JP2004124151A - Heat treatment method for aluminum alloy - Google Patents

Heat treatment method for aluminum alloy Download PDF

Info

Publication number
JP2004124151A
JP2004124151A JP2002288956A JP2002288956A JP2004124151A JP 2004124151 A JP2004124151 A JP 2004124151A JP 2002288956 A JP2002288956 A JP 2002288956A JP 2002288956 A JP2002288956 A JP 2002288956A JP 2004124151 A JP2004124151 A JP 2004124151A
Authority
JP
Japan
Prior art keywords
blank
aluminum alloy
softened
strength
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002288956A
Other languages
Japanese (ja)
Other versions
JP2004124151A5 (en
Inventor
Naoyuki Kanetake
金武 直幸
Takeshi Nishiwaki
西脇 武志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2002288956A priority Critical patent/JP2004124151A/en
Publication of JP2004124151A publication Critical patent/JP2004124151A/en
Publication of JP2004124151A5 publication Critical patent/JP2004124151A5/ja
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a formed article free from working defect and having excellent shape accuracy by softening the areas to be subjected to large working deformation in advance prior to press forming. <P>SOLUTION: High-temperature metal blocks 2u and 2d are pushed against the areas to be worked of a blank 1 cut out from an aluminum alloy sheet and the blank 1 in contact with the metal blocks 2u and 2d are subjected to local rapid heating to locally soften the contact areas. As a material, an aluminum alloy, such as age-hardening aluminum alloy, precipitation-hardening aluminum alloy and work-hardening aluminum alloy, in which strength can be improved by the precipitation of intermetallic compounds or second phases, is preferred. As the metal blocks 2u and 2d used to locally and rapidly heat the blank 1, blocks made of copper which are heated preferably to a high temperature not lower than 350°C are used and pushed against the areas to be worked of the blank 1 at ≥1 MPa pressurizing force. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【産業上の利用分野】
本発明は、軽量性を活用し自動車部品,電子機器のケーシング,電気機器のハウジング等、広範な分野で使用されているアルミニウム合金のプレス成形性を改善する熱処理方法に関する。
【0002】
【従来の技術】
アルミニウム合金は、軽量で耐食性にも優れていることから自動車部品,電子機器のケーシング,電気機器のハウジング等の素材に使用され、プレス成形によって製品形状に加工されている。製品によっては、極めて大きな絞り比で加工される場合もある。
プレス成形される素材には、加工中に不均一な変形が生じる。そこで、変形様式に対応した適度の強度差や延性差を予め素材内に与えておくと高い成形限界での加工が可能となる。たとえば、特開2000−80418号公報では、熱処理により被熱処理部を局部的に軟化させ鋼板の成形性を向上させている。アルミニウム合金でも、ポンチ荷重を受ける中央部を硬く強く、縮みフランジ変形する周辺部を変形しやすい軟化状態に局部的な時効処理で調質することが「塑性と加工」第27巻第311号第1363〜1368頁に紹介されている。
【0003】
【発明が解決しようとする課題】
アルミニウム合金の内部に強度差をつける従来の方法は、必要な強度差を得るのに時間がかかり、生産性も低い。しかも、製品形状によっては適用できないこともあり、負担の大きな設備が必要となる。
本発明は、このような問題を解消すべく案出されたものであり、短時間の熱処理で必要強度差をアルミニウム合金につけ、大掛かりな設備投資を必要とせず大量生産に適した方法でアルミニウム合金の加工性を向上することを目的とする。
【0004】
【課題を解決するための手段】
本発明の熱処理方法は、その目的を達成するため、ブランクの加工予定部位に高温の金属ブロックを押し当て、金属ブロックからの熱伝達で金属ブロックと接触しているブランクを局部的に急速加熱し、接触部分を局部軟化することを特徴とする。
素材としては、時効硬化型,析出硬化型,加工硬化型等、金属間化合物や第2相の析出によって強度が向上するアルミニウム合金が好ましい。ブランクを切り出す前のアルミニウム合金板に金属ブロックを押し当てて急速加熱する方法,アルミニウム合金板から切り出されたブランクに金属ブロックを押し当てて急速加熱する方法の何れによっても加工予定部位を局部軟化できる。
【0005】
ブランクを局部的に急速加熱する加圧加熱体には、350℃以上に高温加熱された金属ブロックが使用され、1MPa以上の加圧力でブランクの加工予定部位に押し当てられる。金属ブロックと接触した部位の昇温特性は金属ブロックの加熱温度,加圧力に影響される。金属ブロックとの接触で軟化した軟化領域の強度を非接触部位(硬質領域)の強度の90%以下、軟化領域と非接触部の硬質領域との間の強度遷移幅を20mm以下に規制するとき、絞り比を大きく設定しても割れ,破断,座屈等の加工欠陥がない製品形状にブランクをプレス成形できる。
