JP2008019483A - Aluminum alloy sheet for warm-forming and warm-forming method - Google Patents

Aluminum alloy sheet for warm-forming and warm-forming method Download PDF

Info

Publication number
JP2008019483A
JP2008019483A JP2006193113A JP2006193113A JP2008019483A JP 2008019483 A JP2008019483 A JP 2008019483A JP 2006193113 A JP2006193113 A JP 2006193113A JP 2006193113 A JP2006193113 A JP 2006193113A JP 2008019483 A JP2008019483 A JP 2008019483A
Authority
JP
Japan
Prior art keywords
warm
plate
less
aluminum alloy
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006193113A
Other languages
Japanese (ja)
Other versions
JP5329746B2 (en
Inventor
Katsushi Matsumoto
克史 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2006193113A priority Critical patent/JP5329746B2/en
Publication of JP2008019483A publication Critical patent/JP2008019483A/en
Application granted granted Critical
Publication of JP5329746B2 publication Critical patent/JP5329746B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a 6000 series Al alloy sheet improving a warm-formability and a warm-forming method therefor. <P>SOLUTION: Al-Mg-Si based alloy sheet is composed of the range of 0.25-1.25 at% Si and Mg contents corresponding to Mg<SB>2</SB>Si composition and the gap from Mg<SB>2</SB>Si of composition and the gap from the Mg<SB>2</SB>Si of contents of these Si and Mg are respectively in the range of ≤0.5 at% and the balance aluminum with inevitable impurities, and as the characteristic of this sheet, the local extension is ≥20% at 300°C and this local extension to the whole extension is made to ≥60% and the warm formability thereof is improved. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、温間でプレス成形などの成形加工を行なう温間成形用のAl−Mg−Si系合金板および、このAl−Mg−Si系合金板の温間成形方法に関するものである。本発明で言うアルミニウム合金板とは、板状に、圧延、押出、鍛造、鋳造などによって製造されたアルミニウム合金を言う。以下、アルミニウムをAl、Al−Mg−Si系合金板を6000系Al合金板とも言う。   The present invention relates to an Al—Mg—Si based alloy plate for warm forming in which a forming process such as press forming is performed warm, and a warm forming method for the Al—Mg—Si based alloy plate. The aluminum alloy plate referred to in the present invention refers to an aluminum alloy produced in a plate shape by rolling, extrusion, forging, casting or the like. Hereinafter, aluminum is also referred to as Al, and an Al—Mg—Si alloy plate is also referred to as 6000 Al alloy plate.

周知の通り、従来から、自動車、船舶、航空機あるいは車両などの輸送機、機械、電気製品、建築、構造物、光学機器、器物の部材や部品用として、各種アルミニウム合金板が、合金毎の各特性に応じて汎用されている。   As is well known, various aluminum alloy plates have conventionally been used for each alloy for transporting machines such as automobiles, ships, airplanes or vehicles, machines, electrical products, architecture, structures, optical instruments, and components and parts of equipment. It is widely used depending on the characteristics.

これらのアルミニウム合金板は、多くの場合、プレス成形などで成形されて、上記各用途の部材や部品とされる。このため、従来から、比較的成形性の良いAl−Mg系合金(5000系Al合金)板が用いられてきた。   In many cases, these aluminum alloy plates are formed by press molding or the like, and are used as members and parts for the above-described applications. For this reason, conventionally, Al-Mg alloy (5000 series Al alloy) plates having relatively good formability have been used.

これに対して、6000系Al合金板は、Mg量などの合金量が多い5000系などのAl合金に比して、合金元素量が比較的少ない。このため、これら6000系Al合金板のスクラップを、Al合金溶解材 (溶解原料) として再利用する際に、元の6000系Al合金鋳塊が得やすく、リサイクル性にも優れている。また、6000系Al合金板は、基本的には、Si、Mgを必須として含み、優れた時効硬化能を有しているため、プレス成形や曲げ加工時には低耐力化により成形性を確保するとともに、成形後のパネルの塗装焼付処理などの、比較的低温の人工時効 (硬化) 処理時の加熱により時効硬化して耐力が向上し、必要な強度を確保できるBH性 (ベークハード性、人工時効硬化能、塗装焼付硬化性) を有する。   On the other hand, the 6000 series Al alloy plate has a relatively small amount of alloy elements as compared to 5000 series and other Al alloys having a large amount of alloy such as Mg. For this reason, when the scraps of these 6000 series Al alloy sheets are reused as an Al alloy melting material (melting raw material), the original 6000 series Al alloy ingot is easily obtained and the recyclability is also excellent. In addition, 6000 series Al alloy plate basically contains Si and Mg as essential and has excellent age-hardening ability, so at the time of press molding and bending, it ensures formability by reducing the yield strength. BH properties (bake hardness, artificial aging) that can improve the proof stress by heating at the time of relatively low-temperature artificial aging (curing) treatment, such as paint baking treatment of molded panels, and improve the yield strength. Curability and paint bake hardenability).

