JP7316951B2 - Method for manufacturing aluminum alloy member - Google Patents

Method for manufacturing aluminum alloy member Download PDF

Info

Publication number
JP7316951B2
JP7316951B2 JP2020006947A JP2020006947A JP7316951B2 JP 7316951 B2 JP7316951 B2 JP 7316951B2 JP 2020006947 A JP2020006947 A JP 2020006947A JP 2020006947 A JP2020006947 A JP 2020006947A JP 7316951 B2 JP7316951 B2 JP 7316951B2
Authority
JP
Japan
Prior art keywords
aluminum alloy
extruded material
temperature
alloy extruded
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020006947A
Other languages
Japanese (ja)
Other versions
JP2021113348A (en
Inventor
寛哲 細井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2020006947A priority Critical patent/JP7316951B2/en
Priority to PCT/JP2020/046935 priority patent/WO2021149411A1/en
Publication of JP2021113348A publication Critical patent/JP2021113348A/en
Application granted granted Critical
Publication of JP7316951B2 publication Critical patent/JP7316951B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/05Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys of the Al-Si-Mg type, i.e. containing silicon and magnesium in approximately equal proportions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/053Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Extrusion Of Metal (AREA)
  • Body Structure For Vehicles (AREA)

Description

本発明は、アルミニウム合金製部材の製造方法に関わり、特にT1調質の熱処理型アルミニウム合金押出材を温間で塑性加工して、アルミニウム合金製部材を製造する方法に関わる。 TECHNICAL FIELD The present invention relates to a method for manufacturing an aluminum alloy member, and more particularly to a method for manufacturing an aluminum alloy member by plastic working a heat-treated aluminum alloy extruded material of T1 refining at a warm temperature.

資源問題や環境問題を背景とする燃費規制強化の流れの中で,自動車や飛行機、建設機械、船舶などの輸送機械の軽量化が進展している。アルミニウム合金は、密度が約2.7gcm-3と鋼の約1/3で軽量であることから、前記輸送機械の構造部材、特に自動車の構造部材への採用が加速している。
これらの構造部材として、鋳造品や鍛造品のほか、圧延材(板)及び押出材が利用される。このうち押出材は、追加の加工なしで、任意の肉厚配分を有する中空閉断面の長尺材が得られるという特長があり、自動車の骨格部品やエネルギ吸収部品の製造に適している。そのような自動車の骨格部品としてロッカー、サイドメンバー、ピラー、サブフレーム等があり、エネルギ吸収部品としてドア補強材、バンパー補強材、ルーフ補強材等がある。
Amid the trend of tightening fuel efficiency regulations against the background of resource and environmental problems, the weight reduction of transportation equipment such as automobiles, airplanes, construction equipment, and ships is progressing. Aluminum alloys have a density of about 2.7 gcm −3 , which is about 1/3 that of steel and are light in weight. Therefore, aluminum alloys are increasingly being used for structural members of transportation machinery, particularly automobiles.
As these structural members, in addition to castings and forgings, rolled materials (plates) and extruded materials are used. Of these, the extruded material has the advantage that a long material with a hollow closed cross-section having an arbitrary thickness distribution can be obtained without additional processing, and is suitable for the manufacture of automotive frame parts and energy absorbing parts. Such automobile frame parts include rockers, side members, pillars, subframes, and the like, and energy absorbing parts include door reinforcements, bumper reinforcements, roof reinforcements, and the like.

自動車部品を、鋼部品からアルミニウム合金押出材から製造される部品に置換して得られる軽量化効果は、アルミニウム合金の強度(耐力)に大きく依存し、このような自動車部品向けに、高強度アルミニウム合金の開発が進められている。
高強度アルミニウム合金として代表的なものに、熱処理型(析出硬化型)合金である6000系(Al-Mg-Si-(Cu)系)及び7000系(Al-Zn-Mg-(Cu)系)がある。一般的に、6000系アルミニウム合金は0.2%耐力で200~350MPa程度、7000系アルミニウム合金は0.2%耐力で300~500MPa程度が、T5、T6又はT7調質で得られる。特に7000系アルミニウム合金は高強度が得られ,高い軽量化効果が期待できる。
The weight reduction effect obtained by replacing steel parts with parts manufactured from aluminum alloy extrusions greatly depends on the strength (proof stress) of aluminum alloys. Alloy development is underway.
Typical high-strength aluminum alloys include 6000 series (Al-Mg-Si-(Cu) system) and 7000 series (Al-Zn-Mg-(Cu) system), which are heat-treated (precipitation hardening) alloys. There is In general, a 6000 series aluminum alloy has a 0.2% yield strength of about 200 to 350 MPa, and a 7000 series aluminum alloy has a 0.2% yield strength of about 300 to 500 MPa with T5, T6 or T7 tempering. In particular, 7000 series aluminum alloys are expected to have high strength and high weight reduction effect.

一方、高強度の7000系アルミニウム合金では、腐食環境下で引張応力が絶えず生じている箇所において生じる割れ、すなわち応力腐食割れ(SCC)が問題となっている。この応力腐食割れは鋭敏であるため、進展が早く、突然の破損のリスクが高まるため、品質保証の観点から強く忌避される。
応力腐食割れの起こりやすさは、7000系アルミニウム合金の中でも、一般に高強度なほど高まる。また、応力腐食割れの起こりやすさは、同じ組成の合金でも調質によって変化し、T7調質ではT5調質やT6調質に比べ、応力腐食割れが起こりにくくなることが知られている。応力腐食割れがネックとなって、自動車部品への高強度7000系アルミニウム合金の採用が見送られることも多い。
応力腐食割れは、引張応力がある閾値以上に生じている箇所が、腐食環境にさらされることで発生する。この引張応力は、製造過程での塑性加工、切削加工、熱処理(焼き入れなど)において生じた引張残留応力が要因となって生じることが多い。
On the other hand, high-strength 7000-series aluminum alloys have a problem of stress corrosion cracking (SCC), which occurs at locations where tensile stress is constantly generated in a corrosive environment. Since this stress corrosion cracking is sensitive, it progresses quickly and the risk of sudden breakage increases, so it is strongly avoided from the viewpoint of quality assurance.
Among 7000 series aluminum alloys, the susceptibility to stress corrosion cracking generally increases as the strength increases. In addition, it is known that the susceptibility to stress corrosion cracking varies depending on the temper even in alloys of the same composition, and stress corrosion cracking is less likely to occur in T7 temper than in T5 or T6 temper. Stress corrosion cracking is a bottleneck, and the adoption of high-strength 7000 series aluminum alloys for automobile parts is often postponed.
Stress corrosion cracking occurs when a portion where tensile stress exceeds a certain threshold is exposed to a corrosive environment. This tensile stress is often caused by tensile residual stress generated during plastic working, cutting, and heat treatment (such as quenching) during the manufacturing process.

アルミニウム合金押出材を自動車部品にするためには、一般に、塑性加工や切削加工などの追加加工が必要となる。塑性加工は、機械的力により材料を変形させ、材料を所定の形状、寸法の製品に成形する手段であり、アルミニウム合金押出材の長手方向の形状を変化させる曲げ加工、プレス機により断面を潰したり拡大させたりする変断面加工、プレス機により穴あけや切断を行う剪断加工等がこれに含まれる。
アルミニウム合金製部材(アルミニウム合金押出材に追加加工や熱処理を施して得られた部材)の引張残留応力は、追加加工(塑性加工や切削加工)又は熱処理によって発生する。特に問題となるのは、塑性加工によって生じる引張残留応力である。アルミニウム合金押出材に対して行われる塑性加工の代表例は、上記した曲げ加工、変断面加工及び剪断加工であり、冷間で上記塑性加工を行う場合、強い引張残留応力が生じる。応力腐食割れのリスクのある7000系アルミニウム合金押出材では、塑性加工に伴う引張残留応力の抑制が技術課題となっている。
In order to make an aluminum alloy extruded material into an automobile part, additional processing such as plastic working and cutting is generally required. Plastic working is a means of deforming a material by mechanical force and forming it into a product of a given shape and size. This includes variable cross-section processing such as widening and widening, and shearing processing such as drilling and cutting with a press machine.
Tensile residual stress in an aluminum alloy member (a member obtained by subjecting an aluminum alloy extruded material to additional working or heat treatment) is generated by additional working (plastic working or cutting) or heat treatment. A particular problem is tensile residual stress caused by plastic working. Typical examples of plastic working performed on an aluminum alloy extruded material are the above-described bending, cross-section working, and shearing, and strong tensile residual stress is generated when the above plastic working is performed in the cold. In 7000 series aluminum alloy extruded material, which has a risk of stress corrosion cracking, suppression of tensile residual stress due to plastic working is a technical issue.

ところで、熱処理型アルミニウム合金押出材の塑性加工(冷間加工)は、T5、T6、T7調質材に対してではなく、T1調質材に対して行われることが多い。これは、T1調質材が、T5、T6、T7調質材に比べて軟質で、延性が高く、加工性に優れるためである。しかし、T1調質材であっても,強度が高く延性が不足する場合には、特許文献1に示されるように、塑性加工の前に、軟質化熱処理(復元処理)が施されることもある。なお、T1調質材とは、押出加工後に自然時効以外は調質処理されていないアルミニウム合金押出材を意味する。 By the way, the plastic working (cold working) of the heat-treated aluminum alloy extruded material is often performed not on the T5, T6, and T7 tempered materials but on the T1 tempered material. This is because the T1 tempered material is softer than the T5, T6, and T7 tempered materials, has high ductility, and is excellent in workability. However, if the T1 tempered material has high strength and lacks ductility, it may be subjected to softening heat treatment (restoration treatment) before plastic working, as shown in Patent Document 1. be. In addition, the T1 tempered material means an aluminum alloy extruded material that has not undergone any tempering treatment other than natural aging after extrusion.

また、熱処理型アルミニウム合金押出材の加工性を向上させるため、当該押出材を常温より高い温度で塑性加工(温間加工)することも知られている。例えば特許文献2では、押出直後の高温状態を利用して、アルミニウム合金押出材の塑性加工を行っている。特許文献3では、アルミニウム合金押出材を溶体化処理後、50~100℃×1~30分の熱処理を行い、自然時効後に100~200℃の温度範囲内に再加熱し、その温度範囲内で塑性加工を行っている。 Moreover, in order to improve the workability of a heat-treated aluminum alloy extruded material, it is also known to subject the extruded material to plastic working (warm working) at a temperature higher than room temperature. For example, in Patent Literature 2, plastic working of an aluminum alloy extruded material is performed using a high-temperature state immediately after extrusion. In Patent Document 3, after the aluminum alloy extruded material is solution treated, heat treatment is performed at 50 to 100 ° C. for 1 to 30 minutes, and after natural aging, it is reheated within the temperature range of 100 to 200 ° C., and within that temperature range. We are doing plastic working.

特許第5671422号公報Japanese Patent No. 5671422 特開平5-69069号公報JP-A-5-69069 特開2009-114514号公報JP 2009-114514 A

前記のとおり、アルミニウム合金押出材の温間加工は、当該押出材の延性及び加工性の向上を実現する方法である。また、アルミニウム合金押出材の残留応力の大きさ(人工時効処理後)は、塑性加工時の強度にほぼ比例することから、温間加工は製品(アルミニウム合金部材)の引張残留応力を低減し、耐応力腐食割れ性の向上を実現する方法でもある。 As described above, warm working of an aluminum alloy extruded material is a method for improving the ductility and workability of the extruded material. In addition, since the magnitude of residual stress in aluminum alloy extruded material (after artificial aging treatment) is approximately proportional to the strength during plastic working, warm working reduces the tensile residual stress of the product (aluminum alloy member), It is also a method for improving stress corrosion cracking resistance.

