JP2006205244A - Warm-formed article and its production method - Google Patents
Warm-formed article and its production method Download PDFInfo
- Publication number
- JP2006205244A JP2006205244A JP2005023498A JP2005023498A JP2006205244A JP 2006205244 A JP2006205244 A JP 2006205244A JP 2005023498 A JP2005023498 A JP 2005023498A JP 2005023498 A JP2005023498 A JP 2005023498A JP 2006205244 A JP2006205244 A JP 2006205244A
- Authority
- JP
- Japan
- Prior art keywords
- warm
- temperature
- punch
- molding
- forming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
Abstract
Description
本発明は、Al−Mg−Si系アルミニウム合金板を温間成形してなる、例えば自動車外板(ボディーシート)等の温間成形加工品及びその製造方法に関する。 The present invention relates to a warm-formed product such as an automobile outer plate (body sheet) formed by warm-forming an Al—Mg—Si-based aluminum alloy plate and a method for manufacturing the same.
近年、自動車の省エネルギー化に対する要求がますます厳しくなる中、自動車のさらなる軽量化が推し進められている。その対策の一つとして、従来、軟鋼板等の成形加工品が用いられていた自動車外板(ボディーシート)に、より軽量なアルミニウム合金板の成形加工品を用いることが行われている。
アルミニウム合金板としては、Al−Mg系やAl−Mg−Si系アルミニウム合金板等がある。特に、Al−Mg−Si系アルミニウム合金板は、所謂ベークハード性を示し、塗装焼き付け工程等の加熱により耐力を向上させて強度を高めることができるため、自動車外板等の用途に特に好適であると考えられている。
In recent years, as the demand for energy saving of automobiles becomes more and more severe, further weight reduction of automobiles has been promoted. As one of the countermeasures, a lighter aluminum alloy sheet molded product has been used for an automobile outer plate (body sheet), which has conventionally used a molded product such as a mild steel plate.
Examples of the aluminum alloy plate include an Al—Mg type and an Al—Mg—Si type aluminum alloy plate. In particular, the Al—Mg—Si-based aluminum alloy plate exhibits so-called bake hardness and can be improved in strength by heating in the paint baking process and the like, and thus is particularly suitable for applications such as automobile outer plates. It is thought that there is.
ところが、一般にアルミニウム合金板は、軟鋼板と比較して延性及びr値が低く、成形性が悪いという問題がある。そのため、アルミニウム合金板を成形する場合には、意匠上の制約を受け、所望の形状に成形することができない場合があった。このような意匠上の制約は、自動車外板等のアルミニウム化の阻害要因となっていた。 However, in general, an aluminum alloy plate has a problem that ductility and r value are lower than that of a mild steel plate and formability is poor. For this reason, when an aluminum alloy plate is formed, there are cases where it cannot be formed into a desired shape due to design restrictions. Such a design restriction has been a hindrance to aluminization of automobile outer plates and the like.
アルミニウム合金板の成形性を向上させる成形方法としては、温間成形加工が知られている。従来、温間成形加工においては、アルミニウム合金素材として、温間成形性が比較的良好なAl−Mg系合金板が用いられていた(特許文献1参照)。
また、A5182P−O系アルミニウム合金の限界絞り比を向上させて成形性を改善するために、温間深絞り成形加工において、アルミニウム合金素材のフランジ部を素材の溶融温度より50℃低い温度以下に局部的に加熱すると共にパンチを冷却して成形加工する方法が開発されている(特許文献2参照)。
Warm forming is known as a forming method for improving the formability of an aluminum alloy plate. Conventionally, in warm forming, an Al—Mg alloy plate having relatively good warm formability has been used as an aluminum alloy material (see Patent Document 1).
Further, in order to improve the formability by improving the limit drawing ratio of the A5182P-O type aluminum alloy, in the warm deep drawing forming process, the flange portion of the aluminum alloy material is set to a temperature lower than 50 ° C. below the melting temperature of the material. A method of forming by heating locally and cooling the punch has been developed (see Patent Document 2).
しかしながら、従来のアルミニウム合金板の温間成形方法は、上述のごとくAl−Mg系合金板やA5182P−O系アルミニウム合金板を用いたものであり、上記Al−Mg−Si系アルミニウム合金板の成形性を向上させる技術はほとんど開発されていない。
Al−Mg−Si系アルミニウム合金板の温間成形においては、成形性を向上させるだけでなく、Al−Mg−Si系アルミニウム合金板が本来有する優れたベークハード性を損なわずに温間成形加工品を製造することが望まれる。
However, the conventional warm forming method of an aluminum alloy plate uses an Al—Mg alloy plate or an A5182P—O aluminum alloy plate as described above, and the Al—Mg—Si aluminum alloy plate is formed. Little technology has been developed to improve performance.
In the warm forming of Al-Mg-Si based aluminum alloy sheet, not only the formability is improved, but also the warm forming process without impairing the excellent bake hardness inherent in the Al-Mg-Si based aluminum alloy sheet. It is desirable to produce a product.
しかし、従来のAl−Mg系合金板やA5182P−O系アルミニウム合金板の温間成形と同様の方法でAl−Mg−Si系アルミニウム合金板を成形した場合には、成形性やベークハード性が損なわれる場合があった。例えば、特許文献2に記載の方法をAl−Mg−Si系アルミニウム合金板の温間成形に適用した場合には、温間成形時に素材が時効硬化又は軟化してしまい、温間成形性やベークハード性が損なわれてしまうおそれがあった。また、フランジ部の縮みフランジ抵抗の減少が不充分で、成形性が充分に向上しない場合があった。
However, when the Al-Mg-Si aluminum alloy plate is formed by the same method as the warm forming of the conventional Al-Mg alloy plate or A5182P-O aluminum alloy plate, the formability and the bake hardness are low. In some cases, it was damaged. For example, when the method described in
本発明はかかる従来の問題点に鑑みてなされたものであって、成形性に優れると共に、優れたベークハード性を発揮できるアルミニウム合金板の温間成形加工品及びその製造方法を提供しようとするものである。 The present invention has been made in view of such conventional problems, and intends to provide a warm-formed product of an aluminum alloy plate that is excellent in formability and can exhibit excellent bake hardness and a method for producing the same. Is.
第1の発明は、パンチ、ダイス、及びしわ押さえを具備する成形装置を用いて、Al−Mg−Si系アルミニウム合金板よりなる素材板を温間成形して温間成形加工品を製造する方法において、
上記素材板としては、Siを0.5〜2.0mass%、Mgを0.2〜1.5mass%含有し、かつT4処理されたAl−Mg−Si系アルミニウム合金板を採用し、
上記素材板の端部を上記成形装置の上記ダイスと上記しわ押さえとで挟持する保持工程と、
上記成形装置の上記パンチを上記ダイスに対して相対的に前進させて上記素材板を成形する成形工程とを有し、
上記保持工程においては、上記素材板の上記ダイスと上記しわ押さえとによって狭持したフランジ部を温度T(150≦T≦300)℃にt1(t1=−0.1×T+31)分間以下加熱保持し、
上記成形工程においては、上記パンチの温度を上記フランジ部の温度T℃よりも30℃以上低い温度に保持した状態で、成形時間t2(t2=−0.06×T+20)分間以内で成形を行うことを特徴とする温間成形加工品の製造方法にある(請求項1)。
The first invention is a method for producing a warm-formed product by warm-forming a material plate made of an Al-Mg-Si-based aluminum alloy plate using a forming apparatus having a punch, a die, and a wrinkle retainer. In
As the material plate, an Al-Mg-Si-based aluminum alloy plate containing 0.5 to 2.0 mass% of Si, 0.2 to 1.5 mass% of Mg, and treated with T4 is used.