しかし、6000系Al合金板は、5000系Al合金板に比べてプレス成形性が良くない。このため、これまで、素材板側の特性を改善するために、MgやSi以外の第三、四元素を添加し、或いは合金元素の添加に併せて、結晶粒径、晶析出物の分散状態、粒界析出物、などのミクロ組織を制御する冶金的な改善が種々方法が種々試みられてきた。   However, the press formability of the 6000 series Al alloy plate is not as good as that of the 5000 series Al alloy plate. For this reason, until now, in order to improve the properties of the material plate side, the addition of the third and fourth elements other than Mg and Si, or the addition of alloy elements, the crystal grain size, the dispersion state of the crystal precipitates Various methods have been tried for metallurgical improvements to control the microstructure such as grain boundary precipitates.

一方、プレス成形の加工側からもAl合金板の成形性を向上させる方法が提案されている。その一つの例は温間成形である。この温間成形は、例えば、パンチ部分を室温に、ダイス部分を温間にして、板を成形する方法である。この温間成形は、熱間成形やブロー成形などに比して比較的低温であり、高温で板の特性が変わる恐れがなく、Al合金板の成形性は大きく改善される。   On the other hand, a method for improving the formability of an Al alloy sheet has also been proposed from the processing side of press forming. One example is warm forming. This warm forming is, for example, a method of forming a plate by setting the punch portion at room temperature and the die portion warm. This warm forming is at a relatively low temperature as compared with hot forming and blow forming, and there is no fear that the properties of the plate will change at high temperatures, and the formability of the Al alloy plate is greatly improved.

この温間成形によるアルミニウム合金板の成形が、従来から種々提案されている。例えば、温間成形性に優れた5000系アルミニウム合金板が提案されている (特許文献1、2参照) 。   Various methods for forming an aluminum alloy plate by this warm forming have been proposed. For example, a 5000 series aluminum alloy plate excellent in warm formability has been proposed (see Patent Documents 1 and 2).

また、 Fe :0.5〜2.0wt%、Mn:0.01〜0.6wt%、鋳造組織微細化剤0.10wt%以下を各々含有し、残部Alと不可避的不純物からなる特定組成のアルミニウム合金板におけるFe、Mnの固溶量を特定値以下に規定し、温間加工温度範囲200 〜300 ℃における引張伸びが65% 以上と高い、温間成形性に優れたアルミニウム合金板が提案されている (特許文献3参照) 。   Further, Fe: 0.5 to 2.0 wt%, Mn: 0.01 to 0.6 wt%, and a cast structure refining agent of 0.10 wt% or less, respectively, and a specific composition consisting of the balance Al and inevitable impurities Proposed aluminum alloy sheets with excellent warm formability, with a solid solution amount of Fe and Mn in aluminum alloy sheets below a specified value and a high tensile elongation of 65% or higher at a warm working temperature range of 200 to 300 ° C (See Patent Document 3).

更に、樹脂を挟む2枚のAl板を、Alを含有するはんだ材料により、予め固定し、温間成形時での加熱による樹脂剥離を極力抑え、板ズレを防止した制振Al板の温間成形も提案されている (特許文献4、5参照) 。
特開平4−72030号公報 (特許請求の範囲) 特開平7−310137号公報 (特許請求の範囲) 特開2002−348625号公報 (特許請求の範囲) 特開平11−221876号公報 (特許請求の範囲) 特開2000−317534号公報 (特許請求の範囲)
Furthermore, the two Al plates sandwiching the resin are fixed in advance with a solder material containing Al, and the warming of the vibration-damping Al plate that prevents the displacement of the resin by heating as much as possible and prevents the plate displacement. Molding has also been proposed (see Patent Documents 4 and 5).
JP-A-4-72030 (Claims) JP-A-7-310137 (Claims) JP 2002-348625 A (Claims) Japanese Patent Application Laid-Open No. 11-221876 (Claims) JP 2000-317534 A (Claims)

ただ、6000系Al合金板の温間成形については、これまで、あまり提案されていない。また、例えば、前記特許文献1などのように、温間成形用のアルミニウム合金板の温間加工温度範囲200 〜300 ℃における引張伸びなどの高温の特性を高くしても、Al−Mg−Si系の6000系Al合金板では、温間成形性が向上するとは限らない。   However, there have been few proposals for warm forming of 6000 series Al alloy sheets. Further, for example, even if the high temperature characteristics such as the tensile elongation in the warm working temperature range of 200 to 300 ° C. of the aluminum alloy plate for warm forming are increased as in Patent Document 1, Al—Mg—Si In the 6000 series Al alloy sheet, the warm formability is not always improved.

即ち、合金系が違えば、温間成形性が向上するメカニズムが違い、当然、温間成形性を向上させる手段も違ってくる。つまり、6000系Al合金板の温間成形性を向上させる手段は、これまで必ずしも明確ではなかった。   That is, if the alloy system is different, the mechanism for improving the warm formability is different, and naturally the means for improving the warm formability is also different. In other words, the means for improving the warm formability of the 6000 series Al alloy sheet has not always been clear so far.