【0006】
【作用】
アルミニウム合金板のブランク1をリング状の加圧加熱体2u,2d(図1)で挟み、所定の加圧力Pを付与した状態でブランク1を急速加熱すると、加圧加熱体2u,2dと接触している部分が急速に昇温し、ブランク1に析出しているMgSi,Si,Cu等の金属間化合物や第2相(以下、”金属間化合物”で総称する)がマトリックスに固溶する。加圧加熱体2u,2dとしてはリング状に限らず、加工形状を考慮して適宜の形状に整形されたブロックの使用が可能なことは勿論である。
【0007】
金属間化合物の固溶により被加熱部が軟化領域1s(図3)となり、加圧加熱体2u,2dによる加熱を受けていない残りの部分(硬質領域1h)は当初の強度を維持する。金属間化合物の固溶の他に、アルミニウム合金板の製造過程で導入されている歪,残留応力が急速加熱で解放されることによってもブランク1が局部的に軟化する。
【0008】
使用可能なアルミニウム合金は、特に材質に制約を受けるものではないが、急速加熱による局部軟化を活用する上で金属間化合物として析出しやすいMg,Si,Cu,Fe等を含む組成が好ましく、時効硬化型,析出硬化型,加工硬化型等がある。具体的には、Mg:0.4〜4.0質量%,Si:0.2〜2.0質量%,Cu:0.2〜6.0質量%の1種又は2種以上を含む時効硬化型又は加工硬化型アルミニウム合金が挙げられる。
加熱到達温度はアルミニウム合金の種類にもよるが、350℃以上に設定することにより析出している大半の金属間化合物がマトリックスに固溶し、歪,応力も解放される。
【0009】
加圧加熱体2u,2dとしては、たとえば高温加熱された金属ブロックが使用される。高温の金属ブロック2u,2dをブランク1に押し当てると、極めて短時間で金属間化合物がマトリックスに固溶する温度域までブランク1が局部的に昇温する。昇温状態を所定時間維持することにより、金属間化合物が固溶し、歪,応力が解放された軟化領域1sに改質される。前掲の時効硬化型アルミニウム合金板を局部軟化後に観察すると、硬質領域1hでは析出物の平均粒子間隙が1μm以下になっているのに対し、軟化領域1sではMg,Si,Cuが合計で0.5質量%以上の割合でマトリックスに固溶している。その結果、金属ブロック2u,2dによる加熱を受けていない硬質領域1hとの間に強度差が生じる。加工性の向上に有効な強度差は、5秒以内の加熱保持で達成できる。
【0010】
軟化領域1sと硬質領域1hとの間に強度差をつけたブランク1は、たとえばダイ3に載置され、周辺部をしわ抑え4で固定される(図2)。この状態でポンチ5をダイ開口に押し込むと、ダイ3,ポンチ5の形状に倣ってブランク1が塑性変形する。ダイ3としわ抑え4に挟まれる被挟持部1cが最も大きく塑性変形することから、この部分に軟化領域1sが位置するように加圧加熱体2u,2dで局部軟化したブランク1を使用する。ダイ3の肩部に当る近傍も塑性変形量が大きいが、この部分の強度を低下させると成形時に割れが生じやすくなるので、ダイ3の肩部を避けて軟化領域1sを設定することが好ましい。
【0011】
軟化領域1sは、ポンチ5の押込みに追従して高い精度で目標形状に塑性変形し、成形後に変形領域1dとなる。変形領域1dは加工硬化により硬質化するが、軟化領域1sから形成されたフランジ部は軟質のままである。
ポンチ5の先端が接触する部分(ポンチ当接部1p)は、塑性変形量が小さいため当初の強度を維持していても、割れ,破断等の加工欠陥が生じない。軟化領域1sが大きいほどプレス成形性が向上するが、被挟持部1cの全域を軟化する必要はなく、被挟持部1cの面積比20%以上を軟化しておくだけでプレス成形性の向上が期待できる。
【0012】
本発明者等は、局部軟化がプレス成形性に及ぼす影響を更に調査・検討した。その結果、350℃以上に加熱された金属ブロック(加圧加熱体2u,2d)をブランク1に押し付けて加熱するとき、金属−金属接触で加圧加熱体2u,2dからブランク1への熱伝達が促進され、5秒以内の極めて短時間で軟化領域1sが形成されることを解明した。金属ブロックとしては、被加熱体であるブランク1に比較して熱容量が大きく、熱伝導性の良好な銅,銅合金等が好ましい。
【0013】
金属ブロック2u,2dが押圧されたアルミニウム合金のブランク1は、100℃/秒以上の昇温速度で350℃以上の高温に達し、当該高温域に5秒以内保持された後、金属ブロック2u,2dを取り外し、直ちに200℃以下まで冷却される。金属ブロック2u,2dの加圧力Pは、ブランク1への熱伝達を促進させる上で1MPa以上に設定することが好ましい。
【0014】
350℃以上に加熱された金属ブロック2u,2dを1MPa以上の加圧力Pでブランク1に押し付けることにより、ブランク1が極めて短時間で局部加熱されると共に、被加熱部(硬質領域1h)に対する熱影響も抑制される。しかも、軟化領域1sと硬質領域1hとの間に生じる強度遷移幅を20mm以下に抑えられ、硬質領域1hの強度に比較して90%以下に強度低下した軟化領域1sが形成される。
他方、加圧力Pが不足すると金属ブロック2u,2d/ブランク1の界面に隙間が生じやすく、350℃以上の高温に達するのに時間を要するため、金属ブロック2u,2dに接触していない部分も熱影響を受けて軟化する。この場合、軟化領域1sと硬質領域1hとの間の強度遷移幅が広がり、大きな強度差も得られがたい。
高温の金属ブロック2u,2dを押圧することによって局部軟化したブランク1をプレス成形するとき、軟化領域1sが優先的に塑性変形し、精度良く製品形状に加工される。加工品を観察すると、破断,割れ,座屈等の加工欠陥が検出されず、肉厚変動のない変形領域1dが形成される。
【0015】
軟化領域1sの優先的な塑性変形は、硬質領域1hと軟化領域1sとの強度差が大きいほど生じやすく、硬質領域1hの強度を規準として軟化領域1sの強度を90%以上低下させることが好ましい。強度遷移幅は、加工予定部位の強度を選択的に低下させ、加工予定部位以外の強度低下を引き起こさないように20mm以下に抑えることが好ましい。強度遷移幅が大きすぎてポンチ5の肩部に当接する部分までも軟化すると、却ってプレス成形性が低下する傾向を示す。
溶体化処理で局部軟化したブランクから得られたプレス成形品に時効処理等の熱処理を施すと、プレス成形後も残存する軟化領域1sの形成によって低下した強度を回復できる。たとえば、200℃以下の温度に10分以上加熱する時効処理によって、軟化領域1sの強度が硬質領域1hと同じレベルまで回復する。
【0016】
【実施例】
表1に示した組成をもつ板厚1mmのアルミニウム合金冷延板から切り出した半径45mmの円板状ブランクを試験片に使用した。合金No.1,2は、500℃で溶体化処理した後、160℃×18時間の時効処理でMg,Si,Cu等を金属間化合物として析出させることにより高強度化した時効硬化型アルミニウム合金である。合金No.3は、Mg添加により固溶強化したアルミニウム合金を50%冷間加工して高強度化した加工硬化型アルミニウム合金である。
【0017】

