soaking temperature is too low, and the upper process is not intended to promote the solid solution of the Cu—Mg compound and the Zn—Mg compound.
In Comparative Example 18, the solution treatment temperature is too low.
一方、比較例19〜22は、表1の通り、本発明範囲内の合金組成でありながら、前記した通り、予歪みを与える冷間加工と人工時効硬化処理との順序が好適な製造条件とは異なり、予歪みを与えるスキンパス圧延を行った後で人工時効硬化処理(付加焼鈍)を行っている。この結果、比較例19〜22は、SSマーク特性が発明例に比して劣る。   On the other hand, as shown in Table 1, Comparative Examples 19 to 22 have the alloy compositions within the scope of the present invention, and as described above, the manufacturing conditions in which the order of the cold work giving pre-strain and the artificial age hardening treatment are suitable are as described above. In contrast, artificial age hardening (additional annealing) is performed after skin pass rolling giving pre-strain. As a result, Comparative Examples 19 to 22 are inferior in SS mark characteristics as compared to the inventive examples.
以上の実施例から、本発明各要件あるいは好ましい製造条件などの、SSマーク特性や機械的特性などを兼備するための、臨界的な意義が裏付けられる。   The above examples support the critical significance for combining the SS mark characteristics and the mechanical characteristics such as the requirements of the present invention or preferred manufacturing conditions.


以上説明したように、本発明によれば、SSマーク発生を抑制でき、自動車パネルへのプレス成形性を向上させた、Al−Mg系アルミニウム合金板を提供できる。この結果、板をプレス成形して使用される、前記した自動車などの多くの用途へのAl−Mg系アルミニウム合金板の適用を広げるものである。   As described above, according to the present invention, it is possible to provide an Al—Mg-based aluminum alloy plate that can suppress the generation of SS marks and improve the press formability to an automobile panel. As a result, the application of the Al—Mg-based aluminum alloy plate to many uses such as the automobile described above, which is used by press-molding the plate, is expanded.

Claims (1)

  1. 質量%で、Mg:3.0〜7.0%を含むとともに、Zn:1.0〜4.0%および/またはCu:1.0%〜3.0%を含み、残部がAlおよび不可避的不純物からなり、450℃以上、570℃以下の温度で180秒以内保持する溶体化処理後、板の温度が前記溶体化温度から100℃までの間の冷却速度を5℃/秒以上とするとともに、板の温度が100℃以下から室温までの冷却速度を1℃/分以下とした焼入れ処理を行い、この焼き入れ処理終了後、7日以上経過後に40℃以上、80℃以下の温度範囲で30分〜240分処理するか、あるいはこの焼き入れ処理終了後に50℃以上、200℃以下の温度範囲で0.5〜48時間処理するかの、いずれかの人工時効硬化処理を行い、その後、板に加工率が1〜5%の予歪みを与える冷間加工を行なったAl−Mg系アルミニウム合金板であって、この板組織におけるAlマトリックスに対するCu−Mg系化合物とZn−Mg系化合物との合計の平均面積率が、エネルギー分散型X線分光器を備えた倍率800倍の走査型電子顕微鏡による観察結果で、1.5%以下(0%を含む)であることを特徴とするアルミニウム合金板。 In mass%, Mg: 3.0-7.0% and Zn: 1.0-4.0% and / or Cu: 1.0% -3.0%, the balance being Al and inevitable After the solution treatment, which is made of mechanical impurities and is held at a temperature of 450 ° C. or higher and 570 ° C. or lower for 180 seconds, the cooling rate between the solution temperature and 100 ° C. is 5 ° C./second or more. In addition, a quenching process is performed at a cooling rate from a temperature of 100 ° C. or less to room temperature of 1 ° C./min or less after the quenching process is completed, and a temperature range of 40 ° C. or more and 80 ° C. or less after 7 days or more has elapsed For 30 minutes to 240 minutes, or after completion of this quenching treatment, any artificial age hardening treatment is carried out at a temperature range of 50 ° C. or more and 200 ° C. or less for 0.5 to 48 hours, and thereafter Cooling that gives a pre-strain of 1-5% on the plate Machining a Al-Mg series aluminum alloy plate was subjected to an average area ratio of the total of the Cu-Mg compound and Zn-Mg-based compound on Al matrix in the plate tissues, the energy dispersive X-ray spectrometer An aluminum alloy plate characterized by being 1.5% or less (including 0%) as a result of observation with a scanning electron microscope at a magnification of 800x.
JP2010247612A 2010-11-04 2010-11-04 Aluminum alloy plate Active JP5685055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010247612A JP5685055B2 (en) 2010-11-04 2010-11-04 Aluminum alloy plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010247612A JP5685055B2 (en) 2010-11-04 2010-11-04 Aluminum alloy plate