一方、温間加工のためのアルミニウム合金押出材の加熱方法としては、特許文献2,3に記載されたインラインヒーターやオイルヒーターによる加熱が考えられる。このうちインラインヒーターは安定した加熱が可能であるが、昇温速度が遅く、かつ設備が大型で高コストという問題がある。オイルヒーターは急速加熱が可能であるが、安全性やランニングコストに問題があり、またワーク(アルミニウム合金押出材)に付着するオイルを洗浄する必要もあるなど量産には適さない。 On the other hand, as a method of heating an aluminum alloy extruded material for warm working, heating by an in-line heater or an oil heater described in Patent Documents 2 and 3 can be considered. Among these heaters, the in-line heater is capable of stable heating, but has the problem that the heating rate is slow, the equipment is large, and the cost is high. Oil heaters are capable of rapid heating, but have problems with safety and running costs, and are not suitable for mass production due to the need to wash off oil adhering to workpieces (aluminum alloy extruded materials).

本発明は、中空断面の熱処理型アルミニウム合金押出材に塑性加工(温間加工)を施して、製品化(アルミニウム合金製部材を製造)するにあたり、低コストで、高い生産性を実現することを目的とする。 The present invention aims to achieve low cost and high productivity in commercialization (manufacturing aluminum alloy members) by plastic working (warm working) of a heat-treated aluminum alloy extruded material with a hollow cross section. aim.

本発明は、中空断面のアルミニウム合金押出材を昇温して所定の温度範囲内の温度に到達させた後、前記温度範囲内で塑性加工(温間加工)を行い、次いで冷却した後、人工時効処理を行うアルミニウム合金製部材の製造方法において、前記アルミニウム合金押出材が熱処理型アルミニウム合金押出材のT1調質材であり、前記温度範囲が150~300℃であり、前記アルミニウム合金押出材を、加熱機構を備え200~350℃に加熱された上下の加熱用金型により挟み、前記加熱用金型からの熱伝達により昇温して前記温度範囲内の温度に到達させることを特徴とする。 In the present invention, an aluminum alloy extruded material having a hollow cross section is heated to reach a temperature within a predetermined temperature range, then subjected to plastic working (warm working) within the temperature range, then cooled, and then artificially In the method for producing an aluminum alloy member that undergoes aging treatment, the aluminum alloy extruded material is a heat-treated aluminum alloy extruded material T1 tempered material, the temperature range is 150 to 300 ° C., and the aluminum alloy extruded material is used. , sandwiched between upper and lower heating dies heated to 200 to 350 ° C., provided with a heating mechanism, and heated by heat transfer from the heating dies to reach a temperature within the above temperature range. .

前記アルミニウム合金製部材の製造方法には、次のような具体的形態が含まれる。
(1)前記アルミニウム合金が7000系アルミニウム合金である。
(2)前記アルミニウム合金押出材の昇温時に前記金型から前記押出材に負荷される荷重をP(単位:N)とし、前記アルミニウム合金押出材と前記加熱用金型との上下の接触箇所の投影面積をA(単位:m)としたとき、P/A≧0.07MPaの関係を満たす。
(3)前記アルミニウム合金押出材の断面において、昇温時に上下の金型と接触する長さの総和(単位:mm)と断面積S(単位mm)が、S/L≦8mmの関係を満たす。
(4)前記加熱用金型が、鋼製、アルミニウム製又は銅製のいずれかである。
(5)前記アルミニウム合金製部材がエネルギー吸収部品や自動車骨格部品である。
The method for manufacturing the aluminum alloy member includes the following specific forms.
(1) The aluminum alloy is a 7000 series aluminum alloy.
(2) The load applied from the mold to the extruded material when the temperature of the aluminum alloy extruded material is raised is P (unit: N), and the upper and lower contact points between the aluminum alloy extruded material and the heating mold When the projected area of is A (unit: m 2 ), the relationship P/A≧0.07 MPa is satisfied.
(3) In the cross section of the aluminum alloy extruded material, the total length (unit: mm) of contact with the upper and lower molds during temperature rise and the cross-sectional area S (unit: mm 2 ) satisfy the relationship S / L ≤ 8 mm. Fulfill.
(4) The heating mold is made of either steel, aluminum or copper.
(5) The aluminum alloy member is an energy absorbing part or an automobile frame part.

本発明によれば、アルミニウム合金押出材のT1調質材に、塑性加工(温間加工)を施して製品化するにあたり、前記アルミニウム合金押出材を上下から加熱された加熱用金型で挟んで昇温することにより、低コストで、高い生産性(大きい昇温速度)を実現することができる。
アルミニウム合金押出材を上記温度範囲(150~300℃)内の温度で塑性加工することにより、アルミニウム合金押出材の変形能が向上し、塑性加工に伴い発生する引張残留応力を低減し、製品(アルミニウム合金製部材)の耐応力腐食割れ性を向上させることができる。
また、本発明では、アルミニウム合金押出材のT1調質材を素材として用いるので、強度が求められるドア補強材、バンパー補強材、ルーフ補強材等のエネルギー吸収部品、及びロッカー、サイドメンバー、ピラー、サブフレーム等の自動車骨格部品を、低コストで製造することができる。
According to the present invention, when the T1 tempered aluminum alloy extruded material is subjected to plastic working (warm working) and commercialized, the aluminum alloy extruded material is sandwiched between heating dies heated from above and below. By raising the temperature, it is possible to achieve high productivity (high heating rate) at low cost.
By plastic working the aluminum alloy extruded material at a temperature within the above temperature range (150 to 300 ° C), the deformability of the aluminum alloy extruded material is improved, the tensile residual stress generated due to plastic working is reduced, and the product ( aluminum alloy members) can be improved in stress corrosion cracking resistance.
In addition, in the present invention, since the T1 tempered aluminum alloy extruded material is used as a material, energy absorbing parts such as door reinforcements, bumper reinforcements, roof reinforcements, etc., which require strength, rockers, side members, pillars, etc. Automobile frame parts such as subframes can be manufactured at low cost.

本発明のプロセスのフロー図である。1 is a flow diagram of the process of the present invention; FIG. 昇温プロセスの一例の説明図である。FIG. 4 is an explanatory diagram of an example of a temperature rising process; 昇温プロセスの他の例の説明図である。FIG. 5 is an explanatory diagram of another example of the temperature raising process; 昇温プロセスの他の例の説明図である。FIG. 5 is an explanatory diagram of another example of the temperature raising process; 昇温プロセスの他の例の説明図である。FIG. 5 is an explanatory diagram of another example of the temperature raising process; 昇温プロセスの他の例の説明図である。FIG. 5 is an explanatory diagram of another example of the temperature raising process; 昇温プロセスの他の例の説明図である。FIG. 5 is an explanatory diagram of another example of the temperature raising process; 昇温プロセスの他の例の説明図である。FIG. 5 is an explanatory diagram of another example of the temperature raising process; 互いに接触する鋼と鋼、アルミニウムとアルミニウム、及び鋼とアルミニウムの間の熱伝達率とP/A(接触圧力)の関係を示すグラフである。1 is a graph showing the relationship between heat transfer coefficient and P/A (contact pressure) between steel-to-steel, aluminum-to-aluminum, and steel-to-aluminum in contact with each other. アルミニウム合金押出材1の断面において、加熱用金型との接触長さL(L+L)と断面積Sの意味を説明する図である。1 is a diagram illustrating the meaning of a contact length L (L 1 +L 2 ) with a heating die and a cross-sectional area S in a cross section of an aluminum alloy extruded material 1. FIG. 実験1の温度履歴測定用試験材を500℃に設定された空気炉に挿入したときに得られた前記試験材の温度履歴である。It is the temperature history of the test material obtained when the test material for temperature history measurement of Experiment 1 was inserted into the air furnace set to 500 degreeC. アルミニウム合金押出材の塑性加工時の温度と割れ発生状況の関係を示す図である。FIG. 3 is a diagram showing the relationship between the temperature and the occurrence of cracks during plastic working of an aluminum alloy extruded material. 実験2に使用した7000系アルミニウム合金押出材の断面模式図(13A)、塑性変形後の側面模式図(13B)、及び図13BのI-I、II-II、III-IIIの各断面模式図(13C)である。Cross-sectional schematic diagram (13A) of the 7000 series aluminum alloy extruded material used in Experiment 2, side schematic diagram (13B) after plastic deformation, and cross-sectional schematic diagrams of II, II-II, and III-III in FIG. 13B (13C). 加熱用金型で挟んだアルミニウム合金押出材の温度履歴を示す図である。FIG. 4 is a diagram showing the temperature history of an aluminum alloy extruded material sandwiched between heating dies. 昇温時における熱伝達率と目標温度に到達するまでの時間の関係を示す図である。FIG. 5 is a diagram showing the relationship between the heat transfer coefficient during temperature rise and the time required to reach the target temperature. 昇温時におけるアルミニウム合金押出材の断面積/接触長さ(S/L)と、アルミニウム合金押出材が目標温度に到達するまでの時間の関係を示す図である。FIG. 4 is a diagram showing the relationship between the cross-sectional area/contact length (S/L) of the aluminum alloy extruded material during temperature rise and the time required for the aluminum alloy extruded material to reach the target temperature. 昇温時におけるアルミニウム合金押出材の温度と加熱時間の関係を示す図である。FIG. 4 is a diagram showing the relationship between the temperature of the aluminum alloy extruded material and the heating time when the temperature is raised.

以下、本発明に係るアルミニウム合金製部材の製造方法について、より具体的に説明する。この製造方法は、図1に示すように、T1調質のアルミニウム合金押出材を製造する工程(P1)、押出材を所定長さに切断し、矯正する工程(P2)、押出材を150~300℃の温度範囲に昇温する工程(P3)、前記温度範囲で押出材を塑性加工する工程(P4)、押出材を冷却する工程(P5)、及び人工時効処理を行う工程(P6)の5つの工程からなる。 Hereinafter, the method for manufacturing an aluminum alloy member according to the present invention will be described more specifically. As shown in FIG. 1, this manufacturing method comprises a step (P1) of producing a T1 tempered aluminum alloy extruded material, a step (P2) of cutting the extruded material to a predetermined length and correcting it, and extruding the extruded material from 150 to A step of raising the temperature to a temperature range of 300 ° C. (P3), a step of plastic working the extruded material in the temperature range (P4), a step of cooling the extruded material (P5), and a step of performing artificial aging treatment (P6). It consists of 5 steps.