Figure 2004124151
【0018】
500℃に加熱したリング状の銅製ブロック2u,2dを加圧力P:3MPaで各ブランク1に押し当て、ブランク1と接触している部分でブランク1の昇温速度を測定した。熱伝導性の良好な銅製ブロック2u,2dを押し当てたとき、金属間化合物の固溶,歪,応力の解放に有効な350℃以上の温度域にブランク1が極短時間で昇温した。他方、熱伝導性が低い鉄製ブロックを押し当てた場合、昇温速度が若干小さいものの、5秒以内の短時間で350℃以上の温度域に達した。(図4)
【0019】
内径が46mm(例1),53mm(例2),60mm(例3)と異なる3種類の銅製ブロック2u,2dを用意した。各銅製ブロック2u,2dを500℃に加熱し、合金No.1のブランク1に0.6秒押し当てた後、ブランク1を水冷した。冷却後にブランク1の硬さを半径方向に測定し、銅製ブロック2u,2dによる局部加熱がブランク1の軟化に及ぼす影響を調査した。何れの場合も銅製ブロック2u,2dに接触した部位(軟化領域1s)は、非接触部位(硬質領域1h)のビッカース硬さに比較して大幅に軟化していた。軟化領域1sと硬質領域1hとの間の強度遷移幅も20mm以下に抑えられていた。(図5)
急速加熱による軟化領域1sの形成は、合金No.2,3のアルミニウム合金板でも同様な傾向を示した。
【0020】
局部加熱で軟化領域1sを形成した合金No.1のブランク1を直径60〜80mmの円板状に切断し、内径33mmのカップ形状にプレス成形した。プレス成形では、開口直径36.2mmのダイ3にブランク1をセットし、ブランク1の周縁部をしわ抑え4で抑え、クリアランスを0.6mmに設定してしわ抑え力2kNで直径33mm,肩アール5mmのポンチ5をダイ3に押し込んだ。
プレス成形品の加工部位を観察し、破断,割れ等の有無を調査した。ST材,T6材,O材等では限界絞り比が2.0に留まり、2.0を超える絞り比でプレス成形するとポンチ5の肩部に当った個所に破断が生じていた。
【0021】
他方、銅製ブロック2u,2dを用いた急速加熱で軟化領域1sを形成したブランク1では、絞り比2.3でも破断,亀裂等の加工欠陥を生じることなくプレス成形できた。なかでも、内径47mmの銅製ブロック2u,2dを用いて適正面積の軟化領域1sを形成したブランク1では、絞り比2.4の深絞りによっても加工欠陥が発生しなかった。
この対比から明らかなように、プレス成形時に大きく塑性変形する個所を予め軟化領域1sとしておくことにより、絞り比を高く設定した深絞り加工によっても破断,割れ等の加工欠陥を生じることなく、形状精度の良好なプレス成形品が得られることが確認された。局部加熱による軟化領域1sの形成が深絞り性の向上に及ぼす影響は、No.2,3のアルミニウム合金板でも同様であった。
【0022】
【発明の効果】
以上に説明したように、大きな加工変形を受ける部位を予め軟化しておくことにより、高い絞り比でプレス成形した場合でも破断,割れ等の加工欠陥がなく、形状精度の良好な成形品が得られる。高温加熱された金属ブロックをブランクの加工予定部位に極短時間押し付けるだけで深絞り性向上に有効な軟化領域が形成されるため、時効処理による軟質化に比較して処理時間が大幅に短縮され、設備負担も軽減される。このように、簡単な操作でアルミニウム合金の加工性が改善されるので、従来法では困難であった複雑形状の製品も容易に且つ工数の少ないプレス成形で製造できる。
【図面の簡単な説明】
【図1】ブランクの加工予定部位に軟化領域を形成する説明図
【図2】局部的に軟質化したブランクをプレス成形金型のダイとポンチとの間にセットした状態を示す図
【図3】ブランクがプレス成形品になるまでの材質,形状変化を示す図
【図4】高温加熱された金属ブロックが押し当てられたブランクの昇温特性を示すグラフ
【図5】金属ブロックを用いて局部加熱されたブランクの半径方向に沿った硬さ分布を示すグラフ
【図6】軟化領域の形成が深絞り性の向上に及ぼす影響を従来材と対比したグラフ
【符号の説明】
1:ブランク  1s:軟化領域  1h:硬質領域  1d:変形領域  1c:被挟持部  1p:ポンチ当接部  2u,2d:加圧加熱体(金属ブロック,銅製ブロック)  3:ダイ  4:しわ抑え  5:ポンチ[0001]
[Industrial applications]
The present invention relates to a heat treatment method for improving the press formability of aluminum alloys used in a wide range of fields such as automobile parts, casings of electronic devices, housings of electric devices, etc. by utilizing lightness.
[0002]
[Prior art]
Aluminum alloys are lightweight and excellent in corrosion resistance, so they are used for materials such as automobile parts, casings of electronic devices, housings of electric devices, etc., and are processed into product shapes by press molding. Some products are processed with an extremely large drawing ratio.
The material to be press-formed undergoes non-uniform deformation during processing. Therefore, if an appropriate strength difference or ductility difference corresponding to the deformation mode is given in the material in advance, processing at a high forming limit becomes possible. For example, in Japanese Patent Application Laid-Open No. 2000-80418, a heat-treated portion is locally softened by heat treatment to improve the formability of a steel sheet. Even in the case of aluminum alloy, it is possible to harden the central part receiving the punch load and harden it by shrinking and deforming the peripheral part that deforms by local aging treatment. It is introduced on pages 1363-1368.
[0003]
[Problems to be solved by the invention]
The conventional method of providing a difference in strength inside an aluminum alloy takes a long time to obtain a necessary difference in strength, and the productivity is low. In addition, it may not be applicable depending on the product shape, and equipment with a large burden is required.
The present invention has been devised to solve such a problem, and provides a necessary strength difference to the aluminum alloy by a short heat treatment, and does not require a large capital investment. The purpose is to improve the workability of the steel.
[0004]
[Means for Solving the Problems]
In order to attain the object, the heat treatment method of the present invention presses a high-temperature metal block against a portion to be processed of the blank, and locally rapidly heats the blank in contact with the metal block by heat transfer from the metal block. , Characterized in that the contact portion is locally softened.
As the material, an aluminum alloy whose strength is improved by precipitation of an intermetallic compound or a second phase, such as an age hardening type, a precipitation hardening type, and a work hardening type, is preferable. The part to be machined can be locally softened by pressing the metal block against the aluminum alloy plate before cutting the blank and rapidly heating the metal block, or pressing the metal block against the blank cut from the aluminum alloy plate and rapidly heating the metal block. .
[0005]
A metal block heated to a high temperature of 350 ° C. or higher is used as a pressurized heating element for locally rapidly heating the blank, and is pressed against a blank to be processed with a pressing force of 1 MPa or more. The temperature rise characteristics of the portion in contact with the metal block are affected by the heating temperature and pressure of the metal block. When regulating the strength of the softened region softened by contact with the metal block to 90% or less of the strength of the non-contact portion (hard region), and the strength transition width between the softened region and the hard region of the non-contact portion to 20 mm or less. Even if the drawing ratio is set to a large value, the blank can be press-formed into a product shape having no processing defects such as cracks, breakage, and buckling.
[0006]
[Action]
When the blank 1 made of an aluminum alloy plate is sandwiched between ring-shaped pressurizing and heating bodies 2u and 2d (FIG. 1) and the blank 1 is rapidly heated in a state where a predetermined pressure P is applied, the blank 1 comes into contact with the pressurizing and heating bodies 2u and 2d. The temperature of the heated portion rapidly rises, and intermetallic compounds such as Mg 2 Si, Si, and Cu and the second phase (hereinafter collectively referred to as “intermetallic compounds”) deposited on the blank 1 solidify in the matrix. Dissolve. The pressurizing and heating elements 2u and 2d are not limited to the ring shape, and it is needless to say that blocks shaped into appropriate shapes in consideration of the processing shape can be used.
[0007]
The heated portion becomes the softened region 1s (FIG. 3) due to the solid solution of the intermetallic compound, and the remaining portion (hard region 1h) not heated by the pressurized heating bodies 2u and 2d maintains the original strength. In addition to the solid solution of the intermetallic compound, the blank 1 is locally softened by the strain and residual stress introduced during the manufacturing process of the aluminum alloy plate being released by rapid heating.