Publications (2)

Publication Number Publication Date
JP2012097337A JP2012097337A (en) 2012-05-24
JP5685055B2 true JP5685055B2 (en) 2015-03-18

Family

ID=46389576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010247612A Active JP5685055B2 (en) 2010-11-04 2010-11-04 Aluminum alloy plate

Country Status (1)

Country Link
JP (1) JP5685055B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9315885B2 (en) * 2013-03-09 2016-04-19 Alcoa Inc. Heat treatable aluminum alloys having magnesium and zinc and methods for producing the same
KR20170117630A (en) * 2016-04-13 2017-10-24 한국기계연구원 High-strength aluminum alloy plate with superior bake-hardenability and manufacturing method thereof
CN108359920B (en) * 2018-01-25 2019-09-10 北京科技大学 A kind of short route prepares the deformation heat treatment method of the anti-corrosion Al-Mg-Zn aluminium alloy of high-strength height

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3833348B2 (en) * 1997-07-04 2006-10-11 三菱アルミニウム株式会社 Method for producing glittering aluminum material
JP2009167464A (en) * 2008-01-16 2009-07-30 Furukawa-Sky Aluminum Corp Method for producing aluminum alloy material having excellent toughness
JP5342201B2 (en) * 2008-09-26 2013-11-13 株式会社神戸製鋼所 Aluminum alloy plate with excellent formability
JP5600637B2 (en) * 2010-08-05 2014-10-01 株式会社神戸製鋼所 Aluminum alloy plate with excellent formability

Also Published As

Publication number Publication date
JP2012097337A (en) 2012-05-24

Similar Documents

Publication Publication Date Title
JP5342201B2 (en) Aluminum alloy plate with excellent formability
JP5059423B2 (en) Aluminum alloy plate
JP4312819B2 (en) Aluminum alloy sheet with excellent ridging marks during molding
JP4939093B2 (en) Method for producing 6000 series aluminum alloy plate for automobile panel having excellent hem bendability and bake hardness
JP4495623B2 (en) Aluminum alloy plate excellent in stretch flangeability and bending workability and method for producing the same
JP5432631B2 (en) Aluminum alloy plate with excellent formability
JP4939088B2 (en) Manufacturing method of aluminum alloy sheet with excellent ridging mark property during forming
TW200827455A (en) Method of producing aluminum alloy sheet
JP5432632B2 (en) Aluminum alloy plate with excellent formability
JP2003321754A (en) Method for manufacturing aluminum alloy sheet with excellent bendability
JP2004010982A (en) Aluminum alloy sheet having excellent bending workability and press formability
JP3838504B2 (en) Aluminum alloy plate for panel forming and manufacturing method thereof
JP5685055B2 (en) Aluminum alloy plate
JP2004238657A (en) Method of manufacturing aluminum alloy plate for outer panel
JP4944474B2 (en) Aluminum alloy plate excellent in stretch flangeability and manufacturing method thereof
KR101667506B1 (en) Aluminum alloy plate for forming
KR101196527B1 (en) Aluminum alloy sheet with excellent formability
JP5600637B2 (en) Aluminum alloy plate with excellent formability
JP3766334B2 (en) Aluminum alloy plate with excellent bending workability
JP4022497B2 (en) Method for manufacturing aluminum alloy panel
JP2003247040A (en) Aluminum alloy sheet having excellent flat hem workability and production method thereof
EP0990058B1 (en) Process of producing heat-treatable aluminum alloy sheet
JP2003328095A (en) Production method for aluminum alloy plate for forming
JPH10219412A (en) Manufacture of rolled aluminum alloy sheet excellent in external appearance characteristic after forming
CN108884524B (en) Aluminum alloy sheet and method for producing aluminum alloy sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140317

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141201

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20141208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150116

R150 Certificate of patent or registration of utility model

Ref document number: 5685055

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150