[T1調質のアルミニウム合金押出材]
本発明に係るアルミニウム合金製部材の製造方法では、素材として熱処理型アルミニウム合金押出材のT1調質材が用いられる。主たる熱処理型アルミニウム合金として、6000系(Al-Mg-Si(-Cu)系)又は7000系(Al-Mg-Zn(-Cu)系)のアルミニウム合金を挙げることができる。
本発明が適用される熱処理型アルミニウム合金の組成は特に限定的ではない。しかし、6000系の好ましい組成として、Mg:0.4~1.2質量%、Si:0.3~0.95質量%、Cu:0.01~0.65質量%、Ti:0.001~0.10質量%を含有し、さらに、Mn:0.01~0.3質量%、Cr:0.01~0.3質量%、Zr:0.01~0.3質量%の1種又は2種以上を含有し、残部Al及び不可避不純物からなる組成を挙げることができる。また、7000系の好ましい組成として、Zn:3.0~8.0質量%、Mg:0.4~2.5質量%、Cu:0.05~2.0質量%、Ti:0.005~0.2質量%を含有し、さらに、Mn:0.01~0.3質量%、Cr:0.01~0.3質量%、Zr:0.01~0.3質量%の1種又は2種以上を含有し、残部Al及び不可避不純物からなる組成を挙げることができる。
本発明においてT1調質材とは、押出加工後に自然時効のみの調質処理をされている材料を意味する。また、本発明において押出材とは、JISH4100に規定された形材の定義に従う押出材、及びJISH4080に規定された管の定義に従う押出材を意味し、中空材と中実材の両方が含まれる。
7000系アルミニウム合金製部材の例として、ドア補強材、バンパー補強材、ルーフ補強材等のエネルギー吸収部品、及びロッカー、サイドメンバー、ピラー、サブフレーム等の自動車骨格部品が挙げられる。
[T1 tempered aluminum alloy extruded material]
In the method for manufacturing an aluminum alloy member according to the present invention, a heat-treated aluminum alloy extruded material with T1 refining is used as the raw material. Main examples of heat treatable aluminum alloys include 6000 series (Al--Mg--Si(--Cu) series) and 7000 series (Al--Mg--Zn(--Cu) series) aluminum alloys.
The composition of the heat treatable aluminum alloy to which the present invention is applied is not particularly limited. However, as a preferred composition of the 6000 series, Mg: 0.4 to 1.2 mass%, Si: 0.3 to 0.95 mass%, Cu: 0.01 to 0.65 mass%, Ti: 0.001 0.10% by mass, and further Mn: 0.01 to 0.3% by mass, Cr: 0.01 to 0.3% by mass, Zr: 0.01 to 0.3% by mass. Alternatively, a composition containing two or more kinds and the balance being Al and unavoidable impurities can be mentioned. In addition, as a preferred composition of the 7000 series, Zn: 3.0 to 8.0% by mass, Mg: 0.4 to 2.5% by mass, Cu: 0.05 to 2.0% by mass, Ti: 0.005 0.2% by mass, and further Mn: 0.01 to 0.3% by mass, Cr: 0.01 to 0.3% by mass, Zr: 0.01 to 0.3% by mass. Alternatively, a composition containing two or more kinds and the balance being Al and unavoidable impurities can be mentioned.
In the present invention, the T1 tempered material means a material that has undergone a tempering treatment of only natural aging after extrusion. In the present invention, the extruded material means an extruded material according to the definition of a shape defined in JISH4100, and an extruded material according to the definition of a pipe defined in JISH4080, and includes both hollow materials and solid materials. .
Examples of 7000 series aluminum alloy members include energy absorbing parts such as door reinforcements, bumper reinforcements and roof reinforcements, and automotive frame parts such as rockers, side members, pillars and subframes.

[昇温工程]
昇温工程では、図2に示すように、アルミニウム合金押出材1を加熱された加熱用金型2,3で上下から挟み、断面全体を所定の温度範囲(150~300℃)内の目標温度に昇温する。この例では、アルミニウム合金押出材1は、断面の輪郭が矩形で、加熱用金型2,3が接触する一対のフランジ4,5と、それらを接続する3つのウエブ6,7,8からなり、用途としてバンパー補強材を想定している。加熱用金型2,3の前面は平面で、前記フランジ4,5の全幅に接触している。
昇温過程において、アルミニウム合金押出材の断面には、加熱用金型の近傍箇所(高温部a)から加熱用金型から離れた箇所(低温部b)にかけて温度勾配ができる。目標温度を例えばt~t(℃)の範囲と設定したとき、前記低温部bの温度が下限値t以上となり、前記高温部aの温度が上限値tを超過しないように、言い換えれば、断面全体がt~tの範囲内の温度になるように、アルミニウム合金押出材1を加熱する必要がある。t,tは、t≧150℃、t≦300℃、t≦tの範囲内で適宜選択される。一方、加熱用金型2,3の温度は、200~350℃の範囲内で、前記目標温度の下限値tより高い温度(好ましくは50~75℃高い温度)に設定する。これにより、アルミニウム合金押出材1の断面全体を、大きい昇温速度で、前記目標温度(t~t)に昇温することができる。
[Temperature rising process]
In the temperature raising step, as shown in FIG. 2, the aluminum alloy extruded material 1 is sandwiched between heated heating dies 2 and 3 from above and below, and the entire cross section is heated to a target temperature within a predetermined temperature range (150 to 300 ° C.). The temperature rises to In this example, the aluminum alloy extruded material 1 has a rectangular cross-sectional contour, and consists of a pair of flanges 4, 5 with which the heating dies 2, 3 are in contact, and three webs 6, 7, 8 connecting them. , assuming use as a bumper reinforcement. The front surfaces of the heating molds 2 and 3 are flat and are in contact with the full width of the flanges 4 and 5 .
During the temperature rising process, a temperature gradient is generated in the cross section of the aluminum alloy extruded material from a portion near the heating mold (high temperature portion a) to a portion away from the heating mold (low temperature portion b). When the target temperature is set in the range of t 1 to t 2 (° C.), for example, the temperature of the low temperature part b becomes equal to or higher than the lower limit t 1 and the temperature of the high temperature part a does not exceed the upper limit t 2 . In other words, it is necessary to heat the aluminum alloy extruded material 1 so that the entire cross section has a temperature within the range of t 1 to t 2 . t 1 and t 2 are appropriately selected within the ranges of t 1 ≧150° C., t 2 ≦300° C., and t 1 ≦t 2 . On the other hand, the temperature of the heating molds 2 and 3 is set to a temperature within the range of 200 to 350° C. and higher than the lower limit value t 1 of the target temperature (preferably a temperature higher by 50 to 75° C.). As a result, the entire cross section of the aluminum alloy extruded material 1 can be heated to the target temperature (t 1 to t 2 ) at a high heating rate.

図3~8は、種々の異なる断面形状を有するアルミニウム合金押出材を、加熱用金型で上下から挟んで昇温するときの断面図である。
図3では、アルミニウム合金押出材1は、加熱用金型2,3に接する一対のフランジ4,5と、それらと接続する3つのウエブからなる。金型2が接触するフランジ4は中央部で屈曲し、金型2の前面には対応する傾斜部が形成され、金型2はフランジ4の全幅に接触している。金型3の前面は平面で、フランジ5の全幅に接触している。
図4では、アルミニウム合金押出材1は、略5角形の輪郭を有する中空部11と中空部11に接続する突出フランジ12からなり、中空部11は互いに平行な面11a,11bを有する。加熱用金型2,3の前面は平面で、面11a,11bの全幅に接触している。
3 to 8 are cross-sectional views of aluminum alloy extruded materials having various different cross-sectional shapes, sandwiched between heating dies from above and below and heated.
In FIG. 3, an aluminum alloy extruded material 1 consists of a pair of flanges 4, 5 in contact with heating dies 2, 3 and three webs connecting them. The flange 4 with which the die 2 contacts is bent at the center and a corresponding inclined portion is formed on the front face of the die 2 so that the die 2 contacts the entire width of the flange 4 . The front surface of the mold 3 is flat and contacts the full width of the flange 5 .
In FIG. 4, the aluminum alloy extruded material 1 comprises a hollow portion 11 having a substantially pentagonal profile and a protruding flange 12 connected to the hollow portion 11. The hollow portion 11 has surfaces 11a and 11b parallel to each other. The front surfaces of the heating molds 2 and 3 are flat and are in contact with the entire width of the surfaces 11a and 11b.

図5では、アルミニウム合金押出材1は、一対のフランジ4,5と、それらと接続するウエブ6,7,8,9、及び突出フランジ12,13からなり、フランジ4及び突出フランジ12の外側面が一平面をなす。加熱用金型2,3の前面は平面で、金型2はフランジ4と突出フランジ12の全幅に接触し、金型3はフランジ5の全幅に接触している。
図6では、アルミニウム合金押出材1は円形管であり、加熱用金型2,3の前面に断面が円弧状の窪みが形成され、前記窪みにアルミニウム合金押出材1の外周の一部が接触している。
5, the aluminum alloy extruded material 1 consists of a pair of flanges 4, 5, webs 6, 7, 8, 9 connecting them, and projecting flanges 12, 13, and the outer surfaces of the flanges 4 and projecting flanges 12 forms a plane. The front surfaces of the heating molds 2 and 3 are flat, the mold 2 is in contact with the entire width of the flange 4 and the projecting flange 12 , and the mold 3 is in contact with the entire width of the flange 5 .
In FIG. 6, the aluminum alloy extruded material 1 is a circular tube, and a recess having an arc-shaped cross section is formed on the front surface of the heating molds 2 and 3, and a part of the outer periphery of the aluminum alloy extruded material 1 contacts the recess. are doing.

図7では、アルミニウム合金押出材1は、一対のフランジ4,5と、それらを接続するウエブ6,7からなり、加熱用金型2,3の前面は平面で、フランジ4,5の全幅に接触している。用途としてドアビームを想定している。
図8では、アルミニウム合金押出材1は、略6角形の輪郭を有する中空部14と、中空部14内に形成された2つのクロスするリブ15,16と,中空部14に接続する突出フランジ17,18からなる。加熱用金型2,3の前面に溝状の窪みが形成され、前記窪みにアルミニウム合金押出材1の中空部14が接触し、加熱用金型2,3の前面の平坦部に突出フランジ17,18が接触している。この加熱用金型2,3は、前面が平面のみからなる金型を使用する場合に比べて、アルミニウム合金押出材1との接触面積が大きい。
In FIG. 7, the aluminum alloy extruded material 1 consists of a pair of flanges 4, 5 and webs 6, 7 connecting them. in contact. It is assumed that it will be used as a door beam.
8, the aluminum alloy extruded material 1 includes a hollow portion 14 having a substantially hexagonal profile, two crossing ribs 15 and 16 formed in the hollow portion 14, and a protruding flange 17 connected to the hollow portion 14. , 18. A groove-like recess is formed in the front surface of the heating molds 2 and 3, the hollow portion 14 of the aluminum alloy extruded material 1 contacts the recess, and a protruding flange 17 is formed in the flat portion of the front surface of the heating molds 2 and 3. , 18 are in contact. The heating dies 2 and 3 have a larger contact area with the aluminum alloy extruded material 1 than when a die having only a flat front surface is used.

なお、昇温時、加熱用金型2,3からアルミニウム合金押出材1に対し荷重を負荷してもよい。この荷重が大きいほど、金型2,3とアルミニウム合金押出材1の間の熱伝達率が大きく、アルミニウム合金押出材1の昇温速度が大きい。後述する実施例で示すように、平均熱伝達率が1500Wm-2-1以上であれば、アルミニウム合金押出材1を比較的短時間で前記温度範囲(150~300℃)内の温度に昇温することができる。加熱用金型2,3が鋼からなる場合、この平均熱伝達率を実現するには、加熱用金型2,3からアルミニウム合金押出材1に負荷される荷重をP(単位:N)とし、アルミニウム合金押出材1と加熱用金型2,3との接触箇所の加圧方向への投影面積をA(単位:m)としたとき、上下の接触箇所においてそれぞれP/A≧0.07MPaの関係を満たすことが好ましい。なお、加圧方向が上下方向の場合、前記投影面積は水平投影面積である。 It should be noted that a load may be applied to the aluminum alloy extruded material 1 from the heating dies 2 and 3 when the temperature is raised. The greater the load, the greater the heat transfer coefficient between the dies 2 and 3 and the aluminum alloy extruded material 1, and the greater the temperature rise rate of the aluminum alloy extruded material 1. As shown in Examples described later, if the average heat transfer coefficient is 1500 Wm -2 K -1 or more, the aluminum alloy extruded material 1 can be raised to a temperature within the above temperature range (150 to 300 ° C.) in a relatively short time. can be warmed. When the heating dies 2 and 3 are made of steel, in order to achieve this average heat transfer coefficient, the load applied from the heating dies 2 and 3 to the aluminum alloy extruded material 1 is defined as P (unit: N). , where A (unit: m 2 ) is the projected area in the pressurizing direction of the contact points between the aluminum alloy extruded material 1 and the heating dies 2 and 3, P/A≧0. It is preferable to satisfy the relationship of 07 MPa. In addition, when the pressing direction is the vertical direction, the projected area is the horizontal projected area.