本発明はこのような課題を解決するためになされたものであって、その目的は温間成形性を向上させた6000系Al合金板を提供することである。   The present invention has been made to solve such problems, and an object of the present invention is to provide a 6000 series Al alloy plate with improved warm formability.

この目的を達成するために、本発明温間成形用アルミニウム合金板の要旨は、Al−Mg−Si系合金板が、含有するSiとMgとがMg2Si 組成相当の含有量で0.25〜1.25 at%の範囲であり、これらSiとMgとの含有量のMg2Si バランスからのずれが各々±0.5at%以下の範囲であり、残部アルミニウムおよび不可避的不純物からなり、この板の特性として、200 〜300 ℃における局部伸びが20% 以上で、かつ、この局部伸びの全伸びに対する比率が60% 以上であることとする。 In order to achieve this object, the gist of the aluminum alloy sheet for warm forming of the present invention is that the Al-Mg-Si alloy sheet contains 0.25 to 1.25 in terms of the content of Si and Mg corresponding to the Mg 2 Si composition. The deviation of the content of Si and Mg from the Mg 2 Si balance is in the range of ± 0.5 at% or less, each consisting of the remaining aluminum and unavoidable impurities. The local elongation at 200 to 300 ° C. is 20% or more, and the ratio of the local elongation to the total elongation is 60% or more.

本発明温間成形用アルミニウム合金板では、温間成形性の向上を保証するために、前記アルミニウム合金板が、質量% で、Si:0.30 〜1.8%、Mg:0.45 〜2.6%を含み、その他の元素として、Fe:1.0% 以下、Ti:0.05%以下、Mn:1.0% 以下、Cr:0.3% 以下、Zr:0.3% 以下、V:0.3%以下、Cu:1.0% 以下、Zn=1.0% 以下の含有まで許容し、残部アルミニウムおよび不可避的不純物からなることが好ましい。   In the aluminum alloy plate for warm forming according to the present invention, in order to ensure improvement in warm formability, the aluminum alloy plate contains Si: 0.30 to 1.8%, Mg: 0.45 to 2.6% by mass, Fe: 1.0% or less, Ti: 0.05% or less, Mn: 1.0% or less, Cr: 0.3% or less, Zr: 0.3% or less, V: 0.3% or less, Cu: 1.0% or less, Zn = 1.0% It is preferable that the following contents are allowed, and the remaining aluminum and unavoidable impurities are included.

更に、本発明温間成形方法は、上記要旨あるいは後述する好ましい態様のアルミニウム合金板を温間成形するに際して、このアルミニウム合金板のフランジ部分を150〜400℃の比較的高温とする一方、このアルミニウム合金板のパンチされる部分を100℃以下の比較的低温としてプレス成形することである。   Furthermore, in the warm forming method of the present invention, when the aluminum alloy plate of the above-described gist or the preferred embodiment described later is warm formed, the flange portion of the aluminum alloy plate is heated to a relatively high temperature of 150 to 400 ° C. The punched portion of the alloy plate is pressed at a relatively low temperature of 100 ° C. or lower.

温間成形では、パンチ(底部)部分を比較的低温に、ダイス部分を比較的高温にして成形する。これをアルミニウム合金板の材料面から言うと、板のフランジ部分(ダイス周縁部と板押さえ部とで挟まれる板部分)が比較的高温となる一方、板のパンチされる部分は比較的低温となる。   In warm forming, the punch (bottom) portion is formed at a relatively low temperature and the die portion is formed at a relatively high temperature. In terms of the material of the aluminum alloy plate, the flange portion of the plate (the plate portion sandwiched between the peripheral edge portion of the die and the plate pressing portion) is relatively hot, while the punched portion of the plate is relatively cold. Become.

温間成形において、板のパンチされる部分を比較的低温とする理由は、板のパンチされる部分は、パンチによる荷重負担部(特にパンチ底部との当接部)であり、破断強度が高い方が良いためである。   In warm forming, the reason for making the punched portion of the plate relatively low is that the punched portion of the plate is a load-bearing portion (particularly the abutting portion with the punch bottom) of the punch and has a high breaking strength. This is because it is better.

これに対して、板のフランジ部分(ダイス部分)を比較的高温とする理由は、板のフランジ部分では、板が変形してダイス内に材料流入するため、この板の変形のためには、変形抵抗を下げ、材料の流れ込み抵抗の最大値を下げる必要性があるからである。   On the other hand, the reason why the flange portion (die portion) of the plate is set to a relatively high temperature is because the plate deforms and the material flows into the die at the flange portion of the plate. This is because it is necessary to lower the deformation resistance and the maximum value of the material flow resistance.

したがって、アルミニウム合金板のパンチされる部分は、先ず板のフランジ部分として加熱されて変形抵抗を下げられ、材料の流れ込み抵抗の最大値を下げられた後で、板のパンチされる部分は、パンチ底部との当接部として、冷却されて破断強度が上げられる。   Therefore, the punched portion of the aluminum alloy plate is first heated as a flange portion of the plate to lower the deformation resistance, and after the maximum value of the material flow resistance is lowered, the punched portion of the plate is punched. As a contact portion with the bottom portion, it is cooled and the breaking strength is increased.