A holding step of clamping the end of the material plate with the die of the molding apparatus and the wrinkle presser;
A molding step of molding the material plate by advancing the punch of the molding device relative to the die,
In the holding step, the flange portion sandwiched by the die and the wrinkle presser of the material plate is heated to a temperature T (150 ≦ T ≦ 300) ° C. for t 1 (t 1 = −0.1 × T + 31) minutes or less. Hold heated,
In the molding step, molding is performed within a molding time t 2 (t 2 = −0.06 × T + 20) minutes in a state where the temperature of the punch is maintained at a temperature 30 ° C. or more lower than the temperature T ° C. of the flange portion. In the method of manufacturing a warm-formed product,
上記第1の発明の製造方法においては、上述のごとく、上記素材板として、Mg及びSiを上記特定量含有すると共に、T4処理されたAl−Mg−Si系アルミニウム合金板を用いている。さらに、上記保持工程においては上記素材板のフランジ部の加熱温度及び加熱保持時間を特定の範囲に制御し、上記成形工程においては上記パンチの温度及び成形時間を特定の範囲に制御している。
そのため、上記成形工程において、上記素材板の時効硬化と加工硬化と軟化とのバランスが温間成形に適した状態に保持される。それ故、上記成形装置の上記パンチの肩部分(以下適宜「パンチ肩部」という)における破断抵抗をほとんど減少させることなく、縮みフランジ抵抗を減少させることができる。その結果、限界絞り比を向上させ、上記素材板の成形性を向上させることができる。
In the manufacturing method according to the first aspect of the invention, as described above, an Al—Mg—Si based aluminum alloy plate that contains the specific amount of Mg and Si and is T4 treated is used as the material plate. Further, in the holding step, the heating temperature and heating holding time of the flange portion of the blank plate are controlled to a specific range, and in the forming step, the punch temperature and the forming time are controlled to a specific range.
Therefore, in the forming step, the balance between age hardening, work hardening, and softening of the material plate is maintained in a state suitable for warm forming. Therefore, the shrinkage flange resistance can be reduced without substantially reducing the breaking resistance at the shoulder portion of the punch (hereinafter referred to as “punch shoulder portion” as appropriate) of the molding apparatus. As a result, the limit drawing ratio can be improved and the formability of the material plate can be improved.
また、上記保持工程及び上記成形工程においては、時効硬化の過度の進行を抑制することができる。そのため、上記成形工程後に得られる上記温間成形加工品は、所謂ベークハード性を発揮することができる。それ故、上記温間成形加工品を加熱することにより、該温間成形加工品の耐力を向上させて、その強度を高めることが可能となる。 Further, in the holding step and the molding step, excessive progress of age hardening can be suppressed. Therefore, the warm-molded product obtained after the molding step can exhibit so-called bake hardness. Therefore, by heating the warm molded product, it is possible to improve the yield strength of the warm molded product and increase its strength.
このように、上記第1の発明によれば、成形性に優れると共に、優れたベークハード性を発揮できるアルミニウム合金板の温間成形加工品の製造方法を提供することができる。 Thus, according to the said 1st invention, while being excellent in a moldability, the manufacturing method of the warm-formed product of the aluminum alloy plate which can exhibit the outstanding bake hard property can be provided.
第2の発明は、上記第1の発明の製造方法により得られる温間成形加工品であって、上記成形工程後に上記温間成形加工品を温度150〜200℃で20分間加熱する熱処理を行った後の耐力が160MPa以上であり、かつ上記熱処理による耐力の増加量が10MPa以上であることを特徴とする温間成形加工品にある(請求項3)。 The second invention is a warm-molded product obtained by the manufacturing method of the first invention, wherein after the molding step, the warm-molded product is heat-treated at a temperature of 150 to 200 ° C. for 20 minutes. In the warm-molded product, the yield strength after heat treatment is 160 MPa or more, and the increase in the yield strength by the heat treatment is 10 MPa or more (Claim 3).
上記第2の発明の温間成形加工品は、上記第1の発明の製造方法によって得られる温間成形加工品である。
そのため、上述のごとく成形性に優れると共に、優れたベークハード性を発揮できる。
The warm-molded product of the second invention is a warm-molded product obtained by the manufacturing method of the first invention.
Therefore, as described above, the moldability is excellent, and excellent bake hardness can be exhibited.
また、上記温間成形加工品は、上記熱処理後の耐力が160MPa以上であり、熱処理後の耐力の増加量が10MPa以上である。即ち、上記温間成形加工品は、加熱により簡単に強度を向上させることができ、その一方で、加熱前にはある程度の延性を発揮することができる。したがって、例えば上記温間成形加工品を加熱して強度の高い最終製品にする前に、上記温間成形加工品に曲げ加工等の二次加工を施すことが可能となる。
一般に、二次加工時には、成形品の強度が高すぎると割れが発生してしまうおそれがあるが、上記温間成形加工品は、上述のごとくベークハード性を有し、熱処理の前においては比較的容易に加工することができる。
The warm-formed product has a yield strength after the heat treatment of 160 MPa or more, and an increase in the yield strength after the heat treatment is 10 MPa or more. That is, the warm-formed product can be easily improved in strength by heating, while exhibiting a certain degree of ductility before heating. Therefore, for example, before the warm-formed product is heated to obtain a high-strength final product, the warm-formed product can be subjected to secondary processing such as bending.
Generally, at the time of secondary processing, cracks may occur if the strength of the molded product is too high, but the warm molded product has bake-hardness as described above and is compared before heat treatment. Can be processed easily.
また、自動車外板等の製造においては、一般に、成形後にさらに曲げ加工等の二次加工を行い、その後、塗装焼き付けによる加熱が行われる。
上記温間成形加工品は、二次加工時には成形性を有し、塗装焼き付け時に強度を高め、160MPa以上という優れた耐力を発揮することができる。そのため、上記温間成形加工品は、自動車外板等の用途に特に適している。
Further, in the manufacture of an automobile outer plate or the like, generally, secondary processing such as bending is further performed after molding, and then heating by paint baking is performed.
The warm-molded product has formability at the time of secondary processing, increases strength at the time of paint baking, and can exhibit excellent proof stress of 160 MPa or more. Therefore, the warm-molded product is particularly suitable for applications such as automobile outer plates.
次に、本発明の実施の形態について説明する。
上記温間成形加工品の製造方法においては、上記保持工程と上記成形工程とを行ってAl−Mg−Si系アルミニウム合金板(6000系合金板)よりなる素材板を温間成形する。
Next, an embodiment of the present invention will be described.
In the method for manufacturing a warm-formed product, the holding step and the forming step are performed to warm-form a material plate made of an Al—Mg—Si-based aluminum alloy plate (6000-based alloy plate).