図9に、アルミニウム同士、ステンレス鋼同士、及びアルミニウムと鋼が接触したときの接触圧力と熱伝達率の関係(推定値)を示す。アルミニウム同士及びステンレス鋼同士の接触圧力と熱伝達率の関係は、ソリッドワークスジャパン株式会社のオンラインヘルプの2012年版資料(URL:http://help.solidworks.com/2012/japanese/SolidWorks/cworks/Thermal_Contact_Resistance.htm)の第3ページの表に記載されたデータに基づく。同データによれば、アルミニウム同士が接触したときの熱抵抗(熱伝達率の逆数)は、接触圧力が0.1MPaのとき1.5~5.0×10-4KW-1、接触圧力が10MPaのとき0.2~0.4×10-4KW-1である。熱抵抗の値の最大値と最小値の相乗平均を各接触圧力ごとに求め、次いでその逆数(熱伝達率)を求め、図9中に◇印でプロットした。ステンレス鋼同士が接触したときの熱伝達率も同様にして求め、図9中に□印でプロットした。さらに、アルミニウム同士が接触したときの熱伝達率の値とステンレス鋼同士が接触したときの熱伝達率の値の相乗平均を各接触圧力ごとに求め、得られた熱伝達率の値を、当該接触圧力で接触したアルミニウムと鋼の間の熱伝達率と推定し、図9中に△印でプロットした。また、同一印の2点(◇と◇、□と□、△と△)を通る図形(直線)を描いた。図9の図形の右側に、平均熱伝達率をy、P/Aをxとしたときの各図形の方程式が記載されている。 FIG. 9 shows the relationship (estimated value) between contact pressure and heat transfer coefficient when aluminum contacts, stainless steel contacts, and aluminum contacts steel. The relationship between contact pressure and heat transfer coefficient between aluminum and stainless steel is based on SolidWorks Japan Co., Ltd. online help 2012 material (URL: http://help.solidworks.com/2012/japanese/SolidWorks/cworks/ Based on data in table on page 3 of Thermal_Contact_Resistance.htm. According to the same data, the thermal resistance (reciprocal of heat transfer coefficient) when aluminum is in contact with each other is 1.5 to 5.0×10 −4 m 2 KW −1 when the contact pressure is 0.1 MPa. It is 0.2 to 0.4×10 −4 m 2 KW −1 when the pressure is 10 MPa. The geometric mean of the maximum and minimum values of thermal resistance was obtained for each contact pressure, and then its reciprocal (heat transfer coefficient) was obtained and plotted with ⋄ marks in FIG. The heat transfer coefficient when the stainless steels were in contact with each other was also determined in the same manner and plotted with □ in FIG. Furthermore, the geometric mean of the heat transfer coefficient when aluminum contacts each other and the heat transfer coefficient when stainless steel contacts each other is obtained for each contact pressure. The heat transfer coefficient between aluminum and steel in contact with the contact pressure was estimated and plotted with Δ marks in FIG. In addition, a figure (straight line) passing through two points of the same mark (◇ and ◇, □ and □, △ and △) was drawn. On the right side of the figure in FIG. 9, the equation of each figure is described when the average heat transfer coefficient is y and P/A is x.

図9のアルミニウムと鋼の間の熱伝達率のグラフから、アルミニウムと鋼が接触したとき1500Wm-2-1以上の熱伝達率を得るには、0.07MPa以上の平均圧力(P/A)を付加する必要があることが分かる。
なお、加熱用金型とアルミニウム合金押出材の間の熱伝達率は、金型の材質によって大きく変化し、基本的に、金型の熱伝導率が大きいほど、熱伝達率が高くなる。従って、良導体である銅(純銅又は銅合金)又はアルミニウム(純アルミニウム又はアルミニウム合金)製の加熱用金型を用いる場合、同じP/Aであれば、鋼製の加熱用金型に比べ、数倍高い熱伝達率及び昇温速度を実現できる。
From the graph of the heat transfer coefficient between aluminum and steel in FIG . ) should be added.
The heat transfer coefficient between the heating mold and the aluminum alloy extruded material varies greatly depending on the material of the mold. Basically, the higher the heat conductivity of the mold, the higher the heat transfer coefficient. Therefore, when using a heating mold made of copper (pure copper or copper alloy) or aluminum (pure aluminum or aluminum alloy), which are good conductors, if the P/A is the same, compared to a steel heating mold, the number of Double higher heat transfer rate and heating rate can be achieved.

昇温時、アルミニウム合金押出材1と加熱用金型2,3との接触面積が大きいほど昇温速度が大きく、逆に、アルミニウム合金押出材1の断面積が大きいほど昇温速度が低い。アルミニウム合金押出材1の断面において(図10参照)、アルミニウム合金押出材1と加熱用金型2,3の上下の接触箇所における接触長さの総和をL(=L+L)(単位:mm)とし、アルミニウム合金押出材1の断面積をS(単位mm)としたとき、加熱用金型2,3が鋼製の場合、後述する実施例で示すようにS/L≦8mmの関係を満たすことが好ましい。この関係を満たすとき、アルミニウム合金押出材1を比較的短時間で前記温度範囲(150~300℃)内の温度に昇温することができる。 During temperature rise, the larger the contact area between the aluminum alloy extruded material 1 and the heating dies 2 and 3, the higher the temperature rising rate. In the cross section of the aluminum alloy extruded material 1 (see FIG. 10), the total contact length at the upper and lower contact points between the aluminum alloy extruded material 1 and the heating molds 2 and 3 is L (=L 1 +L 2 ) (unit: mm), and the cross-sectional area of the aluminum alloy extruded material 1 is S (unit: mm 2 ). It is preferable to satisfy the relationship. When this relationship is satisfied, the aluminum alloy extruded material 1 can be heated to a temperature within the above temperature range (150 to 300° C.) in a relatively short period of time.

[塑性加工]
本発明では、アルミニウム合金押出材を室温から150~300℃の範囲内の温度に昇温した後、前記温度範囲内で塑性加工(温間加工)を施す。塑性加工には、一般的に、曲げ加工、変断面加工及び剪断加工が含まれる。
昇温工程でアルミニウム合金押出材を昇温させる部分は、少なくとも塑性加工が行われる箇所が含まれていればよく、アルミニウム合金押出材全体(全長)でも、長手方向の一部(例えば塑性加工が行われる箇所及びその近傍)でもよい。
加熱用金型が鋼製であり、塑性加工が単純な変断面加工(例えば均等な潰し加工)であれば、アルミニウム合金押出材を加熱用金型により昇温後、そのまま当該加熱用金型で塑性加工を行うことができる。加熱用金型が鋼製であっても、塑性加工が単純な変断面加工でない場合、あるいは曲げ加工や剪断加工の場合は、昇温したアルミニウム合金押出材を加熱用金型から取出し、別の金型(塑性加工用金型)で塑性加工を行う必要がある。また、加熱用金型が銅製又はアルミニウム製の場合も、塑性加工は別の金型(塑性加工用金型)で行う必要がある。塑性加工用金型についても、必要に応じて加熱しておき(例えば150~300℃の範囲内)、塑性加工時のアルミニウム合金押出材の温度低下を防止又は抑制することもできる。
[Plastic processing]
In the present invention, the aluminum alloy extruded material is heated from room temperature to a temperature within the range of 150 to 300° C., and then subjected to plastic working (warm working) within the temperature range. Plastic processing generally includes bending, cross-section processing and shearing.
The part where the temperature of the aluminum alloy extruded material is raised in the temperature raising process should include at least a part where plastic working is performed. location where it is performed and its vicinity).
If the heating die is made of steel and the plastic working is simple variable cross-section processing (e.g., uniform crushing), the aluminum alloy extruded material is heated by the heating die and then directly heated in the heating die. Plastic working can be performed. Even if the heating die is made of steel, if the plastic working is not simple cross-section processing, or if bending or shearing, the heated aluminum alloy extruded material is removed from the heating die and another It is necessary to perform plastic working with a die (die for plastic working). Also, when the heating mold is made of copper or aluminum, it is necessary to perform plastic working with another mold (plastic working mold). The mold for plastic working can also be heated as necessary (within a range of, for example, 150 to 300° C.) to prevent or suppress the temperature drop of the aluminum alloy extruded material during plastic working.

アルミニウム合金押出材に対する塑性加工を上記温度範囲内で行うことにより、特に7000系アルミニウム合金押出材において、塑性加工時の割れの発生を抑え、塑性加工により製品(アルミニウム合金製部材)に生じる引張残留応力を低減することができる。しかし、塑性加工時の温度が150℃未満では、割れの発生を防止する効果が十分でなく、割れの発生がなかったとしても、塑性加工により製品に生じる引張残留応力を十分低減することができない。一方、昇温時の到達温度及び塑性加工時の温度が300℃を超えると、人工時効処理後の製品(アルミニウム合金製部材)の強度が十分向上しない。なお、人工時効処理後の製品強度を向上させるには、塑性加工後の冷却は、3℃/秒以上の冷却速度で行うことが好ましい。 By performing plastic working on the aluminum alloy extruded material within the above temperature range, especially in the 7000 series aluminum alloy extruded material, the occurrence of cracks during plastic working is suppressed, and the tensile residual generated in the product (aluminum alloy member) due to plastic working. Stress can be reduced. However, if the temperature during plastic working is less than 150°C, the effect of preventing cracking is not sufficient, and even if cracking does not occur, the tensile residual stress generated in the product by plastic working cannot be sufficiently reduced. . On the other hand, if the temperature reached during heating and the temperature during plastic working exceed 300° C., the strength of the product (aluminum alloy member) after the artificial aging treatment is not sufficiently improved. In order to improve the product strength after the artificial aging treatment, the cooling after the plastic working is preferably performed at a cooling rate of 3° C./second or more.

(実験1)
アルミニウム合金押出材について、塑性加工時の温度と割れの発生の関係を確認する実験を行った。
T1調質の7000系アルミニウム合金押出材(株式会社神戸製鋼所のアルミニウム合金規格Z6W)を室温から昇温し、到達温度を種々変化させ、当該到達温度にて塑性加工(温間加工)を施し、割れが発生しない温度条件を調査した。前記アルミニウム合金押出材は、断面が高さ約50mm×幅約150mmの矩形輪郭を有し、2個の中空部を有し、肉厚が2~4mmで、長さ約150mmの一対のフランジと、前記一対のフランジに等間隔で接続する3つの長さ約50mmのウエブからなる。このアルミニウム合金押出材は、例えばバンパー補強材の素材として用いられる。
(Experiment 1)
An experiment was conducted to confirm the relationship between the temperature during plastic working and the occurrence of cracks in extruded aluminum alloys.
A T1 tempered 7000 series aluminum alloy extruded material (Kobe Steel Co., Ltd. aluminum alloy standard Z6W) is heated from room temperature, the ultimate temperature is varied, and plastic working (warm working) is performed at the reached temperature. , the temperature conditions under which cracks do not occur were investigated. The aluminum alloy extruded material has a rectangular profile with a cross section of about 50 mm in height x about 150 mm in width, has two hollow portions, has a wall thickness of 2 to 4 mm, and a pair of flanges with a length of about 150 mm. , consisting of three webs approximately 50 mm in length, equidistantly connected to said pair of flanges. This aluminum alloy extruded material is used, for example, as a material for reinforcing bumpers.