このことから、材料的には、アルミニウム合金板のパンチされる部分は、板のフランジ部分として加熱された際の流動応力が低く、パンチ底部との当接部として冷却された際の破断強度が高い方が良い。即ち、冷却された際の破断強度と、加熱された際の流動応力との差が大きい特性の方が成形性が良いこととなる。   Therefore, in terms of material, the punched portion of the aluminum alloy plate has a low flow stress when heated as a flange portion of the plate, and has a breaking strength when cooled as a contact portion with the punch bottom. Higher is better. That is, the moldability is better when the difference between the breaking strength when cooled and the flow stress when heated is larger.

本発明では、この特性をSiとMgとの互いの含有量のバランスによって達成する。即ち、含有するSiとMgとがMg2Si 組成相当の含有量で0.25〜1.25 at%の範囲であり、これらSiとMgとの含有量のMg2Si バランスからのずれが各々±0.5at%以下の範囲とする。これによって、この板の特性として、200 〜300 ℃における局部伸びが20% 以上で、かつ、この局部伸びの全伸びに対する比率が60% 以上であることを可能とし、温間成形性を向上させる。 In the present invention, this property is achieved by the balance between the contents of Si and Mg. That is, Si and Mg contained are in the range of 0.25 to 1.25 at% in terms of the content equivalent to the Mg 2 Si composition, and the deviation of the Si and Mg content from the Mg 2 Si balance is ± 0.5 at% respectively. The following range. As a result, the local elongation at 200 to 300 ° C. can be 20% or more and the ratio of the local elongation to the total elongation can be 60% or more as a characteristic of the plate, thereby improving warm formability. .

以下に、本発明の実施の形態につき、各要件ごとに具体的に説明する。   Hereinafter, embodiments of the present invention will be specifically described for each requirement.

(アルミニウム合金板温間特性)
本発明温間成形用アルミニウム合金板は、温間成形性を向上させるために、前提として、ある程度の伸びや延性を有することが必要である。実際の温間成形では、摩擦抵抗などにより材料の流入が困難となったり、張出要素が必要な変形部位が発生するからである。このため、温間成形性が良いためには「ある程度以上の」伸びや延性、そして強度が前提として必要となる。
(Aluminum alloy plate warm characteristics)
In order to improve the warm formability, the aluminum alloy plate for warm forming of the present invention must have a certain degree of elongation and ductility as a premise. This is because in actual warm forming, it becomes difficult for the material to flow in due to frictional resistance or the like, and a deformed portion that requires an overhanging element occurs. For this reason, in order to have good warm formability, “a certain degree” of elongation, ductility, and strength are required.

このため、本発明では、Al−Mg−Si系合金板の特性として、200 〜300 ℃における局部伸びが20% 以上で、かつ、この局部伸びの全伸びに対する比率が60% 以上であることとする。 この局部伸びが20% 未満では、また、この局部伸びの全伸びに対する比率が60% 未満では、材料の成形性が低くすぎて、温間成形性が向上しない。   Therefore, in the present invention, as the characteristics of the Al-Mg-Si alloy plate, the local elongation at 200 to 300 ° C. is 20% or more, and the ratio of the local elongation to the total elongation is 60% or more. To do. If the local elongation is less than 20%, and if the ratio of the local elongation to the total elongation is less than 60%, the moldability of the material is too low and the warm formability is not improved.

この局部伸びと全伸びとの測定は、引張試験における試験材料温度を200 〜300 ℃とする。勿論、この材料温度によって、局部伸びと全伸びとは変化するものの、200 〜300 ℃という温度範囲は、温間成形で汎用される温度域を示している。本発明では、この汎用される温度域での伸びを規定したいがために、200 〜300 ℃という温度範囲で規定した。   In the measurement of the local elongation and the total elongation, the test material temperature in the tensile test is set to 200 to 300 ° C. Of course, although the local elongation and the total elongation vary depending on the material temperature, the temperature range of 200 to 300 ° C. indicates a temperature range widely used in warm forming. In the present invention, since it is desired to define the elongation in this widely used temperature range, it is defined in a temperature range of 200 to 300 ° C.

(Al合金組成)
この局部伸びと全伸びに対する比率を達成し温間成形性を向上させるために、本発明Al−Mg−Si系合金板では、含有するSiとMgとの組成バランスが重要となる。この点、本発明ではAl−Mg−Si系合金板が含有するSiとMgとがMg2Si 組成相当の含有量で0.25〜1.25 at%の範囲であり、これらSiとMgとの含有量のMg2Si バランスからのずれが各々0.5at%以下の範囲であり、残部アルミニウムおよび不可避的不純物からなるものとする。
(Al alloy composition)
In order to achieve the ratio of the local elongation and the total elongation and improve the warm formability, in the Al-Mg-Si based alloy sheet of the present invention, the composition balance of Si and Mg contained is important. In this regard, in the present invention, the Si and Mg contained in the Al-Mg-Si based alloy sheet are in the range of 0.25 to 1.25 at% in terms of the content equivalent to the Mg 2 Si composition, and the content of these Si and Mg Deviations from the Mg 2 Si balance are each in the range of 0.5 at% or less and consist of the balance aluminum and inevitable impurities.