上記素材板としてのAl−Mg−Si系アルミニウム合金板は、SiとMgとを主要添加元素として含有するアルミニウム合金板である。上記Al−Mg−Si系アルミニウム合金板は、Alの他に、Siを0.5〜2.0mass%、Mgを0.2〜1.5mass%含有する。
Siの含有量が0.5mass%未満の場合又はMgの含有量が0.2mass%未満の場合には、充分な成形性が得られないおそれがあり、また、上記温間成形加工品が熱処理により充分なベークハード性を発揮できないおそれがある。ベークハード性を示すための熱処理としては、例えば温度150〜200℃の範囲内で20分間保持する熱処理を行うことができる。また、Siの含有量が2.0mass%を越える場合又はMgの含有量が1.5mass%を越える場合には、充分な成形性が得られないおそれがあり、また、上記成形工程における成形中に上記素材板が時効硬化し、強度が高くなりすぎてしまうおそれがある。その結果ベークハード性が得られないおそれがある。
The Al—Mg—Si based aluminum alloy plate as the material plate is an aluminum alloy plate containing Si and Mg as main additive elements. The Al—Mg—Si-based aluminum alloy plate contains 0.5 to 2.0 mass% of Si and 0.2 to 1.5 mass% of Mg in addition to Al.
If the Si content is less than 0.5 mass% or the Mg content is less than 0.2 mass%, sufficient moldability may not be obtained. Therefore, there is a possibility that sufficient baking hardness cannot be exhibited. As the heat treatment for showing the bake hard property, for example, a heat treatment can be performed by holding for 20 minutes within a temperature range of 150 to 200 ° C. In addition, if the Si content exceeds 2.0 mass% or the Mg content exceeds 1.5 mass%, sufficient moldability may not be obtained, and during the molding in the molding step, In addition, the material plate is age-hardened, and the strength may be too high. As a result, there is a possibility that the bake hardness cannot be obtained.
また、上記素材板としてのAl−Mg−Si系アルミニウム合金板は、例えばCu、Zn、Mn、Cr、Zr、Fe、Ti等の元素、及び不可避的不純物等を本発明の効果を阻害しない範囲で含有することができる。具体的には、Cu、Zn、Mnはそれぞれ2.0mass%以下、Cr、Zr、Fe、Tiはそれぞれ0.5mass%以下、不可避的不純物元素は0.2mass%以下含有することができる。
上記素材板としてのAl−Mg−Si系アルミニウム合金板がCu及び/又はZnを含有する場合には、ベークハード性をより向上させることができる。また、Mn、Cr、Zr、Fe、及びTiから選ばれる1種以上を含有する場合には、材料の結晶粒径の微細化を図ることができる。
上記素材板としてのAl−Mg−Si系アルミニウム合金板においては、Mg、Si、Cu、Zn、Mn、Cr、Zr、Fe、Ti等添加元素及び不可避的不純物を除く残部がAlである。
Further, the Al—Mg—Si-based aluminum alloy plate as the material plate is a range that does not inhibit the effects of the present invention, for example, elements such as Cu, Zn, Mn, Cr, Zr, Fe, and Ti, and inevitable impurities. Can be contained. Specifically, Cu, Zn, and Mn can each be 2.0 mass% or less, Cr, Zr, Fe, and Ti can each be 0.5 mass% or less, and unavoidable impurity elements can be 0.2 mass% or less.
When the Al—Mg—Si aluminum alloy plate as the material plate contains Cu and / or Zn, the bake hardness can be further improved. Moreover, when 1 or more types chosen from Mn, Cr, Zr, Fe, and Ti are contained, refinement | miniaturization of the crystal grain diameter of material can be achieved.
In the Al—Mg—Si based aluminum alloy plate as the material plate, the remainder excluding additive elements such as Mg, Si, Cu, Zn, Mn, Cr, Zr, Fe, Ti and inevitable impurities is Al.
また、上記素材板としては、T4処理されたもの、即ち溶体化処理後に自然時効させたAl−Mg−Si系アルミニウム合金板を用いる。Al−Mg−Si系アルミニウム合金板素材の調質がT4以外の例えばO及びT6の場合には、充分な温間成形性及びベークハード性が得られないおそれがある。 Further, as the material plate, an Al—Mg—Si based aluminum alloy plate that has been T4 treated, that is, naturally aged after solution treatment is used. When the tempering of the Al—Mg—Si-based aluminum alloy sheet material is, for example, O or T6 other than T4, sufficient warm formability and bake hardness may not be obtained.
次に、上記保持工程においては、上記素材板の端部を上記成形装置の上記ダイスと上記しわ押さえとで挟持する。このとき、上記素材板の上記ダイスと上記しわ押さえとによって狭持したフランジ部を温度T(150≦T≦300)℃にt1(t1=−0.1×T+31)分間以下加熱保持する。 Next, in the holding step, the end portion of the material plate is sandwiched between the die of the molding apparatus and the wrinkle presser. At this time, the flange portion sandwiched by the die and the wrinkle retainer of the material plate is heated and held at a temperature T (150 ≦ T ≦ 300) ° C. for t 1 (t 1 = −0.1 × T + 31) minutes or less. .
上記フランジ部の温度Tが150℃未満の場合には、成形工程時にフランジ部における縮みフランジ抵抗の減少が不充分となり、成形性が充分に向上しないおそれがある。一方、300℃を越える場合には、成形工程時に上記素材板としてのAl−Mg−Si系アルミニウム合金板が時効硬化又は軟化してしまい、温間成形性及びベークハード性が損なわれてしまうおそれがある。
また、加熱保持時間がt1分間を越える場合には、上記素材板としてのAl−Mg−Si系アルミニウム合金板が時効硬化し、温間成形性及びベークハード性が損なわれてしまうおそれがある。
また、t1は0分であってもよい。即ち、t1は、0≦t1≦−0.1×T+31という範囲にあり、上記保持工程において上記フランジ部の温度をT℃にした後その温度(T℃)で保持することなく、直ちに上記成形工程における成形を行うことができる。
なお、加熱保持時間t1は、上記保持工程において上記フランジ部を温度T℃で加熱保持する時間であり、後述の成形工程における時間は含まない。したがって、上記保持工程後の成形工程においては、上記加熱保持時間t1に関係なくフランジ部を温度T℃で加熱保持することができる。
When the temperature T of the flange portion is less than 150 ° C., the shrinkage flange resistance in the flange portion is insufficiently reduced during the molding process, and the moldability may not be sufficiently improved. On the other hand, when the temperature exceeds 300 ° C., the Al—Mg—Si-based aluminum alloy plate as the material plate is age-hardened or softened during the forming process, which may impair the warm formability and bake hardness. There is.
Further, when the heating retention time exceeds 1 minute t, there is a possibility that Al-Mg-Si based aluminum alloy plate as the blank is age hardened, warm formability and bake hardenability is impaired .
T 1 may be 0 minutes. That is, t 1 is in the range of 0 ≦ t 1 ≦ −0.1 × T + 31, and immediately after the temperature of the flange portion is set to T ° C. in the holding step, it is not held at that temperature (T ° C.). Molding in the molding process can be performed.
The heating and holding time t 1 is a time for heating and holding the flange portion at a temperature T ° C. in the holding step, and does not include the time in the molding step described later. Therefore, in the molding step after the holding step, the flange portion can be heated and held at a temperature T ° C. regardless of the heating and holding time t 1 .