前記押出材を押出方向に対し垂直に一定長さに切断し、温度履歴測定用の試験材と複数個の塑性加工用の試験材を作成した。
前記試験材の昇温は500℃に設定した空気炉で行った。まず、温度履歴測定用の試験材のウエブに熱電対を添付し、前記空気炉に装入して、前記試験材の温度履歴を測定した。その結果を図11に示す。前記温度履歴から、前記試験材が前記空気炉に装入されてから種々の温度(到達温度)に到達するまでの時間(到達時間)を求めた。なお、図11に示されるように、350℃までの昇温速度は約5℃/sであった。
次に塑性加工用の試験材を1個ずつ前記空気炉に装入し、所定の到達温度に到達後(すなわち、所定の到達時間経過後すぐ)、前記試験材を前記空気炉から取出し、直ちに塑性加工(温間加工)を施した。塑性加工は通常のプレス機を用い、上下平行な金型を前記到達温度に保持し、前記試験材の断面高さが20mmになるまで潰し加工を行った。
The extruded material was cut perpendicularly to the extrusion direction into a fixed length to prepare a test material for temperature history measurement and a plurality of test materials for plastic working.
The temperature of the test material was raised in an air furnace set at 500°C. First, a thermocouple was attached to the web of the test material for temperature history measurement, and the web was placed in the air furnace to measure the temperature history of the test material. The results are shown in FIG. From the temperature history, the time (reaching time) from when the test material was charged into the air furnace until it reached various temperatures (reaching temperatures) was determined. Incidentally, as shown in FIG. 11, the rate of temperature increase up to 350° C. was about 5° C./s.
Next, the test material for plastic working is charged into the air furnace one by one, and after reaching a predetermined temperature (that is, immediately after a predetermined time has elapsed), the test material is removed from the air furnace, and immediately Plastic working (warm working) was performed. For the plastic working, an ordinary pressing machine was used, the upper and lower parallel dies were kept at the above-mentioned attained temperature, and the test material was crushed until the cross-sectional height reached 20 mm.

潰し加工された箇所では、ウエブは大きく曲げ変形し、前記到達温度によっては、ウエブの曲げ外側に、曲げの稜線と平行な割れや肌荒れの発生が確認された。前記到達温度とウエブの曲げ外側の外観品質の関係をプロット(×、△、○)したものを図12に示す。図12において、×は明確な割れの発生、△は軽微な亀裂の発生、○は肌荒れのみの発生を意味する。
図12に示すように、塑性加工時の温度が150℃以上のとき、塑性加工(潰し加工)で割れが生じていない。
At the crushed portions, the web was greatly bent and deformed, and depending on the temperature reached, cracks parallel to the ridge line of the bend and surface roughness were observed on the outer side of the bend. FIG. 12 shows a plot (x, .DELTA., .smallcircle.) of the relationship between the attained temperature and the external appearance quality of the bent outside of the web. In FIG. 12, x means the generation of clear cracks, Δ means the generation of slight cracks, and ◯ means the generation of rough surface only.
As shown in FIG. 12, when the temperature during plastic working is 150° C. or higher, cracks do not occur in plastic working (crushing working).

(実験2)
アルミニウム合金押出材について、塑性加工時の温度と引張残留応力の関係を確認する実験を行った。
T1調質の7000系アルミニウム合金押出材に対し、室温を超える種々の温度で塑性加工を施し、塑性加工温度と引張残留応力の関係を調査した。この7000系アルミニウム合金の組成は、実施例1のものと同じである。前記押出形材は、例えばドアビームの素材として用いられるもので、図13Aに示すように、互いに平行な一対のフランジと前記一対のフランジを連結する一対のウエブからなり、高さが35mmで、前記フランジとウエブは互いに垂直である。一対のフランジのうち一方のフランジ(薄肉側フランジ)は、肉厚が2.2mmで幅が約34mmであり、他方のフランジ(厚肉側フランジ)は、肉厚が5.6mmで、幅が40mmである。また、前記ウエブは共に肉厚が2mmで、長さが27.2mmである。
(Experiment 2)
Experiments were conducted to confirm the relationship between temperature and tensile residual stress during plastic working of aluminum alloy extruded materials.
A T1 tempered 7000 series aluminum alloy extruded material was subjected to plastic working at various temperatures exceeding room temperature, and the relationship between plastic working temperature and tensile residual stress was investigated. The composition of this 7000 series aluminum alloy is the same as that of Example 1. The extruded shape is used, for example, as a material for door beams, and as shown in FIG. The flanges and webs are perpendicular to each other. One of the pair of flanges (thin side flange) has a thickness of 2.2 mm and a width of about 34 mm, and the other flange (thick side flange) has a thickness of 5.6 mm and a width of 40 mm. Both webs have a thickness of 2 mm and a length of 27.2 mm.

前記押出材を押出方向に対し垂直に一定長さに切断し、厚肉側フランジの突出部を切除し、複数個の試験材を作成した。
前記試験材を500℃に設定した空気炉に挿入して加熱し、500℃に到達後、空気炉から取出し、接触式温度計で温度を管理しつつ冷却し、各試験温度(300℃、250℃、200℃、150℃、50℃)に達した時点で、直ちに塑性加工を行った。塑性加工は通常のプレス機を用い、上下平行な金型を前記試験温度に保持し、前記試験材の先端から長さ200mmまでを、断面高さが25mmになるまで潰し加工を行った。なお、試験材は各試験温度ごとに2個ずつとし、それぞれに同じ潰し加工を行った。
潰し加工後の試験材は、直ちに室温まで強制空冷した。
The extruded material was cut perpendicularly to the direction of extrusion to a given length, and the projecting portion of the thick side flange was cut off to prepare a plurality of test materials.
The test material is inserted into an air furnace set to 500 ° C. and heated, and after reaching 500 ° C., it is removed from the air furnace, cooled while controlling the temperature with a contact thermometer, and each test temperature (300 ° C., 250 °C, 200°C, 150°C, and 50°C), plastic working was immediately performed. For plastic working, a normal press was used, and vertically parallel molds were held at the test temperature, and the test material was crushed from the tip to a length of 200 mm until the cross-sectional height reached 25 mm. Two test materials were used for each test temperature, and the same crushing process was performed on each test material.
After crushing, the test material was immediately forcibly cooled to room temperature.

潰し加工された箇所では、ウエブは大きく曲げ変形している。
潰し加工後の試験材(時効処理前)を用い、潰し加工によりウエブの曲げ外側に発生した残留応力を、X線応力測定装置MSF-3M(リガク株式会社製)を用いて測定した。測定箇所は、潰し加工された領域(断面高さ25mmの領域)と潰し加工されていない領域(断面高さ35mmの領域)の間の領域における厚肉側フランジ近傍位置(測定箇所A)と、潰し加工された領域における厚肉側フランジ近傍位置(測定箇所B)とした。測定条件及び解析条件を表1に示し、測定箇所A,Bを図13B、13Cに○印で示す。測定箇所Aは略平坦であり、測定箇所Bは凹部である。
塑性加工温度と測定結果を表2に示す。表2に示す引張残留応力の値は2個の試験材の平均値である。表2において、-の付与された数値は圧縮残留応力である。
The web is greatly bent and deformed at the crushed portions.
Using the crushed test material (before aging treatment), the residual stress generated on the bending outer side of the web due to crushing was measured using an X-ray stress measuring device MSF-3M (manufactured by Rigaku Corporation). The measurement points are the position near the thick side flange (measurement point A) in the area between the crushed area (area with a cross-sectional height of 25 mm) and the area without crushing (area with a cross-sectional height of 35 mm), A position near the thick side flange (measurement point B) in the crushed area was used. Measurement conditions and analysis conditions are shown in Table 1, and measurement points A and B are indicated by ◯ marks in FIGS. 13B and 13C. The measurement point A is substantially flat, and the measurement point B is a recess.
Table 2 shows the plastic working temperature and the measurement results. The values of tensile residual stress shown in Table 2 are average values of two test materials. In Table 2, numerical values given with - are compressive residual stresses.

Figure 0007316951000001
Figure 0007316951000001

Figure 0007316951000002
Figure 0007316951000002

表2に示すように、塑性加工温度がR.T.に近い50℃のとき、測定箇所A,Bの両方において高い引張残留応力が発生するが、塑性加工温度が150℃以上では、引張残留応力が50℃のときの60%以下に低減される。また、塑性加工温度が150℃を超えると引張残留応力の低下が顕著であった。なお、塑性加工温度が150℃以上のとき、ウエブに発生した引張残留応力の大きさは十分に低く、その値が人工時効処理によって大きく変化しないことが確認された。 As shown in Table 2, when the plastic working temperature is R.M. T. At 50°C, which is close to , high tensile residual stress is generated at both measurement points A and B, but at a plastic working temperature of 150°C or higher, the tensile residual stress is reduced to 60% or less of that at 50°C. Moreover, when the plastic working temperature exceeded 150°C, the tensile residual stress decreased significantly. It has been confirmed that when the plastic working temperature is 150° C. or higher, the magnitude of the tensile residual stress generated in the web is sufficiently low, and the value does not change significantly due to the artificial aging treatment.

(実験3)
アルミニウム合金押出材について、塑性加工時の温度と時効処理後の0.2%耐力の関係を確認する実験を行った。
実験1と同じT1調質の7000系アルミニウム合金押出材を用い、そのフランジから長手方向が押出平行方向となるようにJIS13B号試験片(No.1~23)を作成した。この試験片の厚さは3mmである。このうちNo.1~20の試験片を室温から昇温し、到達温度を種々変化させ、当該到達温度にて所定時間保持し、続いて室温まで種々の冷却速度で冷却した後、時効処理を施し、機械的性質を測定した。
(Experiment 3)
An experiment was conducted to confirm the relationship between the temperature during plastic working and the 0.2% yield strength after aging treatment for aluminum alloy extruded materials.
Using the same T1 tempered 7000 series aluminum alloy extruded material as in Experiment 1, JIS 13B test pieces (No. 1 to 23) were prepared so that the longitudinal direction from the flange was parallel to the extruded direction. The thickness of this test piece is 3 mm. Of these, No. 1 to 20 test pieces were heated from room temperature, the temperature was varied, held at the temperature for a predetermined time, and then cooled to room temperature at various cooling rates. properties were measured.