図1に、本発明が規定するMg2Si 組成相当の含有量での0.25〜1.25 at%の範囲と、これらSiとMgとの含有量のMg2Si バランスからのずれが0.5at%以下の範囲とを、縦軸のSi含有量(at%) と横軸のMg含有量(at%) との関係で各々示す。 FIG. 1 shows the range of 0.25 to 1.25 at% in the content equivalent to the Mg 2 Si composition specified by the present invention, and the deviation of the Si and Mg content from the Mg 2 Si balance is 0.5 at% or less. The range is indicated by the relationship between the Si content (at%) on the vertical axis and the Mg content (at%) on the horizontal axis.

これらの含有するSiとMgとの組成バランスによって、材料的には、アルミニウム合金板のパンチされる部分は、板のフランジ部分として加熱された際の流動応力が低く、パンチ底部との当接部として冷却された際の破断強度が高くなる。即ち、冷却された際の破断強度と、加熱された際の流動応力との差が大きい特性となり、温間成形性が向上する。   Due to the compositional balance of Si and Mg contained in these materials, the part to be punched of the aluminum alloy plate has a low flow stress when heated as a flange part of the plate, and the contact part with the bottom of the punch As a result, the breaking strength when cooled is increased. That is, the difference between the breaking strength when cooled and the flow stress when heated becomes a characteristic, and the warm formability is improved.

(Mg2Si組成相当の含有量)
SiとMgとがMg2Si 組成相当の含有量で0.25at% 未満では、固溶したMgやSi量が確保できず、局部伸びが低くなり、温間成形性が低下する。また、成形後の強度も低下する。一方、SiとMgとがMg2Si 組成相当の含有量で1.0 at% を越えた場合には、粗大なMg2Si や単体Siが析出して、これが破壊の起点となって、やはり、局部伸びが低くなり、温間成形性が低下する。したがって、Al−Mg−Si系合金板が含有するSiとMgとは、Mg2Si 組成相当の含有量で0.25〜1.25 at%の範囲とする。
(Content equivalent to Mg 2 Si composition)
If the content of Si and Mg is less than 0.25 at% in the content equivalent to the Mg 2 Si composition, the solid solution of Mg and Si cannot be secured, the local elongation is lowered, and the warm formability is lowered. Moreover, the strength after molding also decreases. On the other hand, when the content of Si and Mg exceeds 1.0 at% in the content equivalent to the Mg 2 Si composition, coarse Mg 2 Si or simple substance Si precipitates, and this is the starting point of the fracture. Elongation becomes low and warm formability decreases. Therefore, Si and Mg contained in the Al—Mg—Si based alloy plate are in the range of 0.25 to 1.25 at% in terms of the content equivalent to the Mg 2 Si composition.

(Si とMgとの含有量のMg2Si バランスからのずれ)
SiとMgとの含有量のMg2Si バランスからのずれが、SiとMgのいずれかでも、0.5at%の範囲を越えてずれた場合には、温間成形性が低下する。
(Deviation of Si and Mg content from Mg 2 Si balance)
When the deviation of the Si and Mg content from the Mg 2 Si balance deviates beyond the range of 0.5 at% for either Si or Mg, the warm formability decreases.

Siの含有量が少な過ぎ、或いはMgの含有量が多過ぎ、Mg2Si バランスからのずれが0.5at%を越えた場合には、固溶したSi量が確保できず、局部伸びが低くなり、温間成形性が低下する。また、温間成形後の強度も低下する。 If the Si content is too low, or the Mg content is too high, and the deviation from the Mg 2 Si balance exceeds 0.5 at%, the amount of Si in solid solution cannot be secured and the local elongation becomes low. , Warm formability decreases. In addition, the strength after warm forming also decreases.

その一方で、Siの含有量が多過ぎ、或いはMgの含有量が少な過ぎ、Mg2Si バランスからのずれが0.5at%を越えた場合には、固溶したMg量が確保できず、また、粗大な単体Siの析出量が増大し、これが破壊の起点となって、やはり、局部伸びが低くなり、温間成形性が低下する。 On the other hand, if the Si content is too high, or the Mg content is too low and the deviation from the Mg 2 Si balance exceeds 0.5 at%, the solid solution Mg content cannot be secured, and In addition, the amount of precipitation of coarse single-body Si increases, which becomes a starting point of fracture, again, the local elongation is lowered, and the warm formability is lowered.

したがって、Al−Mg−Si系合金板が含有するSiとMgとの含有量のMg2Si バランスからのずれが各々0.5at%以下の範囲とする。 Therefore, the deviation from the Mg 2 Si balance of the contents of Si and Mg contained in the Al—Mg—Si based alloy sheet is set to a range of 0.5 at% or less.