[0008]
The usable aluminum alloy is not particularly limited in material, but is preferably a composition containing Mg, Si, Cu, Fe, etc., which easily precipitates as an intermetallic compound in order to utilize local softening due to rapid heating. There are a hardening type, a precipitation hardening type, a work hardening type and the like. Specifically, aging containing one or more of Mg: 0.4 to 4.0% by mass, Si: 0.2 to 2.0% by mass, and Cu: 0.2 to 6.0% by mass. A hardening type or a work hardening type aluminum alloy is mentioned.
Although the temperature attained by heating depends on the type of the aluminum alloy, by setting the temperature to 350 ° C. or higher, most of the intermetallic compounds precipitated are dissolved in the matrix and the strain and stress are released.
[0009]
As the pressurizing and heating elements 2u and 2d, for example, a metal block heated at a high temperature is used. When the high-temperature metal blocks 2u and 2d are pressed against the blank 1, the temperature of the blank 1 is locally increased to a temperature range in which the intermetallic compound is dissolved in the matrix in a very short time. By maintaining the temperature rising state for a predetermined time, the intermetallic compound is solid-dissolved and reformed into the softened region 1s in which strain and stress are released. When the above-mentioned age hardening type aluminum alloy plate is observed after local softening, the average grain gap of the precipitate is 1 μm or less in the hard region 1h, whereas the total amount of Mg, Si and Cu is 0.1 μm in the softened region 1s. 5% by mass or more is dissolved in the matrix. As a result, a strength difference occurs between the metal block 2u and the hard region 1h that is not heated by the metal blocks 2u and 2d. A difference in strength effective for improving workability can be achieved by heating and holding within 5 seconds.
[0010]
The blank 1 having a strength difference between the softened region 1s and the hard region 1h is placed on, for example, a die 3 and its peripheral portion is fixed with a wrinkle suppressor 4 (FIG. 2). When the punch 5 is pushed into the die opening in this state, the blank 1 is plastically deformed according to the shape of the die 3 and the punch 5. Since the clamped portion 1c sandwiched between the die 3 and the wrinkle suppressor 4 undergoes the greatest plastic deformation, the blank 1 locally softened by the pressurizing and heating elements 2u and 2d is used so that the softened region 1s is located in this portion. Although the amount of plastic deformation is large also in the vicinity of the shoulder of the die 3, cracks are likely to occur at the time of molding if the strength of this portion is reduced. Therefore, it is preferable to set the softened region 1 s avoiding the shoulder of the die 3. .
[0011]
The softened region 1 s is plastically deformed to a target shape with high accuracy following the pressing of the punch 5, and becomes a deformed region 1 d after molding. The deformation region 1d is hardened by work hardening, but the flange formed from the softened region 1s remains soft.
The portion where the tip of the punch 5 comes into contact (punch contact portion 1p) has a small amount of plastic deformation, so that even if the initial strength is maintained, processing defects such as cracks and breakage do not occur. Although the press formability is improved as the softening region 1s is larger, it is not necessary to soften the entire area of the clamped portion 1c, and the press formability is improved only by softening the area ratio of the clamped portion 1c by 20% or more. Can be expected.
[0012]
The present inventors further investigated and examined the effect of local softening on press formability. As a result, when a metal block (pressurized heating body 2u, 2d) heated to 350 ° C. or higher is pressed against blank 1 and heated, heat transfer from pressurized heating body 2u, 2d to blank 1 by metal-metal contact. Was promoted, and the softened region 1s was formed in an extremely short time within 5 seconds. As the metal block, copper, a copper alloy, or the like having a large heat capacity and good thermal conductivity as compared with the blank 1, which is the object to be heated, is preferable.
[0013]
The aluminum alloy blank 1 on which the metal blocks 2u and 2d are pressed reaches a high temperature of 350 ° C. or more at a temperature increase rate of 100 ° C./second or more, and is held in the high temperature region within 5 seconds. Remove 2d and immediately cool to below 200 ° C. The pressure P of the metal blocks 2u and 2d is preferably set to 1 MPa or more in order to promote heat transfer to the blank 1.
[0014]
By pressing the metal blocks 2u and 2d heated to 350 ° C. or more against the blank 1 with a pressing force P of 1 MPa or more, the blank 1 is locally heated in a very short time, and heat is applied to the heated portion (hard region 1h). The effect is also suppressed. In addition, the strength transition width generated between the softened region 1s and the hard region 1h can be suppressed to 20 mm or less, and the softened region 1s whose strength is reduced by 90% or less as compared with the strength of the hard region 1h is formed.
On the other hand, if the pressing force P is insufficient, a gap is likely to be formed at the interface between the metal blocks 2u and 2d / blank 1 and it takes time to reach a high temperature of 350 ° C. or more. Softens under the influence of heat. In this case, the intensity transition width between the softened region 1s and the hard region 1h is widened, and it is difficult to obtain a large difference in intensity.
When press-forming the locally softened blank 1 by pressing the high-temperature metal blocks 2u and 2d, the softened region 1s is plastically deformed preferentially and is processed into a product shape with high accuracy. When the processed product is observed, processing defects such as breakage, cracks, and buckling are not detected, and a deformed region 1d having no thickness variation is formed.
[0015]
The preferential plastic deformation of the softened region 1s is more likely to occur as the difference in strength between the hard region 1h and the softened region 1s increases, and it is preferable to reduce the strength of the softened region 1s by 90% or more based on the strength of the hard region 1h. . The strength transition width is preferably reduced to 20 mm or less so that the strength of the portion to be machined is selectively reduced and the strength of the portion other than the portion to be machined is not reduced. If the strength transition width is too large to soften even the portion in contact with the shoulder of the punch 5, the press-formability tends to decrease.