No.1~20の試験片の到達温度は150℃、200℃、250℃、275℃のいずれかとし、前記到達温度への昇温は、前記到達温度に保持したオイルバス(150℃、200℃)又は硝石炉(250℃、275℃)で行った。前記到達温度における保持時間は30s、60s、90s、150s、180sのいずれかとし、冷却方法は自然空冷又は水冷とした。前記到達温度から140℃までの冷却速度は、自然空冷の場合約1℃/s、水冷の場合約100℃/sであった。なお、各試験片の温度履歴は、各試験片にT熱電対をカプトン(登録商標)テープで添付して測定した。
また、No.21~23の試験片を再加熱して溶体化処理した後(480℃で3600s保持後、ファン空冷)、No.1~20の試験片と同じ条件で時効処理し、機械的性質を測定した。
No. The ultimate temperature of the test pieces 1 to 20 is set to either 150 ° C., 200 ° C., 250 ° C., or 275 ° C., and the temperature is raised to the target temperature by an oil bath (150 ° C., 200 ° C.) held at the target temperature. Alternatively, it was carried out in a saltpeter furnace (250°C, 275°C). The holding time at the attained temperature was set to 30 s, 60 s, 90 s, 150 s, or 180 s, and the cooling method was natural air cooling or water cooling. The cooling rate from the attained temperature to 140° C. was about 1° C./s for natural air cooling and about 100° C./s for water cooling. The temperature history of each test piece was measured by attaching a T thermocouple to each test piece with Kapton (registered trademark) tape.
Also, No. After the test pieces No. 21 to 23 were reheated and subjected to solution treatment (holding at 480° C. for 3600 s, cooling with a fan), no. The specimens were aged under the same conditions as the specimens Nos. 1 to 20, and the mechanical properties were measured.

時効処理後の試験片(No.1~23)を用い、JISZ2241(2011)に準拠して引張試験を実施し、機械的性質(0.2%耐力、引張強さ、破断伸び)を測定した。
表3に、No.1~20の試験片の到達温度、到達温度での保持時間、冷却方法、引張強さ、0.2%耐力及び破断伸びの値と、No.21~23の試験片の溶体化処理条件(保持温度、保持時間)、0.2%耐力、引張強さ及び破断伸びを示す。
さらに、溶体化処理したNo.21~23の試験片の0.2%耐力の平均値を基準値(YS)とし、前記基準値に対するNo.1~20の各試験片の0.2%耐力値(YS)の割合((YS/YS)×100)を求め、表3に記載した。
A tensile test was performed in accordance with JISZ2241 (2011) using test pieces (No. 1 to 23) after aging treatment, and mechanical properties (0.2% proof stress, tensile strength, elongation at break) were measured. .
In Table 3, No. 1 to 20 test pieces reached temperature, holding time at the reached temperature, cooling method, tensile strength, 0.2% proof stress and breaking elongation values, and No. Solution treatment conditions (holding temperature, holding time), 0.2% yield strength, tensile strength and elongation at break of test pieces No. 21 to 23 are shown.
Furthermore, the solution-treated No. The average value of the 0.2% proof stress of the test pieces Nos. 21 to 23 was taken as the reference value (YS 0 ), and the No. to the reference value. The 0.2% yield strength (YS) ratio ((YS/YS 0 )×100) of each test piece No. 1 to 20 was determined and listed in Table 3.

Figure 0007316951000003
Figure 0007316951000003

表3に示すように、到達温度(塑性加工時の温度を想定)が低く、当該到達温度での保持時間が短い試験片では、溶体化処理した試験片と比較して遜色のないレベルの0.2%耐力が得られている。なお、強度部材では、機械的性質のうち0.2%耐力が最も重要視されている。 As shown in Table 3, the test piece with a low reaching temperature (assuming the temperature during plastic working) and a short holding time at the reaching temperature has a level of 0 that is comparable to that of the solution-treated test piece. .2% proof stress is obtained. Among mechanical properties, 0.2% proof stress is considered to be the most important for strength members.

[人工時効処理]
人工時効処理は、製品(アルミニウム合金製部材)の機械的特性、特に0.2%耐力値を向上させるために行う。人工時効処理の条件は特に限定的ではなく、通常の6000系又は7000系アルミニウム合金で行われている一般的な時効処理条件で行うことができる。又は、一般的な時効処理より高温・長時間の条件で時効処理(過時効処理)を行うことができる。
[Artificial aging treatment]
Artificial aging treatment is performed to improve the mechanical properties of the product (aluminum alloy member), particularly the 0.2% proof stress value. Conditions for artificial aging treatment are not particularly limited, and general aging treatment conditions for ordinary 6000 series or 7000 series aluminum alloys can be used. Alternatively, aging treatment (overaging treatment) can be performed under conditions of higher temperature and longer time than general aging treatment.

加熱用金型の設定温度が高いほどアルミニウム合金押出材の昇温速度を速くすることができ、効率的な昇温が可能となる。しかし、加熱用金型と接している箇所と、加熱用金型から離れた箇所との温度差が大きくなり、アルミニウム合金押出材の断面全体を目標温度(t~t)内に収めることが困難となる。本実施例では、加熱用金型の設定温度の適正範囲を評価するための実験を行った。
図2を参照して説明すると、対象とするアルミニウム合金押出材1は7000系アルミニウム合金からなり、断面の輪郭が矩形で、一対のフランジ及び3つのウエブからなり、幅約150mm、高さ約50mm、断面積約1300mmである。目標温度は、t(下限温度)が200℃、t(上限温度)が250℃とした。加熱用金型2,3は鋼製(炭素鋼S50C)であり、平均圧力(P/A)を0.4MPaとして、上下からアルミニウム合金押出材1を挟んだ。図9に示すように、加熱用金型2,3からアルミニウム合金押出材1に負荷される平均圧力(P/A)が0.4MPaのとき、平均熱伝達率(推定値)は約3000W/m-2-1である。
The higher the set temperature of the heating mold, the faster the rate of temperature rise of the aluminum alloy extruded material, and the more efficient temperature rise becomes possible. However, the temperature difference between the portion in contact with the heating mold and the portion away from the heating mold increases, and the entire cross section of the aluminum alloy extruded material cannot be kept within the target temperature (t 1 to t 2 ). becomes difficult. In this example, an experiment was conducted to evaluate the proper range of the set temperature of the heating mold.
Referring to FIG. 2, the target aluminum alloy extruded material 1 is made of a 7000 series aluminum alloy, has a rectangular cross-sectional profile, is composed of a pair of flanges and three webs, and has a width of about 150 mm and a height of about 50 mm. , with a cross-sectional area of about 1300 mm 2 . The target temperatures were 200°C for t1 (lower limit temperature) and 250°C for t2 (upper limit temperature). The heating dies 2 and 3 are made of steel (carbon steel S50C), and sandwich the aluminum alloy extruded material 1 from above and below with an average pressure (P/A) of 0.4 MPa. As shown in FIG. 9, when the average pressure (P/A) applied to the aluminum alloy extruded material 1 from the heating dies 2 and 3 is 0.4 MPa, the average heat transfer coefficient (estimated value) is about 3000 W/ m −2 K −1 .

温度測定は、側面(ウエブ8)の加熱用金型3の近傍(高温部a)と加熱用金型3から最も離れた箇所(低温部b)にて行った。加熱用金型2,3の温度(表面温度)は、225℃、250℃、275℃、300℃(目標温度の下限値t(200℃)から25℃、50℃、75℃、100℃上)に設定した。アルミニウム合金押出材1を加熱用金型2,3が挟んでからの、高温部a及び低温部bの温度履歴を図14に示す。加熱用金型2,3の温度がt+25℃の場合(図14A)、昇温速度が遅く、60秒経過後も低温部bがt(200℃)に到達しない。一方、加熱用金型2,3の温度がt+100℃の場合(図14D)、昇温速度が非常に速く、目標温度の上限値tを超過するリスクが高い。従って、加熱用金型2,3の設定温度は、目標温度の下限値tより50~75℃上(図14B,14C)程度が好ましい温度条件といえる。 The temperature was measured at the side surface (web 8) near the heating mold 3 (high temperature part a) and at the farthest point from the heating mold 3 (low temperature part b). The temperatures (surface temperatures) of the heating molds 2 and 3 are 225°C, 250°C, 275°C, and 300°C (the lower limit of the target temperature t 1 (200°C) to 25°C, 50°C, 75°C, and 100°C. above). FIG. 14 shows the temperature history of the high-temperature portion a and the low-temperature portion b after the aluminum alloy extruded material 1 was sandwiched between the heating dies 2 and 3 . When the temperature of the heating molds 2 and 3 is t 1 +25° C. (FIG. 14A), the temperature rise rate is slow and the low temperature portion b does not reach t 1 (200° C.) even after 60 seconds. On the other hand, when the temperature of the heating molds 2 and 3 is t 1 +100° C. (FIG. 14D), the rate of temperature increase is extremely high, and the risk of exceeding the upper limit value t 2 of the target temperature is high. Therefore, it can be said that the set temperature of the heating molds 2 and 3 is preferably about 50 to 75° C. higher than the lower limit t 1 of the target temperature (FIGS. 14B and 14C).

加熱用金型によりアルミニウム合金押出材を挟んだときの前記アルミニウム合金押出材の昇温速度は、加熱用金型とアルミニウム合金押出材の接触面積(断面の接触長さ)及び接触界面の熱伝達率、並びに加熱用金型とアルミニウム合金押出材の温度差に比例し、アルミニウム合金押出材の体積(加熱対象部分)に反比例する。アルミニウム合金押出材が目標温度に到達するまでの時間を、熱伝達率をパラメータとし、熱伝導方程式を差分法で離散化し、数値シミュレーションによって推定した。シミュレーションに用いたソフトはExcel(登録商標)のVBA機能である。
対象とするアルミニウム合金押出材は、異なる断面形状(断面A、断面B)を有する2つの7000系アルミニウム合金押出材である。断面Aのアルミニウム合金押出材は、図2に示すように、断面の輪郭が矩形で、一対のフランジ及び3つのウエブからなるものとし、フランジ長さを150mm、断面高さを53mm、断面積を1300mmとした。断面Bのアルミニウム合金押出材は、図7に示すように、1対のフランジとそれらを接続する一対のウエブからなるものとし、フランジ長さを37mm、断面高さを53mm、断面積を410mmとした。
The heating rate of the aluminum alloy extruded material when the aluminum alloy extruded material is sandwiched between the heating molds depends on the contact area (cross-sectional contact length) between the heating mold and the aluminum alloy extruded material and the heat transfer of the contact interface. and the temperature difference between the heating mold and the aluminum alloy extruded material, and inversely proportional to the volume of the aluminum alloy extruded material (part to be heated). The time required for the extruded aluminum alloy material to reach the target temperature was estimated by numerical simulation, using the heat transfer coefficient as a parameter, discretizing the heat conduction equation by the finite difference method. The software used for the simulation is the VBA function of Excel (registered trademark).
The target aluminum alloy extruded materials are two 7000 series aluminum alloy extruded materials having different cross-sectional shapes (cross section A and cross section B). As shown in FIG. 2, the aluminum alloy extruded material of section A has a rectangular cross-sectional profile, and consists of a pair of flanges and three webs, and has a flange length of 150 mm, a cross-sectional height of 53 mm, and a cross-sectional area of 1300 mm 2 . As shown in FIG. 7, the aluminum alloy extruded material of section B consists of a pair of flanges and a pair of webs connecting them, and has a flange length of 37 mm, a cross-sectional height of 53 mm, and a cross-sectional area of 410 mm 2 and

断面A及び断面Bのアルミニウム合金押出材の一対のフランジ部を、図2,7に示すように、300℃(表面温度)に加熱した加熱用金型で挟んだと仮定し、熱伝達率を変えて、最も低温な部位(図2の低温部b参照)が目標温度(250℃)に到達するために必要な時間を試算した。アルミニウム合金押出材と加熱用金型の接触長さL(=L+L)(図10参照)は、断面Aが300mm、断面Bが74mmである。ただし、アルミニウム合金押出材は断面A及び断面Bとも対称断面であることから、簡単のため解析モデルは1/2対称モデルとした。
アルミニウム合金押出材の初期温度は10℃とし、加熱用金型と接していない面は10℃の空気と熱伝達率45Wm-2-1で接触すると仮定し、押出方向の伝熱は考慮せず(2Dモデル)、板厚方向の温度分布は無視できるほど小さいと仮定した。また、アルミニウム合金押出材の密度ρを2790kgm-3、比熱cを900Jkg-1-1、熱伝導率λを160Wm-1-1と置いた。
Assuming that a pair of flange portions of the aluminum alloy extruded material of cross section A and cross section B are sandwiched between heating dies heated to 300 ° C. (surface temperature) as shown in FIGS. Alternatively, the time required for the lowest temperature portion (see low temperature portion b in FIG. 2) to reach the target temperature (250° C.) was calculated. The contact length L (=L 1 +L 2 ) (see FIG. 10) between the aluminum alloy extruded material and the heating mold is 300 mm for cross section A and 74 mm for cross section B. However, since both sections A and B of the aluminum alloy extruded material are symmetrical sections, the analysis model was a 1/2 symmetrical model for the sake of simplicity.
The initial temperature of the aluminum alloy extruded material is 10°C, and the surface not in contact with the heating die is assumed to contact air at 10°C with a heat transfer coefficient of 45 Wm -2 K -1 , and heat transfer in the extrusion direction should be considered. First (2D model), the temperature distribution in the plate thickness direction was assumed to be negligibly small. Further, the density ρ of the aluminum alloy extruded material was set at 2790 kgm −3 , the specific heat c at 900 Jkg −1 K −1 , and the thermal conductivity λ at 160 Wm −1 K −1 .