また、上記成形工程においては、上記成形装置の上記パンチを上記ダイスに対して相対的に前進させて上記素材板を成形する。このとき、上記パンチの温度を上記フランジ部の温度T℃よりも30℃以上低い温度に保持した状態で、成形時間t2(t2=−0.06×T+20)分間以内で成形を行う。 Moreover, in the said formation process, the said punch of the said shaping | molding apparatus is advanced relatively with respect to the said die | dye, and the said raw material board is shape | molded. At this time, molding is performed within a molding time t 2 (t 2 = −0.06 × T + 20) minutes in a state where the temperature of the punch is maintained at a temperature lower by 30 ° C. or more than the temperature T ° C. of the flange portion.
上記パンチと上記フランジ部(温度T℃)との温度差が30℃未満の場合には、上記成形工程においてパンチ肩部の破断抵抗が高まらず、限界絞り比の向上効果が得られないおそれがある。
また、成形時間t2が(−0.06×T+20)分を超える場合には、温間成形中に上記素材板のフランジ部が時効硬化し、上記温間成形加工品が充分にベークハード性を発揮できなくなるおそれがある。また、この場合には、縮みフランジ抵抗が大きくなり、充分な限界絞り比の向上効果が得られなくなるおそれがある。また、成形中に加工硬化したフランジ部の回復が不充分になり、縮みフランジ抵抗の減少が不充分となるおそれがあるため、成形時間t2は0.02分以上であることが好ましい。より好ましくは成形時間t2は0.1分以上がよい。
When the temperature difference between the punch and the flange portion (temperature T ° C) is less than 30 ° C, the fracture resistance of the punch shoulder portion does not increase in the molding step, and the effect of improving the limit drawing ratio may not be obtained. is there.
When the molding time t 2 exceeds (−0.06 × T + 20) minutes, the flange portion of the material plate is age-hardened during the warm molding, and the warm-molded product is sufficiently baked and hardened. May not be able to demonstrate. In this case, the shrinkage flange resistance increases, and there is a possibility that a sufficient improvement effect of the limit drawing ratio cannot be obtained. In addition, since the flange portion that has been work-hardened during molding may not be sufficiently recovered and the shrinkage of the flange resistance may be insufficiently reduced, the molding time t 2 is preferably 0.02 minutes or more. More preferably, the molding time t 2 is 0.1 minutes or longer.
また、上記成形工程においては、上記パンチの温度を室温で又は室温を超える温度に加熱した状態で成形加工を行うことが好ましい(請求項2)。即ち、上記パンチの温度を室温のまま加熱せずに、あるいは室温を超える温度に加熱した状態で成形加工を行うことが好ましい。
この場合には、上記パンチと上記フランジ部との温度差の制御を容易に行うことができる。また、上記パンチの温度を室温未満に冷却した場合には、結露が発生し、成形時に用いられる潤滑油に水分が混入して潤滑不良を引き起こすおそれがある。上記のごとく上記パンチを室温のままとするか、あるいは室温を超える温度に加熱することにより、結露の発生を防止し、潤滑不良を抑制することができる。
In the molding step, it is preferable to perform the molding process in a state where the temperature of the punch is heated at room temperature or a temperature exceeding room temperature. That is, it is preferable to perform the molding process without heating the punch at room temperature or in a state of heating to a temperature exceeding room temperature.
In this case, the temperature difference between the punch and the flange portion can be easily controlled. Moreover, when the temperature of the punch is cooled below room temperature, dew condensation occurs, and moisture may be mixed into the lubricating oil used at the time of molding, causing poor lubrication. As described above, by keeping the punch at room temperature or heating it to a temperature exceeding the room temperature, it is possible to prevent the formation of condensation and suppress poor lubrication.
特に好ましくは、上記パンチの温度は室温がよい。
即ち、本発明においては、上記のごとくパンチの温度をフランジ部の温度T℃より30℃以上低くすればよいが、パンチ温度をより低くした方がパンチを加熱するための熱エネルギーを節減でき、製造コストを削減することができる。一方、上述のごとくパンチ温度を室温未満にすると結露の発生による潤滑不良が起こるおそれがある。
したがって、上記パンチを加熱又は冷却することなく、パンチの温度を室温にすることにより、潤滑不良を抑制することができると共に、製造コストを削減することができる。
なお、室温とは季節や場所によらない、所謂加熱や冷却等による温度調節を行わない状態をいう。
Particularly preferably, the temperature of the punch is room temperature.
That is, in the present invention, as described above, the temperature of the punch may be lower by 30 ° C. or more than the temperature T ° C. of the flange portion. However, lowering the punch temperature can reduce the heat energy for heating the punch, Manufacturing costs can be reduced. On the other hand, if the punch temperature is lower than room temperature as described above, there is a risk of poor lubrication due to the occurrence of condensation.
Therefore, by setting the temperature of the punch to room temperature without heating or cooling the punch, poor lubrication can be suppressed and the manufacturing cost can be reduced.
Note that the room temperature refers to a state in which temperature adjustment is not performed by so-called heating or cooling regardless of the season or place.
また、上記成形工程においては、例えば深絞り成形、張り出し加工等により上記素材板を成形し、上記温間成形加工品を作製することができる。 Moreover, in the said formation process, the said raw material board can be shape | molded, for example by deep drawing shaping | molding, an extending | stretching process, etc., and the said warm forming processed product can be produced.
また、上記第2の発明の上記温間成形加工品は、該温間成形加工品を温度150〜200℃で20分間加熱する熱処理を行った後の耐力が160MPa以上であり、かつ上記熱処理による耐力の増加量が10MPa以上である。
熱処理後の耐力が160MPa未満の場合には、上記温間成形加工品の強度が不充分となり、例えば自動車外板等の用途に適さなくなるおそれがある。一方、上記熱処理による耐力の増加量が10MPa未満の場合には、充分なベークハード性が発揮できておらず、この場合にも、例えば自動車外板等の用途に適さなくなるおそれがある。
Further, the warm molded product of the second invention has a yield strength of 160 MPa or more after performing a heat treatment of heating the warm molded product at a temperature of 150 to 200 ° C. for 20 minutes, and is based on the heat treatment. The increase in proof stress is 10 MPa or more.
When the proof stress after heat treatment is less than 160 MPa, the strength of the warm-molded product is insufficient, and may not be suitable for applications such as an automobile outer plate. On the other hand, when the amount of increase in yield strength by the heat treatment is less than 10 MPa, sufficient bake-hardness cannot be exhibited, and in this case as well, there is a possibility that it is not suitable for applications such as automobile outer plates.
(実施例1)
次に、本発明の実施例につき、図1〜図3を用いて説明する。
本例においては、図1に示すごとく、パンチ21、ダイス22、及びしわ押さえ23を具備する成形装置2を用いて、Al−Mg−Si系アルミニウム合金板よりなる素材板1を温間成形して温間成形加工品を製造する。素材板1としては、Siを0.5〜2.0mass%、Mgを0.2〜1.5mass%含有し、かつT4処理されたAl−Mg−Si系合金板を採用する。
Example 1
Next, an embodiment of the present invention will be described with reference to FIGS.