When a heat treatment such as an aging treatment is performed on a press-formed product obtained from a blank partially softened by the solution treatment, the strength reduced by the formation of the softened region 1s remaining after the press forming can be recovered. For example, the strength of the softened region 1s is restored to the same level as that of the hard region 1h by the aging treatment of heating to a temperature of 200 ° C. or less for 10 minutes or more.
[0016]
【Example】
A disc-shaped blank with a radius of 45 mm cut from a 1 mm-thick aluminum alloy cold-rolled sheet having the composition shown in Table 1 was used as a test piece. Alloy No. Nos. 1 and 2 are age hardening type aluminum alloys which have been subjected to a solution treatment at 500 ° C. and then subjected to aging treatment at 160 ° C. for 18 hours to precipitate Mg, Si, Cu, etc. as intermetallic compounds to thereby increase the strength, thereby increasing the strength. Alloy No. Reference numeral 3 denotes a work hardening type aluminum alloy obtained by performing 50% cold working on a solid solution strengthened aluminum alloy by adding Mg to increase strength.
[0017]
Figure 2004124151
[0018]
Ring-shaped copper blocks 2u and 2d heated to 500 ° C. were pressed against each blank 1 at a pressure P of 3 MPa, and the rate of temperature rise of the blank 1 was measured at the portion in contact with the blank 1. When the copper blocks 2u and 2d having good thermal conductivity were pressed, the blank 1 was heated in a very short time to a temperature range of 350 ° C. or more effective for releasing solid solution of the intermetallic compound, strain, and stress. On the other hand, when the iron block having low thermal conductivity was pressed, the temperature range reached 350 ° C. or higher in a short time within 5 seconds, although the heating rate was slightly lower. (FIG. 4)
[0019]
Three types of copper blocks 2u and 2d having different inner diameters of 46 mm (Example 1), 53 mm (Example 2), and 60 mm (Example 3) were prepared. Each of the copper blocks 2u and 2d was heated to 500 ° C. After pressing the blank 1 for 1 second for 0.6 seconds, the blank 1 was water-cooled. After cooling, the hardness of the blank 1 was measured in the radial direction, and the effect of local heating by the copper blocks 2u and 2d on the softening of the blank 1 was investigated. In any case, the portion (softened region 1s) in contact with the copper blocks 2u and 2d was significantly softened as compared with the Vickers hardness of the non-contact portion (hard region 1h). The strength transition width between the softened region 1s and the hard region 1h was also suppressed to 20 mm or less. (FIG. 5)
The formation of the softened region 1s by rapid heating is performed according to alloy No. The same tendency was shown for a few aluminum alloy plates.
[0020]
The alloy No. which formed the softened region 1s by local heating One blank 1 was cut into a disk shape having a diameter of 60 to 80 mm and press-formed into a cup shape having an inner diameter of 33 mm. In the press molding, the blank 1 is set on a die 3 having an opening diameter of 36.2 mm, the peripheral edge of the blank 1 is suppressed with a wrinkle suppressor 4, the clearance is set at 0.6 mm, the diameter is 33 mm with a wrinkle suppressing force of 2 kN, and the shoulder radius is set. A 5 mm punch 5 was pushed into the die 3.
The processed part of the press-formed product was observed, and the presence or absence of breakage, cracking, etc. was investigated. In the case of the ST material, the T6 material, the O material and the like, the limit drawing ratio remained at 2.0, and when press forming was performed at a drawing ratio exceeding 2.0, breakage occurred at a position where the punch 5 hit the shoulder.
[0021]
On the other hand, in the blank 1 in which the softened region 1s was formed by rapid heating using the copper blocks 2u and 2d, press forming could be performed without generating processing defects such as breakage and cracking even at a draw ratio of 2.3. Above all, in the blank 1 in which the softened region 1 s having an appropriate area was formed using the copper blocks 2 u and 2 d having an inner diameter of 47 mm, no processing defects were generated even by deep drawing with a drawing ratio of 2.4.
As is clear from this comparison, by setting a portion where plastic deformation is large during press forming in advance as the softened region 1 s, the shape can be formed without generating a processing defect such as breakage or cracking even in deep drawing with a high drawing ratio set. It was confirmed that a press-formed product with good precision was obtained. The effect of the formation of the softened region 1s due to local heating on the improvement of the deep drawability is described in The same applies to a few aluminum alloy plates.
[0022]
【The invention's effect】
As described above, by softening in advance the part that undergoes large deformation, a molded product having good shape accuracy without processing defects such as breakage and cracking even when pressed at a high drawing ratio can be obtained. Can be By pressing the metal block heated at high temperature against the blank to be processed for a very short time, a softened area effective for improving deep drawability is formed, so the processing time is significantly reduced compared to softening by aging treatment. Also, the equipment burden is reduced. As described above, since the workability of the aluminum alloy is improved by a simple operation, a product having a complicated shape, which has been difficult with the conventional method, can be easily manufactured by press molding with a small number of steps.
[Brief description of the drawings]
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory view of forming a softened region at a portion to be processed of a blank. FIG. 2 is a view showing a state where a locally softened blank is set between a die of a press forming die and a punch. FIG. 4 is a diagram showing a change in material and shape until the blank becomes a press-formed product. FIG. 4 is a graph showing a temperature rise characteristic of the blank pressed against a metal block heated at a high temperature. FIG. 6 is a graph showing the hardness distribution of a heated blank along the radial direction. FIG. 6 is a graph comparing the effect of the formation of a softened region on the improvement of deep drawability with a conventional material.
1: blank 1s: softened area 1h: hardened area 1d: deformed area 1c: pinched part 1p: punch contact part 2u, 2d: pressurized and heated body (metal block, copper block) 3: die 4: wrinkle suppression 5: Punch