(残部組成)
含有するSiとMgとの組成バランスによる、局部伸びと全伸びに対する比率の規定達成と、温間成形性の向上を保証するために、本発明Al−Mg−Si系合金板では、残部組成は、基本的にアルミニウムおよび不可避的不純物からなるものとする。
(Remainder composition)
In the Al-Mg-Si alloy sheet of the present invention, the balance composition is the balance composition in order to guarantee the achievement of the ratio to the local elongation and the total elongation by the composition balance of Si and Mg contained, and to improve the warm formability. Basically, it consists of aluminum and inevitable impurities.

この不可避的不純物として、温間成形性や後述する自動車材パネル用などとして要求される諸特性を阻害しない範囲で、Fe、Ti、Mn、Cr、Zr、V 、Cu、Znあるいはその他の元素を含むことを許容する。これら合金元素以外のその他の合金元素やガス成分も不純物である。   As this unavoidable impurity, Fe, Ti, Mn, Cr, Zr, V, Cu, Zn or other elements are added as long as they do not impair the properties required for warm formability and automotive material panels described later. Allow to include. Other alloy elements and gas components other than these alloy elements are also impurities.

しかし、リサイクルの観点から、溶解材として、高純度Al地金だけではなく、6000系合金やその他のAl合金スクラップ材、低純度Al地金などを溶解原料として使用して、本発明Al合金組成を溶製する場合には、これら他の元素は必然的に含まれることとなる。このため、本発明では、上記した通り、目的とする本発明効果を阻害しない量だけ、これら不純物元素が含有されることを許容する。   However, from the viewpoint of recycling, not only high-purity Al ingots but also 6000 series alloys and other Al alloy scrap materials, low-purity Al ingots, etc. are used as melting raw materials as melting materials. When these are melted, these other elements are necessarily included. For this reason, in the present invention, as described above, these impurity elements are allowed to be contained in an amount that does not inhibit the intended effect of the present invention.

(自動車パネル材用組成)
一方、本発明が対象とするAl−Mg−Si系の6000系Al合金板では、前記した自動車パネル材用などとして、主目的である温間成形性以外にも、優れた曲げ加工性、BH (ベークハード) 性、強度、溶接性、耐食性などの諸特性が要求される。このような諸特性や温間成形性を保証するために、Si、Mg各々の含有量範囲を更に規定し、その他の元素の許容量を規定することが好ましい。
(Composition for automotive panel materials)
On the other hand, in the Al-Mg-Si based 6000 series Al alloy plate targeted by the present invention, for the above-mentioned automobile panel materials, etc., in addition to the warm formability that is the main purpose, excellent bending workability, BH Various properties such as (bake hard) property, strength, weldability and corrosion resistance are required. In order to guarantee such various properties and warm formability, it is preferable to further define the content ranges of Si and Mg and to define the allowable amounts of other elements.

このような組成として、具体的には、本発明温間成形用アルミニウム合金板が、質量% で、Si:0.30 〜1.8%、Mg:0.45 〜2.6%を含み、その他の元素として、Fe:1.0% 以下、Ti:0.05%以下、Mn:1.0% 以下、Cr:0.3% 以下、Zr:0.3% 以下、V:0.3%以下、Cu:1.0% 以下、Zn=1.0% 以下の含有まで許容し、残部アルミニウムおよび不可避的不純物からなることが好ましい。上記その他の元素は基本的には不純物であるが、地金以外にスクラップを溶解原料として多量に使用した場合には、これらの元素が混入される可能性が高い。そして、これらを例えば検出限界以下に低減すること自体コストアップとなり、ある程度の含有の許容が必要となる。また、実質量含有しても本発明目的や効果を阻害しない含有範囲があり、この範囲では各々の含有効果もある。したがって、上記各規定する量以下の範囲での含有を許容する。   As such a composition, specifically, the aluminum alloy plate for warm forming of the present invention contains, by mass%, Si: 0.30 to 1.8%, Mg: 0.45 to 2.6%, and other elements, Fe: 1.0 % Or less, Ti: 0.05% or less, Mn: 1.0% or less, Cr: 0.3% or less, Zr: 0.3% or less, V: 0.3% or less, Cu: 1.0% or less, and Zn = 1.0% or less are allowed. It preferably consists of the balance aluminum and inevitable impurities. The above other elements are basically impurities, but when scrap is used in large quantities as a melting raw material in addition to metal, there is a high possibility that these elements are mixed. And, for example, reducing these to below the detection limit itself increases costs, and a certain amount of allowance is required. Moreover, even if it contains a substantial amount, there is a content range that does not hinder the object and effect of the present invention, and within this range, there is also each content effect. Therefore, it is allowed to be contained within a range not exceeding the above specified amounts.

Si:0.30 〜1.8%。
SiはMgとともに、自動車パネル材用などとして、固溶強化と、塗装焼き付け処理などの前記低温短時間の人工時効処理時に、強度向上に寄与する時効析出物を形成して、時効硬化能を発揮する。これによって、例えば、自動車のアウタパネルとして必要な強度(耐力)を得ることができ、プレス成形性、ヘム (曲げ) 加工性などの諸特性を兼備できる。
Si: 0.30 to 1.8%.
Si, together with Mg, exhibits aging hardening ability by forming aging precipitates that contribute to strength improvement during the above-mentioned low temperature and short time artificial aging treatment such as paint baking treatment for automotive panel materials, etc. To do. Thereby, for example, the strength (proof strength) required for an outer panel of an automobile can be obtained, and various characteristics such as press formability and hem (bending) workability can be provided.