In this example, as shown in FIG. 1, a material plate 1 made of an Al—Mg—Si based aluminum alloy plate is warm-formed using a forming
本例においては、保持工程と成形工程とを行って温間成形加工品を作製する。
保持工程においては、素材板1の端部を成形装置2のダイス22としわ押さえ23とで挟持する。このとき、素材板1のダイス22としわ押さえ23とによって狭持したフランジ部15を温度T(150≦T≦300)℃にt1(t1=−0.1×T+31)分間以下加熱保持する。
In this example, a warm forming product is manufactured by performing a holding process and a forming process.
In the holding step, the end portion of the material plate 1 is sandwiched between the die 22 and the
また、成形工程においては、成形装置2のパンチ21をダイス22に対して相対的に前進させて素材板1を成形する。このとき、パンチ21の温度をフランジ部15の温度T℃よりも30℃以上低い温度に保持した状態で、成形時間t2(t2=−0.06×T+20)分間以内で成形を行う。
Further, in the forming step, the blank 21 is formed by advancing the
以下、本例の温間成形加工品の製造方法につき、詳細に説明する。
まず、図1に示すごとく、パンチ21、ダイス22、及びしわ押さえ23を具備する成形装置2を準備した。パンチ21において、パンチ径はφ50mm、パンチ肩部215の肩半径はR5mmである。ダイス22において、ダイス肩部225の肩半径はR5mmである。また、パンチ21、ダイス22、しわ押さえ23には、それぞれヒータ3が内蔵されており、パンチ21、ダイス22、しわ押さえ23の温度を制御することができる。
Hereinafter, the manufacturing method of the warm formed product of this example will be described in detail.
First, as shown in FIG. 1, a forming
次に、素材板1として、T4処理された、円盤状で板厚1mmのAl−Mg−Si系アルミニウム合金板(6016合金板)を準備した。この素材板1は、Mgを
0.48mass%、Siを1.0mass%含有する。次いで、素材板1の両面に潤滑剤としての二硫化モリブデンをスプレーにより塗布し、この素材板1を成形装置2のダイス22としわ押さえ23とで狭持した。
Next, an Al—Mg—Si-based aluminum alloy plate (6016 alloy plate) having a disk shape and a plate thickness of 1 mm was prepared as the material plate 1. The material plate 1 contains 0.48 mass% Mg and 1.0 mass% Si. Next, molybdenum disulfide as a lubricant was applied to both surfaces of the material plate 1 by spraying, and the material plate 1 was held between the die 22 and the
次に、ダイス22及びしわ押さえ23に内蔵されたヒータ3によって、ダイス22としわ押さえ23とによって狭持した素材板1のフランジ部15を温度150℃に加熱した(加熱保持時間0分)。次いで、パンチ21に内蔵されたヒータ3によって、パンチ21の温度をフランジ部15の温度よりも30℃低い温度、即ち120℃に加熱保持した状態で、パンチ21をダイス22に対して相対的に前進させて素材板1の深絞り成形を行い、底部を有する円筒状の温間成形加工品(試料E1)を作製した。成形は、0.2分間で行い、このときの限界絞り比を測定した。
Next, the
限界絞り比(L.D.R)は、ブランク径を変更しながら、各ブランク径についてそれぞれ5個ずつの同一径の素材板を成形した際に、同じ径の素材板を破断なしで3個以上成形できたときの素材板の最大径を最大ブランク径とすると、下記の式(1)から算出することができる。その結果を表1に示す。
L.D.R=最大ブランク径/パンチ径 ・・・(1)
The limit drawing ratio (L.D.R) is 3 without breaking, when 5 blanks with the same diameter are formed for each blank diameter while changing the blank diameter. Assuming that the maximum diameter of the material plate when it has been formed is the maximum blank diameter, it can be calculated from the following equation (1). The results are shown in Table 1.
L. D. R = maximum blank diameter / punch diameter (1)
また、本例においては、上記試料E1とはフランジ部の加熱温度、加熱保持時間、パンチの温度、及び成形時間を変えて、その他は上記試料E1と同様にして温間成形を行い、複数の温間成形加工品(試料E2〜E5)を作製し、限界絞り比を測定した。その結果を表1に示す。 Further, in this example, the sample E1 was subjected to warm forming in the same manner as the sample E1 except that the heating temperature of the flange portion, the heating and holding time, the temperature of the punch, and the molding time were changed. Warm-formed products (samples E2 to E5) were produced, and the limit drawing ratio was measured. The results are shown in Table 1.
また、本例においては、試料E1〜試料E5の比較用として、上記試料E1とは素材板の種類(調質)、フランジ部の加熱温度、加熱保持時間、パンチの温度、及び成形時間を変えて、その他は上記試料E1と同様にして温間成形を行い、複数の温間成形加工品(試料C1〜C8)を作製し、限界絞り比を測定した。その結果を表1に示す。 Further, in this example, for comparison with the samples E1 to E5, the sample E1 is different from the sample E1 in the type (tempering) of the material plate, the heating temperature of the flange portion, the heating holding time, the punching temperature, and the molding time. In other respects, warm forming was performed in the same manner as the sample E1, and a plurality of warm formed products (samples C1 to C8) were produced, and the limit drawing ratio was measured. The results are shown in Table 1.
さらに、本例においては、上記試料E1〜試料E5及び試料C1〜試料C8の温間成形加工品について、そのベークハード性の評価を引張試験により行った。
具体的には、まず、上記試料E1〜試料E5及び試料C1〜試料C8を温度170℃で20分間加熱する熱処理を行った。この熱処理は各試料の成形後30分〜1時間以内に行った。
次いで、底部を有する円筒状の温間成形加工品の各試料(試料E1〜試料E5及び試料C1〜試料C8)の底部から15mm×35mmの寸法で引張試験用の試験片を切り出した(図2及び図3参照)。同図に示すごとく、この試験片は幅8mm、長さ8mmの寸法の平行部を有している。
Furthermore, in this example, the bake hardness of the warm-formed products of Sample E1 to Sample E5 and Sample C1 to Sample C8 was evaluated by a tensile test.
Specifically, first, heat treatment was performed by heating Sample E1 to Sample E5 and Sample C1 to Sample C8 at a temperature of 170 ° C. for 20 minutes. This heat treatment was performed within 30 minutes to 1 hour after molding of each sample.
Subsequently, a test piece for a tensile test was cut out from the bottom of each sample (sample E1 to sample E5 and sample C1 to sample C8) of a cylindrical warm-formed product having a bottom (Fig. 2). And FIG. 3). As shown in the figure, the test piece has a parallel portion having a width of 8 mm and a length of 8 mm.
次に、この試験片を用いて、JIS Z 2241(1998年)に規定の「金属材料引張試験方法」にしたがって、各試料の試験片の耐力を測定した。その結果を表1に示す。
また、上記熱処理を行う前の温間成形加工品(試料E1〜試料E5及び試料C1〜試料C8)の各試料から、上述と同様の引張試験用の試験片を作製し、耐力を測定した。そして、熱処理による耐力の増加量を、熱処理前後における耐力の差を求めること、即ち熱処理後の耐力の値から熱処理前の耐力の値を減することにより算出し、その結果を表1に示す。
Next, using this test piece, the proof stress of the test piece of each sample was measured according to the “metal material tensile test method” defined in JIS Z 2241 (1998). The results are shown in Table 1.