Claims (7)

ブランクの加工予定部位に高温の金属ブロックを押し当て、金属ブロックからの熱伝達で金属ブロックと接触しているブランクを局部的に急速加熱し、接触部分を局部軟化することを特徴とするアルミニウム合金の熱処理方法。An aluminum alloy characterized in that a high-temperature metal block is pressed against a portion to be processed of a blank, and the blank that is in contact with the metal block is rapidly heated locally by heat transfer from the metal block, and the contact portion is locally softened. Heat treatment method. ブランクを切り出す前のアルミニウム合金板又はアルミニウム合金板から切り出されたブランクに金属ブロックを押し当てて加工予定部位を急速加熱する請求項1記載の熱処理方法。The heat treatment method according to claim 1, wherein a metal block is pressed against an aluminum alloy plate before blank cutting or a blank cut from the aluminum alloy plate to rapidly heat a portion to be processed. 350℃以上に高温加熱された金属ブロックを1MPa以上の加圧力でアルミニウム合金のブランクに押し当てる請求項1又は2記載の熱処理方法。The heat treatment method according to claim 1, wherein the metal block heated to a high temperature of 350 ° C. or more is pressed against an aluminum alloy blank with a pressing force of 1 MPa or more. 金属ブロックとの接触で局部軟化した軟化領域と非接触部の硬質領域との間の強度遷移幅を20mm以下に規制する請求項1又は2記載の熱処理方法。3. The heat treatment method according to claim 1, wherein the strength transition width between the softened region locally softened by contact with the metal block and the hard region of the non-contact portion is restricted to 20 mm or less. 硬質領域の強度を基準として軟化領域の強度を10%以上低下させる請求項1又は2記載の熱処理方法。3. The heat treatment method according to claim 1, wherein the strength of the softened region is reduced by 10% or more based on the strength of the hard region. 時効硬化型又は加工硬化型アルミニウム合金を素材に使用する請求項1〜5何れかに記載の熱処理方法。The heat treatment method according to any one of claims 1 to 5, wherein an age hardening type or a work hardening type aluminum alloy is used as a material. 高温加熱された金属ブロックの押圧によって軟化された軟化領域の強度が金属ブロックに接触しなかった硬質領域の強度の90%以下であり、軟化領域と硬質領域との間の強度遷移幅が20mm以下に調整されているプレス加工用アルミニウム合金板。The strength of the softened region softened by the pressing of the metal block heated at a high temperature is 90% or less of the strength of the hard region not in contact with the metal block, and the strength transition width between the softened region and the hard region is 20 mm or less. Aluminum alloy plate for press working adjusted to
JP2002288956A 2002-10-01 2002-10-01 Heat treatment method for aluminum alloy Pending JP2004124151A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002288956A JP2004124151A (en) 2002-10-01 2002-10-01 Heat treatment method for aluminum alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002288956A JP2004124151A (en) 2002-10-01 2002-10-01 Heat treatment method for aluminum alloy