Si量が0.30% 未満では、上記時効硬化能、プレス成形性などが低下する。一方、Siが1.8%を越えて含有されると、却ってヘム加工性やプレス成形性が低下する。更に、溶接性を著しく阻害する。   When the Si content is less than 0.30%, the age-hardening ability, press formability and the like are lowered. On the other hand, when Si exceeds 1.8%, hemmability and press formability deteriorate. Furthermore, weldability is significantly impaired.

Mg:0.45 〜2.6%。
Mgは、自動車パネル材用などとして、固溶強化と、塗装焼き付け処理などの前記人工時効処理時に、Siとともに強度向上に寄与する時効析出物を形成して、時効硬化能を発揮し、前記自動車アウタパネルとして必要な耐力を得る。
Mg: 0.45 to 2.6%.
Mg is used for automobile panel materials, etc., during the artificial aging treatment such as solid solution strengthening and paint baking treatment, forms an aging precipitate that contributes to strength improvement together with Si, and exhibits age hardening ability. Obtains the required strength for the outer panel.

Mgの0.45% 未満の含有では、絶対量が不足するため、人工時効処理時に前記化合物相を形成できず、時効硬化能を発揮できない。このため自動車アウタパネルとして必要な前記耐力が得られない。一方、Mgが2.6%を越えて含有されると、却ってヘム曲げ加工性やプレス成形性を低下させる。   If the Mg content is less than 0.45%, the absolute amount is insufficient, so that the compound phase cannot be formed during the artificial aging treatment, and the age hardening ability cannot be exhibited. For this reason, the said proof stress required as a motor vehicle outer panel cannot be obtained. On the other hand, if the Mg content exceeds 2.6%, the hem bending workability and press formability are deteriorated.

Cu:1.0%以下
Cuは、前記低温短時間の人工時効処理の条件で、Al合金材組織の結晶粒内への強度向上に寄与する時効析出物の形成を促進させ、高耐力を得やすい効果がある。また、固溶したCuは成形性を向上させる効果もある。ただ、Cuは耐食性を低下させる。このため、Cuは1.0%以下の含有を許容する。
Cu: 1.0% or less
Cu has the effect of facilitating the formation of aging precipitates that contribute to the improvement of strength in the crystal grains of the Al alloy material structure under the conditions of the artificial aging treatment at a low temperature for a short time and easily obtaining high proof stress. Further, solid solution Cu has an effect of improving formability. However, Cu reduces corrosion resistance. For this reason, Cu is allowed to contain 1.0% or less.

Mn:1.0% 以下、Cr:0.3% 以下、Zr:0.3% 以下、V:1.0%以下
これらの遷移元素には、均質化熱処理時に分散粒子 (分散相) を生成し、これらの分散粒子には再結晶後の粒界移動を妨げる効果があるため、微細な結晶粒を得ることができる効果がある。但し、これらは、溶解、鋳造時に粗大なAl-Fe-Si-(Mn、Cr、Zr) 系の金属間化合物や晶析出物を生成しやすく、Al合金板の機械的性質を低下させる。また、曲げ加工性やフラットヘム加工性も低下させる。このため、Mn:1.0% 以下、Cr:0.3% 以下、Zr:0.3% 以下、V:1.0%以下までの含有を許容する。
Mn: 1.0% or less, Cr: 0.3% or less, Zr: 0.3% or less, V: 1.0% or less For these transition elements, dispersed particles (dispersed phase) are generated during the homogenization heat treatment. Since there is an effect of hindering grain boundary movement after recrystallization, there is an effect that fine crystal grains can be obtained. However, they easily form coarse Al—Fe—Si— (Mn, Cr, Zr) -based intermetallic compounds and crystal precipitates during melting and casting, and lower the mechanical properties of the Al alloy sheet. Moreover, bending workability and flat hem workability are also reduced. Therefore, it is allowed to contain Mn: 1.0% or less, Cr: 0.3% or less, Zr: 0.3% or less, and V: 1.0% or less.

Ti:0.05% 以下
Tiは鋳塊の結晶粒を微細化する効果がある。但し、Tiは粗大な晶出物を形成し、成形性を低下させる。したがって、Ti:0.05%以下までの含有は許容する。
Ti: 0.05% or less
Ti has the effect of refining ingot crystal grains. However, Ti forms a coarse crystallized product and reduces formability. Therefore, Ti is allowed to be contained up to 0.05% or less.

Fe:1.0%以下
溶解原料から混入して、不純物として含まれるFeは、晶出物を生成し、再結晶粒の核となり、結晶粒の粗大化を阻止して微細粒とする効果もある。しかし、これらの晶出物は、破壊靱性および疲労特性、更には、曲げ加工性、フラットヘム加工性およびプレス成形性を低下させる。このため、Feの1.0%までの含有は許容する。
Fe: 1.0% or less Fe mixed as an impurity and contained as an impurity produces a crystallized product, serves as a nucleus of recrystallized grains, and has an effect of preventing coarsening of crystal grains to make fine grains. However, these crystallized materials deteriorate fracture toughness and fatigue properties, as well as bending workability, flat hem workability, and press formability. For this reason, the content of Fe up to 1.0% is allowed.