Moreover, the test piece for the tensile test similar to the above was produced from each sample of the warm-molded product (Sample E1-Sample E5 and Sample C1-Sample C8) before performing the said heat processing, and the yield strength was measured. The amount of increase in yield strength due to heat treatment was calculated by determining the difference in yield strength before and after heat treatment, that is, by subtracting the value of yield strength before heat treatment from the value of yield strength after heat treatment, and the results are shown in Table 1.
表1より知られるごとく、試料E1〜試料E6の温間成形加工品は、2.2以上という高い限界絞り比を示すと共に、167MPa以上という高いベークハード後の耐力及び12MPa以上という高い耐力の増加量を示した。したがって、試料E1〜試料E6の温間成形加工品は、成形性に優れると共に、ベークハード性にも優れていることがわかる。
一方、試料C1〜試料C8は、試料E1〜試料E6に比べて限界絞り比が低く、成形性が不充分であった。また試料C2は、ベークハード後の耐力が非常に低く、試料C2、C3、C5、C6、及びC8は、ベークハード前後の耐力増加量が小さく、これらはベークハード性が不充分であった。
As is known from Table 1, the warm-formed products of Samples E1 to E6 exhibit a high limit drawing ratio of 2.2 or higher, a high yield strength after baking hard of 167 MPa or higher, and a high yield strength of 12 MPa or higher. Amount indicated. Therefore, it can be seen that the warm molded products of Samples E1 to E6 are excellent in moldability and bake hardness.
On the other hand, Sample C1 to Sample C8 had a lower limit drawing ratio than Sample E1 to Sample E6 and had insufficient moldability. Sample C2 had a very low yield strength after baking, and Samples C2, C3, C5, C6, and C8 had a small increase in yield before and after baking, and these were insufficient in bake hardness.
このように本例によれば、試料E1〜試料E5のように、素材板の調質、フランジ部の加熱条件、パンチ温度、及び成形時間を制御することにより、成形性及びベークハード性を向上できることがわかる。 As described above, according to this example, as in samples E1 to E5, the moldability and bake hardness are improved by controlling the tempering of the material plate, the heating condition of the flange, the punch temperature, and the molding time. I understand that I can do it.
(実施例2)
本例は、組成の異なるAl−Mg−Si系アルミニウム合金板からなる素材板を用いて実施例1と同様に温間成形加工品を作製し、成形性及びベークハード性を評価した例である。
まず、素材板として、Siを1.0mass%、Mgを0.48mass%、Feを0.11mass%、Cuを0.01mass%、Mnを0.11mass%、Tiを0.03mass%含有し、T4処理された、円盤状で板厚1mmのAl−Mg−Si系アルミニウム合金板を準備した。
また、実施例1と同様の成形装置を準備した。
(Example 2)
This example is an example in which a warm-formed product was produced in the same manner as in Example 1 using material plates made of Al—Mg—Si-based aluminum alloy plates having different compositions, and the formability and bake hardness were evaluated. .
First, as a material plate, 1.0 mass% Si, 0.48 mass% Mg, 0.11 mass% Fe, 0.01 mass% Cu, 0.11 mass% Mn, 0.03 mass% Ti, An Al—Mg—Si aluminum alloy plate having a disk shape and a plate thickness of 1 mm treated with T4 was prepared.
A molding apparatus similar to that in Example 1 was prepared.
次いで、実施例1と同様に、上記素材板を、成形装置のダイスとしわ押さえとで狭持した。次いで、成形装置のダイス及びしわ押さえに内蔵されたヒータによって、ダイスとしわ押さえとによって狭持したフランジ部を温度300℃に加熱し、その温度で1分間保持した。次いで、パンチに内蔵されたヒータ3によって、パンチの温度をフランジ部の温度よりも30℃低い温度、即ち270℃に加熱保持した状態で、パンチをダイスに対して相対的に前進させて素材板の深絞り成形を行い、実施例1と同様に底部を有する円筒状の温間成形加工品(試料E6)を作製した。成形は、2分間で行い、このときの限界絞り比を実施例1と同様にして測定した。その結果を後述の表2に示す。
Next, in the same manner as in Example 1, the material plate was sandwiched between a die and a wrinkle retainer of a molding apparatus. Next, the flange portion sandwiched between the die and the wrinkle presser was heated to a temperature of 300 ° C. by a heater built in the die and the wrinkle presser of the molding apparatus, and held at that temperature for 1 minute. Next, with the
また、本例においては、上記試料E6とは、組成が異なるAl−Mg−Si系アルミニウム合金板からなる素材板を用いて、その他は上記試料E6と同様にしてさらに6種類の温間成形加工品(試料E7〜E8及び試料C9〜試料C12)を作製し、限界絞り比を測定した。各試料の具体的な組成及び限界絞り比を後述の表2に示す。
また、各試料(試料E6〜試料E8及び試料C9〜試料C12)のベークハード性の評価を実施例1と同様の引張試験により行った。その結果を表2に示す。
In this example, a material plate made of an Al—Mg—Si-based aluminum alloy plate having a different composition from that of the sample E6 is used, and the other six types of warm forming processes are performed in the same manner as the sample E6. Articles (Samples E7 to E8 and Samples C9 to C12) were produced, and the limit drawing ratio was measured. The specific composition and limit drawing ratio of each sample are shown in Table 2 below.
Moreover, evaluation of the bake hard property of each sample (sample E6 to sample E8 and sample C9 to sample C12) was performed by the same tensile test as in Example 1. The results are shown in Table 2.
表2より知られるごとく、Siを0.5〜2.0mass%、Mgを0.2〜1.5mass%含有するAl−Mg−Si系アルミニウム合金板からなる素材板を用いて作製した試料E6〜試料E8においては、2.2という高い限界絞り比を示し、また190MPa以上という高いベークハード後の耐力、及び12MPa以上という高い耐力増加量を示した。したがって、試料E6〜試料E8の温間成形加工品は、成形性に優れると共に、ベークハード性にも優れていることがわかる。 As is known from Table 2, sample E6 produced using a material plate made of an Al—Mg—Si based aluminum alloy plate containing 0.5 to 2.0 mass% of Si and 0.2 to 1.5 mass% of Mg. -Sample E8 exhibited a high limit drawing ratio of 2.2, a high yield strength after baking hard of 190 MPa or more, and a high yield increase of 12 MPa or more. Therefore, it can be seen that the warm molded products of Sample E6 to Sample E8 are excellent in moldability and also in bake hardness.
これに対し、Si及びMgの含有量がそれぞれ0.5〜2.0mass%及び0.2〜1.5mass%という範囲から外れる組成のAl−Mg−Si系アルミニウム合金板からなる素材板を用いて作製した試料C1〜試料C8においては、試料E6〜試料E8に比べて限界絞り比が低く、成形性が不充分であった。また、試料C9及び試料C11は、ベークハード後の耐力が低く、試料C9〜試料C12はベークハード前後における耐力の増加量が小さく、これらはベークハード性が不充分であった。 In contrast, a material plate made of an Al—Mg—Si based aluminum alloy plate having a composition in which the contents of Si and Mg deviate from the ranges of 0.5 to 2.0 mass% and 0.2 to 1.5 mass%, respectively. Samples C1 to C8 produced in this manner had a lower limit drawing ratio than Samples E6 to E8, and the moldability was insufficient. In addition, Sample C9 and Sample C11 had low yield strength after baking, Samples C9 to C12 had a small increase in yield before and after baking, and these were insufficient in baking properties.