Publications (2)

Publication Number Publication Date
JP2004124151A true JP2004124151A (en) 2004-04-22
JP2004124151A5 JP2004124151A5 (en) 2005-07-07

Family

ID=32281307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002288956A Pending JP2004124151A (en) 2002-10-01 2002-10-01 Heat treatment method for aluminum alloy

Country Status (1)

Country Link
JP (1) JP2004124151A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008207212A (en) * 2007-02-27 2008-09-11 Kobe Steel Ltd Aluminum alloy sheet blank excellent in press-formability
JP2008248342A (en) * 2007-03-30 2008-10-16 Kobe Steel Ltd Respective manufacturing methods of aluminum-alloy sheet material, sheet and formed member
JP2008246555A (en) * 2007-03-30 2008-10-16 Kobe Steel Ltd Blank for press forming and press forming method
JP2009201753A (en) * 2008-02-28 2009-09-10 Kyoraku Sangyo Kk Game machine
JP2009201745A (en) * 2008-02-28 2009-09-10 Kyoraku Sangyo Kk Game machine
JP2009201751A (en) * 2008-02-28 2009-09-10 Kyoraku Sangyo Kk Game machine
JP2009201750A (en) * 2008-02-28 2009-09-10 Kyoraku Sangyo Kk Game machine
JP2009201748A (en) * 2008-02-28 2009-09-10 Kyoraku Sangyo Kk Game machine
JP2009201747A (en) * 2008-02-28 2009-09-10 Kyoraku Sangyo Kk Game machine
JP2009201754A (en) * 2008-02-28 2009-09-10 Kyoraku Sangyo Kk Game machine
JP2009201749A (en) * 2008-02-28 2009-09-10 Kyoraku Sangyo Kk Game machine
JP2009201746A (en) * 2008-02-28 2009-09-10 Kyoraku Sangyo Kk Game machine
JP2009201752A (en) * 2008-02-28 2009-09-10 Kyoraku Sangyo Kk Game machine
JP2009241856A (en) * 2008-03-31 2009-10-22 Kobe Steel Ltd Method of manufacturing aluminum alloy panel member for automobile
JP2009242905A (en) * 2008-03-31 2009-10-22 Kobe Steel Ltd Method for producing automobile panel member made of aluminum alloy
JP2009242907A (en) * 2008-03-31 2009-10-22 Kobe Steel Ltd Method for producing aluminum alloy blank for press forming
JP2010227954A (en) * 2009-03-26 2010-10-14 Furukawa-Sky Aluminum Corp Method of press-forming aluminum alloy sheet
JP2011115837A (en) * 2009-12-07 2011-06-16 Furukawa-Sky Aluminum Corp Method of producing aluminum alloy molded article
KR101455606B1 (en) * 2007-12-11 2014-10-28 가부시키가이샤 유에이씨제이 Aluminum alloy sheet for cold press forming, method of manufacturing the same, and cold press forming method for aluminum alloy sheet
JPWO2019131289A1 (en) * 2017-12-25 2019-12-26 Jfeスチール株式会社 Manufacturing method of press-formed product
WO2021149411A1 (en) * 2020-01-20 2021-07-29 株式会社神戸製鋼所 Method for producing aluminum alloy member
US11939655B2 (en) * 2016-07-13 2024-03-26 Constellium Neuf-Brisach Aluminium alloy blanks with local flash annealing