図15にシミュレーションの結果を示す。図15によれば、熱伝達率が1500Wm-2-1より低いと、アルミニウム合金押出材を目標温度(250℃)に昇温するための時間が急に増加する。従って、アルミニウム合金押出材を短時間(例えば60秒以内(=1時間あたり60本以上の処理能力))で目標温度に昇温するには、概ね1500Wm-2-1以上の熱伝達率が必要である。図9によれば、加熱用金型が鋼製の場合、1500Wm-2-1以上の熱伝達率は、0.07MPa以上の平均圧力(P/A)で得られる。 FIG. 15 shows the simulation results. According to FIG. 15, when the heat transfer coefficient is lower than 1500 Wm −2 K −1 , the time for raising the temperature of the aluminum alloy extruded material to the target temperature (250° C.) increases suddenly. Therefore, in order to raise the temperature of the aluminum alloy extruded material to the target temperature in a short period of time (for example, within 60 seconds (= processing capacity of 60 or more per hour)), a heat transfer coefficient of approximately 1500 Wm -2 K -1 or more is required. is necessary. According to FIG. 9, when the heating mold is made of steel, a heat transfer coefficient of 1500 Wm −2 K −1 or more is obtained at an average pressure (P/A) of 0.07 MPa or more.

加熱用金型によりアルミニウム合金押出材を挟んだときの前記アルミニウム合金押出材の昇温速度は、加熱用金型とアルミニウム合金押出材の接触面積(断面の接触長さ)及び接触界面の熱伝達率、並びに加熱用金型とアルミニウム合金押出材の温度差に比例し、アルミニウム合金押出材の体積(加熱対象部分)に反比例する。つまり、昇温速度に関する形状因子は体積/接触面積となり、結局、断面積/接触長さとなる。アルミニウム合金押出材の断面積/接触長さと、アルミニウム合金押出材が目標温度に到達するまでの時間を測定する実験を行った。 The heating rate of the aluminum alloy extruded material when the aluminum alloy extruded material is sandwiched between the heating molds depends on the contact area (cross-sectional contact length) between the heating mold and the aluminum alloy extruded material and the heat transfer of the contact interface. and the temperature difference between the heating mold and the aluminum alloy extruded material, and inversely proportional to the volume of the aluminum alloy extruded material (part to be heated). That is, the form factor for the rate of temperature increase is volume/contact area, which in turn is cross-sectional area/contact length. An experiment was conducted to measure the cross-sectional area/contact length of the aluminum alloy extruded material and the time required for the aluminum alloy extruded material to reach the target temperature.

実験に使用したアルミニウム合金押出材は、異なる断面形状(断面A、断面B)を有する2つのアルミニウム合金押出材であり、いずれも7000系アルミニウム合金からなる。断面Aのアルミニウム合金押出材(図10参照)は、断面積Sが約1300mm、断面高さが約53mmで、加熱用金型との接触長さL,L(上下フランジ幅)がそれぞれ約150mmである。断面Bのアルミニウム合金押出材(図7参照)は、断面積が約410mm、断面高さが約35mmで、加熱用金型との接触長さL,L(上下フランジ幅)がそれぞれ約37mmである。 The aluminum alloy extruded materials used in the experiment are two aluminum alloy extruded materials having different cross-sectional shapes (cross section A and cross section B), both of which are made of 7000 series aluminum alloy. The aluminum alloy extruded material of cross section A (see FIG. 10) has a cross-sectional area S of about 1300 mm 2 , a cross-sectional height of about 53 mm, and contact lengths L 1 and L 2 (upper and lower flange widths) with the heating mold. Each is approximately 150 mm. The aluminum alloy extruded material of section B (see FIG. 7) has a cross-sectional area of about 410 mm 2 , a cross-sectional height of about 35 mm, and contact lengths L 1 and L 2 (upper and lower flange widths) with the heating mold, respectively. It is approximately 37 mm.

上記アルミニウム合金押出材を、加熱した上下の加熱用金型で挟み、アルミニウム合金押出材の最も低温の箇所が目標温度に到達するまでの時間を測定した。加熱用金型は鋼製(炭素鋼S50C)である。なお、表4のNo.1,2では、上下の加熱用金型をアルミニウム合金押出材に接触させた。No.3では一方の加熱用金型のみをアルミニウム合金押出材に直接接触させ、他方の加熱用金型とアルミニウム合金押出材の間に断熱材を挟み、熱伝達が行われないようにした。アルミニウム合金押出材の最も低温の箇所は、No.1,2では上下の加熱用金型から最も離れた箇所(図2の低温部b参照)、No.3では前記一方の加熱用金型から最も離れた箇所(他方の加熱用金型の近傍箇所)である。加熱用金型からアルミニウム合金押出材にかけられる平均圧力は0.4MPa、加熱用金型の温度(表面温度)は250℃に設定し、アルミニウム合金押出材の到達目標温度を200℃とした。
表4に試験条件及び試験結果を示す。また、図16に試験結果を示す。
The aluminum alloy extruded material was sandwiched between heated upper and lower heating dies, and the time required for the lowest temperature point of the aluminum alloy extruded material to reach the target temperature was measured. The heating mold is made of steel (carbon steel S50C). In addition, No. in Table 4. In 1 and 2, the upper and lower heating dies were brought into contact with the aluminum alloy extruded material. No. In 3, only one heating die was brought into direct contact with the aluminum alloy extruded material, and a heat insulating material was sandwiched between the other heating die and the aluminum alloy extruded material to prevent heat transfer. The lowest temperature point of the aluminum alloy extruded material is No. In No. 1 and 2, the part farthest from the upper and lower heating molds (see the low temperature part b in FIG. 2); 3 is the location farthest from the one heating mold (location near the other heating mold). The average pressure applied from the heating die to the aluminum alloy extruded material was set to 0.4 MPa, the temperature (surface temperature) of the heating die was set to 250°C, and the target temperature of the aluminum alloy extruded material was set to 200°C.
Table 4 shows test conditions and test results. Also, FIG. 16 shows the test results.

Figure 0007316951000004
Figure 0007316951000004

表4及び図16に示すように、アルミニウム合金押出材の断面積と接触長さの比(S/L)が大きいほど、目標温度に達するまでに時間を要する。図16によれば、アルミニウム合金押出材を短時間(例えば60秒以内(=1時間あたり60本以上の処理能力))で目標温度に昇温するには、概ねS/L≦8mmとする必要がある。 As shown in Table 4 and FIG. 16, the larger the cross-sectional area to contact length ratio (S/L) of the aluminum alloy extruded material, the longer it takes to reach the target temperature. According to FIG. 16, in order to heat the aluminum alloy extruded material to the target temperature in a short time (for example, within 60 seconds (= processing capacity of 60 or more per hour)), it is necessary to make S / L ≤ 8 mm. There is

実施例3で用いたアルミニウム合金押出材と同じ断面形状を有する7000系アルミニウム合金押出材を、種々の方法で加熱し、目標温度(200℃)に達するまでの時間を測定した。
加熱方法は、本発明に係る方法(加熱用金型で挟む方法)、空気炉及びオイルバスとした。本発明に係る方法に関しては、加熱用金型は鋼製(炭素鋼S50C)とし、目標温度(200℃)に達するまでの時間は実施例3のNo.1の結果を援用した。空気炉の温度は250℃に設定し、オイルバスの温度は220℃に設定した。全ての方法において、温度の測定箇所は図1に示す低温部bの位置(ウエブ中央)である。
測定結果を表5に示す。
A 7000 series aluminum alloy extruded material having the same cross-sectional shape as the aluminum alloy extruded material used in Example 3 was heated by various methods, and the time required to reach the target temperature (200° C.) was measured.
The heating method was the method according to the present invention (the method of sandwiching between heating molds), an air furnace, and an oil bath. Regarding the method according to the present invention, the heating mold was made of steel (carbon steel S50C), and the time required to reach the target temperature (200°C) was the same as No. 3 in Example 3. 1 was used. The temperature of the air furnace was set at 250°C and the temperature of the oil bath was set at 220°C. In all the methods, the temperature measurement point is the position of the low temperature portion b (the center of the web) shown in FIG.
Table 5 shows the measurement results.

Figure 0007316951000005
Figure 0007316951000005

表5に示すように、加熱用金型で挟む本発明の方法は、他の加熱方法と比べて、高速で目標温度に昇温することができる。 As shown in Table 5, the method of the present invention in which a heating mold is sandwiched can raise the temperature to the target temperature at a higher speed than other heating methods.

加熱用金型の材質がアルミニウム合金押出材の昇温速度に及ぼす影響を調査した。
鋼製(炭素鋼S50C)の加熱用金型及びアルミニウム合金製(A5052)の加熱用金型により、アルミニウム合金押出材を挟み込み、昇温速度を測定した。アルミニウム合金押出材は、断面の輪郭が矩形で、一対のフランジ及び3つのウエブからなり(図2参照)、幅約150mm、高さ約50mm、断面積約1200mmである。このアルミニウム合金押出材を、温度を250℃に設定した加熱用金型で上下から挟み、0.3MPaの平均圧力(P/A)で加圧した。アルミニウム合金押出材の断面積Sとアルミニウム合金押出材と加熱用金型の接触長さの総和L(L+L)の比S/Lは、4.00mmである。
The influence of the material of the heating die on the heating rate of the extruded aluminum alloy was investigated.
An aluminum alloy extruded material was sandwiched between a steel (carbon steel S50C) heating mold and an aluminum alloy (A5052) heating mold, and the rate of temperature increase was measured. The aluminum alloy extrusion has a rectangular cross-sectional profile, consists of a pair of flanges and three webs (see FIG. 2), and has a width of about 150 mm, a height of about 50 mm, and a cross-sectional area of about 1200 mm 2 . This aluminum alloy extruded material was sandwiched from above and below by heating dies set at a temperature of 250° C. and pressurized at an average pressure (P/A) of 0.3 MPa. The ratio S/L of the cross-sectional area S of the aluminum alloy extruded material and the sum total L (L 1 +L 2 ) of the contact length between the aluminum alloy extruded material and the heating mold is 4.00 mm.