このように、本例によれば、試料E6〜試料E8のように、素材板としてのAl−Mg−Si系アルミニウム合金板におけるSi及びMgの含有量を調整することにより、成形性及びベークハード性を向上できることがわかる。 Thus, according to this example, by adjusting the content of Si and Mg in the Al—Mg—Si based aluminum alloy plate as the material plate as in the samples E6 to E8, the formability and the bake hardness are adjusted. It can be seen that the performance can be improved.
1 素材板
15 フランジ部
2 成形装置
21パンチ
22 ダイス
23 しわ押さえ
DESCRIPTION OF SYMBOLS 1
Claims (3)
上記素材板としては、Siを0.5〜2.0mass%、Mgを0.2〜1.5mass%含有し、かつT4処理されたAl−Mg−Si系アルミニウム合金板を採用し、
上記素材板の端部を上記成形装置の上記ダイスと上記しわ押さえとで挟持する保持工程と、
上記成形装置の上記パンチを上記ダイスに対して相対的に前進させて上記素材板を成形する成形工程とを有し、
上記保持工程においては、上記素材板の上記ダイスと上記しわ押さえとによって狭持したフランジ部を温度T(150≦T≦300)℃にt1(t1=−0.1×T+31)分間以下加熱保持し、
上記成形工程においては、上記パンチの温度を上記フランジ部の温度T℃よりも30℃以上低い温度に保持した状態で、成形時間t2(t2=−0.06×T+20)分間以内で成形を行うことを特徴とする温間成形加工品の製造方法。 In a method for producing a warm-formed product by warm-forming a material plate made of an Al-Mg-Si-based aluminum alloy plate, using a forming device having a punch, a die, and a wrinkle presser,
As the material plate, an Al-Mg-Si-based aluminum alloy plate containing 0.5 to 2.0 mass% of Si, 0.2 to 1.5 mass% of Mg, and treated with T4 is used.
A holding step of clamping the end of the material plate with the die of the molding apparatus and the wrinkle presser;
A molding step of molding the material plate by advancing the punch of the molding device relative to the die,
In the holding step, the flange portion sandwiched by the die and the wrinkle presser of the material plate is heated to a temperature T (150 ≦ T ≦ 300) ° C. for t 1 (t 1 = −0.1 × T + 31) minutes or less. Hold heated,
In the molding step, molding is performed within a molding time t 2 (t 2 = −0.06 × T + 20) minutes in a state where the temperature of the punch is maintained at a temperature 30 ° C. or more lower than the temperature T ° C. of the flange portion. A method for producing a warm-formed product, characterized in that
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005023498A JP2006205244A (en) | 2005-01-31 | 2005-01-31 | Warm-formed article and its production method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005023498A JP2006205244A (en) | 2005-01-31 | 2005-01-31 | Warm-formed article and its production method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006205244A true JP2006205244A (en) | 2006-08-10 |
Family
ID=36962614
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005023498A Pending JP2006205244A (en) | 2005-01-31 | 2005-01-31 | Warm-formed article and its production method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006205244A (en) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008019483A (en) * | 2006-07-13 | 2008-01-31 | Kobe Steel Ltd | Aluminum alloy sheet for warm-forming and warm-forming method |
JP2008266684A (en) * | 2007-04-17 | 2008-11-06 | Kobe Steel Ltd | Aluminum alloy sheet for warm-forming and warm-forming method therefor |
JP2009007617A (en) * | 2007-06-27 | 2009-01-15 | Kobe Steel Ltd | Aluminum alloy sheet for warm forming and manufacturing method therefor |
EP2075348A1 (en) | 2007-12-11 | 2009-07-01 | Furukawa-Sky Aluminium Corp. | Aluminum alloy sheet for cold press forming, method of manufacturing the same, and cold press forming method for aluminum alloy sheet |
JP2009148822A (en) | 2007-11-27 | 2009-07-09 | Nippon Steel Corp | Warm press-forming method for high-strength aluminum alloy sheet |
JP2009148823A (en) | 2007-11-27 | 2009-07-09 | Nippon Steel Corp | Warm press-forming method for aluminum alloy cold-rolled sheet |
JP2009161851A (en) * | 2007-12-11 | 2009-07-23 | Furukawa-Sky Aluminum Corp | Aluminum alloy sheet for cold press forming, method for manufacturing the same, and cold press forming method for aluminum alloy sheet |
JP2009241143A (en) * | 2008-03-31 | 2009-10-22 | Kobe Steel Ltd | Press forming method for aluminum alloy sheet |
JP2009241856A (en) * | 2008-03-31 | 2009-10-22 | Kobe Steel Ltd | Method of manufacturing aluminum alloy panel member for automobile |
JP2009241140A (en) * | 2008-03-31 | 2009-10-22 | Kobe Steel Ltd | Method of warm-forming aluminum alloy sheet |
JP2010227954A (en) * | 2009-03-26 | 2010-10-14 | Furukawa-Sky Aluminum Corp | Method of press-forming aluminum alloy sheet |
JP2011115837A (en) * | 2009-12-07 | 2011-06-16 | Furukawa-Sky Aluminum Corp | Method of producing aluminum alloy molded article |
CN101786123B (en) * | 2010-02-05 | 2012-06-20 | 江苏大学 | Temperature-differential forming terrace die of metal sheet material |
CN102615201A (en) * | 2012-04-25 | 2012-08-01 | 哈尔滨工业大学 | Cold-hot compound die molding method for aluminum alloy sheet metal component |
EP2518173A1 (en) * | 2011-04-26 | 2012-10-31 | Benteler Automobiltechnik GmbH | Method for manufacturing a sheet metal structure component and sheet metal structure component |
JP2015039719A (en) * | 2013-08-23 | 2015-03-02 | 川崎重工業株式会社 | Aluminum alloy component manufacturing method and aluminum alloy plate press molding device |
JP2016020530A (en) * | 2014-07-14 | 2016-02-04 | 株式会社Uacj | WARM MOLDING METHOD FOR Al-Mg-Si BASED ALLOY ROLLED SHEET |
JP2021062407A (en) * | 2020-12-25 | 2021-04-22 | 株式会社ジーテクト | Molding method for aluminum alloy |
JP2021113348A (en) * | 2020-01-20 | 2021-08-05 | 株式会社神戸製鋼所 | Manufacturing method of component made of aluminum alloy |
US11939655B2 (en) * | 2016-07-13 | 2024-03-26 | Constellium Neuf-Brisach | Aluminium alloy blanks with local flash annealing |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11350058A (en) * | 1998-06-12 | 1999-12-21 | Shinko Alcoa Yuso Kizai Kk | Aluminum alloy sheet excellent in formability and baking hardenability and its production |
JP2004124175A (en) * | 2002-10-02 | 2004-04-22 | Furukawa Sky Kk | Method for manufacturing 6000 system alloy plate for forming excellent in formability, baking hardenability, and springback characteristic |
-
2005
- 2005-01-31 JP JP2005023498A patent/JP2006205244A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11350058A (en) * | 1998-06-12 | 1999-12-21 | Shinko Alcoa Yuso Kizai Kk | Aluminum alloy sheet excellent in formability and baking hardenability and its production |
JP2004124175A (en) * | 2002-10-02 | 2004-04-22 | Furukawa Sky Kk | Method for manufacturing 6000 system alloy plate for forming excellent in formability, baking hardenability, and springback characteristic |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008019483A (en) * | 2006-07-13 | 2008-01-31 | Kobe Steel Ltd | Aluminum alloy sheet for warm-forming and warm-forming method |