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008207212A (en) * 2007-02-27 2008-09-11 Kobe Steel Ltd Aluminum alloy sheet blank excellent in press-formability
JP2008248342A (en) * 2007-03-30 2008-10-16 Kobe Steel Ltd Respective manufacturing methods of aluminum-alloy sheet material, sheet and formed member
JP2008246555A (en) * 2007-03-30 2008-10-16 Kobe Steel Ltd Blank for press forming and press forming method
KR101455606B1 (en) * 2007-12-11 2014-10-28 가부시키가이샤 유에이씨제이 Aluminum alloy sheet for cold press forming, method of manufacturing the same, and cold press forming method for aluminum alloy sheet
JP2009201750A (en) * 2008-02-28 2009-09-10 Kyoraku Sangyo Kk Game machine
JP2009201753A (en) * 2008-02-28 2009-09-10 Kyoraku Sangyo Kk Game machine
JP2009201745A (en) * 2008-02-28 2009-09-10 Kyoraku Sangyo Kk Game machine
JP2009201748A (en) * 2008-02-28 2009-09-10 Kyoraku Sangyo Kk Game machine
JP2009201747A (en) * 2008-02-28 2009-09-10 Kyoraku Sangyo Kk Game machine
JP2009201754A (en) * 2008-02-28 2009-09-10 Kyoraku Sangyo Kk Game machine
JP2009201749A (en) * 2008-02-28 2009-09-10 Kyoraku Sangyo Kk Game machine
JP2009201746A (en) * 2008-02-28 2009-09-10 Kyoraku Sangyo Kk Game machine
JP2009201752A (en) * 2008-02-28 2009-09-10 Kyoraku Sangyo Kk Game machine
JP2009201751A (en) * 2008-02-28 2009-09-10 Kyoraku Sangyo Kk Game machine
JP2009241856A (en) * 2008-03-31 2009-10-22 Kobe Steel Ltd Method of manufacturing aluminum alloy panel member for automobile
JP2009242907A (en) * 2008-03-31 2009-10-22 Kobe Steel Ltd Method for producing aluminum alloy blank for press forming
JP2009242905A (en) * 2008-03-31 2009-10-22 Kobe Steel Ltd Method for producing automobile panel member made of aluminum alloy
JP2010227954A (en) * 2009-03-26 2010-10-14 Furukawa-Sky Aluminum Corp Method of press-forming aluminum alloy sheet
JP2011115837A (en) * 2009-12-07 2011-06-16 Furukawa-Sky Aluminum Corp Method of producing aluminum alloy molded article
US11939655B2 (en) * 2016-07-13 2024-03-26 Constellium Neuf-Brisach Aluminium alloy blanks with local flash annealing
JPWO2019131289A1 (en) * 2017-12-25 2019-12-26 Jfeスチール株式会社 Manufacturing method of press-formed product
US11511330B2 (en) 2017-12-25 2022-11-29 Jfe Steel Corporation Method for manufacturing press formed product
WO2021149411A1 (en) * 2020-01-20 2021-07-29 株式会社神戸製鋼所 Method for producing aluminum alloy member
JP7316951B2 (en) 2020-01-20 2023-07-28 株式会社神戸製鋼所 Method for manufacturing aluminum alloy member

Similar Documents

Publication Publication Date Title
JP2004124151A (en) Heat treatment method for aluminum alloy
KR20130087586A (en) Closed-die forging method and method of manufacturing forged article
JP2005329449A (en) Method for manufacturing warm- or hot-formed article, and article
JPWO2006129566A1 (en) Magnesium alloy sheet processing method and magnesium alloy sheet
JP2011111657A (en) Method for producing aluminum alloy sheet blank for cold press forming having coating/baking hardenability, cold press forming method using the blank, and formed part
JP2006144059A (en) Magnesium alloy sheet superior in press formability, and manufacturing method therefor
JP2010227954A (en) Method of press-forming aluminum alloy sheet
JP2009148823A (en) Warm press-forming method for aluminum alloy cold-rolled sheet
WO2005113842A1 (en) Method of manufacturing hot drawn product
JP2011063868A (en) Methods for manufacturing aluminum molded component and metal structure including the aluminum molded component
JP2003305503A (en) Highly formable aluminum alloy plate and method for producing the same
JPH105892A (en) Progressive feed press die used for manufacturing ultra-fine lead parts, and work used for manufacturing the lead parts
JP2003103311A (en) Press forming method for magnesium alloy thin plate
JPS6318031A (en) Hot press die
JP6987692B2 (en) Aluminum alloy molding method
JP2005152969A (en) Method of fabricating hot press
JP2012152780A (en) Molding working method for aluminum alloy plate
JPH11151581A (en) Joining method for steel material and manufacture of metallic mold
JP2010024544A (en) Warm-hot forging die
JPH11319970A (en) Ferritic stainless steel/aluminum clad plate excellent in deep drawability
JP2020056082A (en) Method of forming aluminum alloy
JP6670441B2 (en) Manufacturing method of steel strip for metal belt
JPH0687031A (en) Method for bulging, drawing amorphous metallic foil
JP2001239326A (en) Manufacturing method for products made of magnesium material
JPH10216884A (en) Method for repeated lateral forging and forming of metallic material

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041027

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060531

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060627