アルミニウム合金押出材の温度は、図1に示す低温部bの位置(ウエブ中央)をサーモビュアーで計測した。昇温時のアルミニウム合金押出材の温度と加熱時間の関係を図17に示す.
図17に示すように、アルミニウム合金押出材が100℃に到達する時間は、加熱用金型が鋼製の場合は約4秒、アルミニウム合金製の場合は約2秒であった。また、アルミニウム合金押出材が200℃に到達する時間は、加熱用金型が鋼製の場合は約20秒、アルミニウム合金製の場合は約10秒であった。アルミニウム合金製の加熱用金型を使用したときの昇温速度は、鋼製の加熱用金型を使用したときの約2倍であり、加熱用金型が熱伝導率の高い材質からなる場合、アルミニウム合金押出材の昇温に必要な時間を大幅に短縮できる。
The temperature of the aluminum alloy extruded material was measured with a thermoviewer at the position of the low temperature portion b (the center of the web) shown in FIG. Fig. 17 shows the relationship between the temperature of the aluminum alloy extruded material and the heating time during heating.
As shown in FIG. 17, the time required for the aluminum alloy extruded material to reach 100° C. was about 4 seconds when the heating mold was made of steel, and about 2 seconds when it was made of aluminum alloy. The time required for the aluminum alloy extruded material to reach 200° C. was about 20 seconds when the heating mold was made of steel, and about 10 seconds when it was made of aluminum alloy. The temperature rise rate when using an aluminum alloy heating mold is about twice that when using a steel heating mold, and the heating mold is made of a material with high thermal conductivity. , the time required to raise the temperature of the aluminum alloy extruded material can be greatly reduced.

1 アルミニウム合金押出材
2,3 加熱用金型
4,5 フランジ
6,7,8 ウエブ
1 Aluminum alloy extruded material 2, 3 Heating mold 4, 5 Flange 6, 7, 8 Web

Claims (6)

中空断面のアルミニウム合金押出材を昇温して所定の温度範囲内の温度に到達させた後、前記温度範囲内で塑性加工を行い、次いで冷却した後、人工時効処理を行うアルミニウム合金製部材の製造方法において、前記アルミニウム合金押出材が熱処理型アルミニウム合金押出材のT1調質材であり、前記温度範囲が150~300℃であり、前記アルミニウム合金押出材を、200~350℃に加熱された上側及び下側の加熱用金型により挟み、前記加熱用金型からの熱伝達により昇温して前記温度範囲内の温度に到達させることを特徴とするアルミニウム合金製部材の製造方法。 After raising the temperature of the aluminum alloy extruded material with a hollow cross section to reach a temperature within a predetermined temperature range, plastic working is performed within the temperature range, then after cooling, artificial aging treatment is performed. In the manufacturing method, the aluminum alloy extruded material is a heat-treated aluminum alloy extruded material T1 tempered material, the temperature range is 150 to 300 ° C., and the aluminum alloy extruded material is heated to 200 to 350 ° C. A method of manufacturing an aluminum alloy member, comprising: sandwiching between upper and lower heating dies; 前記アルミニウム合金が7000系アルミニウム合金であることを特徴とする請求項1に記載されたアルミニウム合金製部材の製造方法。 2. The method of manufacturing an aluminum alloy member according to claim 1, wherein the aluminum alloy is a 7000 series aluminum alloy. 前記アルミニウム合金押出材の昇温時に前記加熱用金型から前記アルミニウム合金押出材に負荷される荷重をP(単位:N)とし、前記アルミニウム合金押出材と前記加熱用金型との上下の接触箇所の投影面積をA(単位:m)としたとき、P/A≧0.07MPaの関係を満たすことを特徴とする請求項1又は2に記載されたアルミニウム合金製部材の製造方法。 The load applied from the heating die to the aluminum alloy extruded material when the temperature of the aluminum alloy extruded material is raised is P (unit: N), and the upper and lower contact between the aluminum alloy extruded material and the heating die 3. The method for manufacturing an aluminum alloy member according to claim 1, wherein a relationship of P/A≧0.07 MPa is satisfied, where A (unit: m 2 ) is the projected area of the portion. 前記アルミニウム合金押出材の断面において、前記アルミニウム合金押出材と前記加熱用金型との上下の接触箇所における接触長さの総和をL(単位:mm)とし、前記アルミニウム合金押出材の断面積をS(単位mm)としたとき、S/L≦8mmの関係を満たすことを特徴とする請求項1~3のいずれかに記載されたアルミニウム合金製部材の製造方法。 In the cross section of the aluminum alloy extruded material, the sum of the contact lengths at the upper and lower contact points between the aluminum alloy extruded material and the heating mold is L (unit: mm), and the cross-sectional area of the aluminum alloy extruded material is 4. The method for manufacturing an aluminum alloy member according to any one of claims 1 to 3, wherein S (unit: mm 2 ) satisfies the relationship S/L≦8 mm. 前記加熱用金型が、鋼製、アルミニウム製又は銅製のいずれかであることを特徴とする請求項1~4のいずれかに記載されたアルミニウム合金製部材の製造方法。 The method for manufacturing an aluminum alloy member according to any one of claims 1 to 4, wherein the heating mold is made of steel, aluminum or copper. 前記アルミニウム合金製部材がエネルギー吸収部品又は自動車骨格部品であることを特徴とする請求項1~5のいずれかに記載されたアルミニウム合金製部材の製造方法。 The method for producing an aluminum alloy member according to any one of claims 1 to 5, wherein the aluminum alloy member is an energy absorbing part or an automobile frame part.
JP2020006947A 2020-01-20 2020-01-20 Method for manufacturing aluminum alloy member Active JP7316951B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020006947A JP7316951B2 (en) 2020-01-20 2020-01-20 Method for manufacturing aluminum alloy member
PCT/JP2020/046935 WO2021149411A1 (en) 2020-01-20 2020-12-16 Method for producing aluminum alloy member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020006947A JP7316951B2 (en) 2020-01-20 2020-01-20 Method for manufacturing aluminum alloy member

Publications (2)

Publication Number Publication Date
JP2021113348A JP2021113348A (en) 2021-08-05
JP7316951B2 true JP7316951B2 (en) 2023-07-28

Family

ID=76991670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020006947A Active JP7316951B2 (en) 2020-01-20 2020-01-20 Method for manufacturing aluminum alloy member

Country Status (2)

Country Link
JP (1) JP7316951B2 (en)
WO (1) WO2021149411A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004124151A (en) 2002-10-01 2004-04-22 Japan Science & Technology Corp Heat treatment method for aluminum alloy
JP2006205244A (en) 2005-01-31 2006-08-10 Sumitomo Light Metal Ind Ltd Warm-formed article and its production method
JP2009114514A (en) 2007-11-08 2009-05-28 Sumitomo Light Metal Ind Ltd Al-Zn-Mg-Cu ALLOY EXTRUDED MATERIAL WITH EXCELLENT WARM WORKABILITY, ITS MANUFACTURING METHOD, AND WARM WORKED MATERIAL USING THE EXTRUDED MATERIAL
JP2014145119A (en) 2013-01-30 2014-08-14 Kobe Steel Ltd 7000 series aluminum alloy member excellent in stress corrosion crack resistance and its manufacturing method
JP2019188453A (en) 2018-04-27 2019-10-31 株式会社ジーテクト Molding method for aluminum alloy

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000205244A (en) * 1999-01-18 2000-07-25 Zexel Corp Bearing device
JP5671422B2 (en) * 2011-07-25 2015-02-18 株式会社神戸製鋼所 Method for producing high strength 7000 series aluminum alloy member and high strength 7000 series aluminum alloy member
JP6817266B2 (en) * 2018-10-03 2021-01-20 株式会社ジーテクト Aluminum alloy molding method
JP7244195B2 (en) * 2019-07-11 2023-03-22 株式会社神戸製鋼所 Method for manufacturing 7000 series aluminum alloy member

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004124151A (en) 2002-10-01 2004-04-22 Japan Science & Technology Corp Heat treatment method for aluminum alloy
JP2006205244A (en) 2005-01-31 2006-08-10 Sumitomo Light Metal Ind Ltd Warm-formed article and its production method
JP2009114514A (en) 2007-11-08 2009-05-28 Sumitomo Light Metal Ind Ltd Al-Zn-Mg-Cu ALLOY EXTRUDED MATERIAL WITH EXCELLENT WARM WORKABILITY, ITS MANUFACTURING METHOD, AND WARM WORKED MATERIAL USING THE EXTRUDED MATERIAL
JP2014145119A (en) 2013-01-30 2014-08-14 Kobe Steel Ltd 7000 series aluminum alloy member excellent in stress corrosion crack resistance and its manufacturing method
JP2019188453A (en) 2018-04-27 2019-10-31 株式会社ジーテクト Molding method for aluminum alloy

Also Published As

Publication number Publication date
JP2021113348A (en) 2021-08-05
WO2021149411A1 (en) 2021-07-29

Similar Documents

Publication Publication Date Title
Chandrasekaran et al. Effect of materials and temperature on the forward extrusion of magnesium alloys
CN101426945B (en) Method for fabrication of a structural element for aeronautical construction including a differential work hardening
KR101758956B1 (en) Processing of alpha/beta titanium alloys
JP5671422B2 (en) Method for producing high strength 7000 series aluminum alloy member and high strength 7000 series aluminum alloy member
JP6195448B2 (en) Method for producing 7000 series aluminum alloy member excellent in stress corrosion cracking resistance
Wu et al. Development of adiabatic shearing bands in 7003-T4 aluminum alloy under high strain rate impacting
CN101243196B (en) A wrought aluminum aa7000-series alloy product and method of producing said product
US20160047021A1 (en) Aluminum alloy sheet for press forming, process for manufacturing same, and press-formed product thereof
US20160053357A1 (en) Thin sheets made of an aluminium-copper-lithium alloy for producing airplane fuselages
Iqbal et al. An analysis on effect of multipass twist extrusion process of AA6061 alloy
KR20210032429A (en) 7xxx aluminum alloy thin sheet manufacturing method suitable for forming and assembly
CA3013955A1 (en) Al-cu-li-mg-mn-zn alloy wrought product
Bai et al. Application of a continuum damage mechanics (CDM)-based model for predicting formability of warm formed aluminium alloy
CN108138266A (en) For making the method for the aluminium alloy warm working age-hardenable in T4 annealed strips
Ding et al. Numerical simulation for microstructure evolution in AM50 Mg alloy during hot rolling
Barenji et al. Effects of hot forming cold die quenching and solution treatment on formability and pressing load during equal channel angular deformation of AA2024 aluminum alloy
JP7316951B2 (en) Method for manufacturing aluminum alloy member
JP2020066768A (en) Manufacturing method of member made of 7000 series aluminum alloy
EP2379765A1 (en) Method for the manufacture of an aluminium alloy plate product having low levels of residual stress
JP6005539B2 (en) Method for producing high strength 7000 series aluminum alloy member
CN112210734B (en) Method for producing 7000 series aluminum alloy member
US9314826B2 (en) Method for the manufacture of an aluminium alloy plate product having low levels of residual stress
Shayanpoor et al. Constitutive model for hot deformation behaviors of Al/Cu bimetal composites based on their components
JP6795460B2 (en) Manufacturing method of 7000 series aluminum alloy member with excellent stress corrosion cracking resistance
JP2017177132A (en) Heat treated aluminum alloy material joining method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230718

R150 Certificate of patent or registration of utility model

Ref document number: 7316951

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150