JP2008266684A (en) * | 2007-04-17 | 2008-11-06 | Kobe Steel Ltd | Aluminum alloy sheet for warm-forming and warm-forming method therefor |
JP2009007617A (en) * | 2007-06-27 | 2009-01-15 | Kobe Steel Ltd | Aluminum alloy sheet for warm forming and manufacturing method therefor |
JP2009148823A (en) | 2007-11-27 | 2009-07-09 | Nippon Steel Corp | Warm press-forming method for aluminum alloy cold-rolled sheet |
JP2009148822A (en) | 2007-11-27 | 2009-07-09 | Nippon Steel Corp | Warm press-forming method for high-strength aluminum alloy sheet |
JP2009161851A (en) * | 2007-12-11 | 2009-07-23 | Furukawa-Sky Aluminum Corp | Aluminum alloy sheet for cold press forming, method for manufacturing the same, and cold press forming method for aluminum alloy sheet |
US8273196B2 (en) | 2007-12-11 | 2012-09-25 | Furukawa-Sky Aluminum Corp. | Aluminum alloy sheet for cold press forming, method of manufacturing the same, and cold press forming method for aluminum alloy sheet |
EP2075348A1 (en) | 2007-12-11 | 2009-07-01 | Furukawa-Sky Aluminium Corp. | Aluminum alloy sheet for cold press forming, method of manufacturing the same, and cold press forming method for aluminum alloy sheet |
KR101455606B1 (en) | 2007-12-11 | 2014-10-28 | 가부시키가이샤 유에이씨제이 | Aluminum alloy sheet for cold press forming, method of manufacturing the same, and cold press forming method for aluminum alloy sheet |
JP2009241143A (en) * | 2008-03-31 | 2009-10-22 | Kobe Steel Ltd | Press forming method for aluminum alloy sheet |
JP2009241856A (en) * | 2008-03-31 | 2009-10-22 | Kobe Steel Ltd | Method of manufacturing aluminum alloy panel member for automobile |
JP2009241140A (en) * | 2008-03-31 | 2009-10-22 | Kobe Steel Ltd | Method of warm-forming aluminum alloy sheet |
JP2010227954A (en) * | 2009-03-26 | 2010-10-14 | Furukawa-Sky Aluminum Corp | Method of press-forming aluminum alloy sheet |
JP2011115837A (en) * | 2009-12-07 | 2011-06-16 | Furukawa-Sky Aluminum Corp | Method of producing aluminum alloy molded article |
CN101786123B (en) * | 2010-02-05 | 2012-06-20 | 江苏大学 | Temperature-differential forming terrace die of metal sheet material |
EP2518173A1 (en) * | 2011-04-26 | 2012-10-31 | Benteler Automobiltechnik GmbH | Method for manufacturing a sheet metal structure component and sheet metal structure component |
US10501829B2 (en) | 2011-04-26 | 2019-12-10 | Benteler Automobiltechnik Gmbh | Method for producing a structural sheet metal component, and a structural sheet metal component |
CN102615201B (en) * | 2012-04-25 | 2014-09-10 | 哈尔滨工业大学 | Cold-hot compound die molding method for aluminum alloy sheet metal component |
CN102615201A (en) * | 2012-04-25 | 2012-08-01 | 哈尔滨工业大学 | Cold-hot compound die molding method for aluminum alloy sheet metal component |
JP2015039719A (en) * | 2013-08-23 | 2015-03-02 | 川崎重工業株式会社 | Aluminum alloy component manufacturing method and aluminum alloy plate press molding device |
JP2016020530A (en) * | 2014-07-14 | 2016-02-04 | 株式会社Uacj | WARM MOLDING METHOD FOR Al-Mg-Si BASED ALLOY ROLLED SHEET |
US11939655B2 (en) * | 2016-07-13 | 2024-03-26 | Constellium Neuf-Brisach | Aluminium alloy blanks with local flash annealing |
JP2021113348A (en) * | 2020-01-20 | 2021-08-05 | 株式会社神戸製鋼所 | Manufacturing method of component made of aluminum alloy |
JP7316951B2 (en) | 2020-01-20 | 2023-07-28 | 株式会社神戸製鋼所 | Method for manufacturing aluminum alloy member |
JP2021062407A (en) * | 2020-12-25 | 2021-04-22 | 株式会社ジーテクト | Molding method for aluminum alloy |
JP7117364B2 (en) | 2020-12-25 | 2022-08-12 | 株式会社ジーテクト | Forming method of aluminum alloy |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2006205244A (en) | Warm-formed article and its production method | |
JP2614686B2 (en) | Manufacturing method of aluminum alloy for forming process excellent in shape freezing property and paint bake hardenability | |
JP5354954B2 (en) | Aluminum alloy plate for press forming | |
KR20160021749A (en) | Aluminum alloy material suitable for manufacturing of automobile sheet, and preparation method therefor | |
JP6301095B2 (en) | Al-Mg-Si aluminum alloy plate for automobile panel and method for producing the same | |
JP2010159488A (en) | Method for molding 2,000 series aluminum alloy material, and formed product molded by the same | |
JP2011017063A (en) | Method for manufacturing blank to be cold-press-formed of aluminum alloy sheet, cold press-forming method by using the same, and formed article | |
JP2007308744A (en) | Warm press formed high-strength member, and its manufacturing method | |
JP5148896B2 (en) | Aluminum alloy blank with excellent press forming | |
JPH07197219A (en) | Production of aluminum alloy sheet for forming | |
EP3218528B1 (en) | Multipurpose heat treatable aluminum alloys and related processes and uses | |
JP2009148823A (en) | Warm press-forming method for aluminum alloy cold-rolled sheet | |
JP4266341B2 (en) | Steel for omitting spheroidizing annealing with excellent cold forgeability and anti-roughening properties during case hardening, and method for producing the same | |
JP4865174B2 (en) | Manufacturing method of aluminum alloy sheet with excellent bending workability and drawability | |
JP2009148822A (en) | Warm press-forming method for high-strength aluminum alloy sheet | |
JP2011094203A (en) | Method for manufacturing crank shaft, and crank shaft | |
RU2655510C2 (en) | Easy formed, medium-strength aluminum alloy for cars workpieces or parts manufacturing | |
JPH11279724A (en) | Production of aluminum alloy sheet for deep drawing | |
JP5247071B2 (en) | Aluminum alloy plate for press forming | |
JP4765600B2 (en) | Method for producing aluminum alloy member | |
JP4257179B2 (en) | T4-treated aluminum alloy rolled sheet for forming and method for producing the same | |
JP2009280839A (en) | HIGH STRENGTH AND HIGH FORMABILITY Al-Mg-Mn BASED ALUMINUM ALLOY SHEET, AND METHOD FOR PRODUCING THE SAME | |
TWI635189B (en) | Method for producing steel and application thereof | |
JP2005042195A (en) | Aluminum alloy sheet with excellent barrel cutting resistance for bottle can | |
JPH059636A (en) | Thin aluminum alloy sheet for drawless fin having excellent ironing property and production thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071227 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100608 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100622 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100816 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110201 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110404 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110930 |