Zn:1.0%以下
Znは耐蝕性を低下させる。このため、Znは1.0%までの含有は許容する。
Zn: 1.0% or less
Zn decreases the corrosion resistance. For this reason, Zn is allowed to contain up to 1.0%.

(製造方法)
次ぎに、本発明Al合金板の製造方法について以下に説明する。本発明で言うアルミニウム合金板とは、板状に、圧延、押出、鍛造、鋳造などによって製造されたアルミニウム合金、これを溶体化および焼入れ処理などの調質処理したアルミニウム合金であって良い。この内、代表的な圧延板の製造方法を以下に説明する。
(Production method)
Next, a method for producing the Al alloy plate of the present invention will be described below. The aluminum alloy plate referred to in the present invention may be a plate-like aluminum alloy produced by rolling, extrusion, forging, casting, or the like, or an aluminum alloy that has been subjected to tempering treatment such as solution treatment and quenching treatment. Among these, a representative method for producing a rolled sheet will be described below.

圧延板の製造方法では、上記した成分組成のAl合金鋳塊を、均質化熱処理後、熱間圧延し、更に冷間圧延した後に、溶体化および焼入れ処理する、工程的には常法と同じである。但し、ヘム曲げ性およびベークハード性を兼備させるためには、特に、均質化熱処理条件と、溶体化および焼入れ処理後の予備時効処理条件などを特に制御するなど、好ましい製造工程条件がある。   In the method for producing a rolled plate, the Al alloy ingot having the above composition is subjected to homogenization heat treatment, hot rolling, and further cold rolling, followed by solution treatment and quenching treatment. It is. However, in order to combine hem bendability and bake hardness, there are preferable manufacturing process conditions such as particularly controlling the homogenization heat treatment conditions and the pre-aging treatment conditions after solution treatment and quenching treatment.

(溶解、鋳造)
先ず、溶解、鋳造工程では、上記6000系成分規格範囲内に溶解調整されたAl合金溶湯を、連続鋳造圧延法、半連続鋳造法(DC鋳造法)等の通常の溶解鋳造法を適宜選択して鋳造する。
(Melting, casting)
First, in the melting and casting process, a normal melt casting method such as a continuous casting rolling method and a semi-continuous casting method (DC casting method) is appropriately selected for the molten Al alloy melt adjusted within the above-mentioned 6000 component standard range. And cast.

(均質化熱処理)
次いで、前記鋳造されたAl合金鋳塊に均質化熱処理を施す。均質化熱処理の温度自体は、450 ℃以上の均質化温度で、融点未満の温度が適宜選択される。この均質化熱処理は、組織の均質化、すなわち、鋳塊組織中の結晶粒内の偏析をなくすことを目的とする。
(Homogenization heat treatment)
Next, the cast Al alloy ingot is subjected to homogenization heat treatment. The temperature of the homogenization heat treatment itself is appropriately selected as a homogenization temperature of 450 ° C. or higher and a temperature lower than the melting point. The purpose of this homogenization heat treatment is to homogenize the structure, that is, to eliminate segregation in the crystal grains in the ingot structure.

熱処理温度が450 ℃より低いと鋳塊の粒内偏析を十分になくすことができず、十分な強度を得ることができず、かつ、破壊の起点として作用するため、プレス成形性及びヘム曲げ性が劣化する。また、均質化熱処理時間は、鋳塊の厚みにもより、0.5 〜6hr の範囲から選択することが好ましい。均質化熱処理時間が短過ぎると鋳塊の粒内偏析を十分になくすことができず、これが破壊の起点として作用する可能性がある。   If the heat treatment temperature is lower than 450 ° C, intragranular segregation in the ingot cannot be sufficiently eliminated, sufficient strength cannot be obtained, and it acts as a starting point for fracture, so press formability and hem bendability Deteriorates. The homogenization heat treatment time is preferably selected from the range of 0.5 to 6 hours depending on the thickness of the ingot. If the homogenization heat treatment time is too short, intragranular segregation of the ingot cannot be sufficiently eliminated, and this may act as a starting point for fracture.

(熱間圧延)
本発明では、熱間圧延条件に関しては特に制約はないが、好ましくは熱間圧延開始温度が低い方が熱延中の析出促進及び析出物粗大化を抑制し、また粗大な再結晶粒の形成を抑制し、強度や成形性を劣化させない。好ましくは500 ℃以下、さらに好ましくは400 ℃以下で、下限は好ましくは250 ℃以上、さらに好ましくは300 ℃以上である。これよりも温度が高い場合、析出物が粗大化し、また再結晶が生じて熱間圧延時に粗大な再結晶粒が生成し、強度や成形性を低下させる。また、熱間圧延開始温度が250 ℃未満では、熱間圧延自体が困難となる。
(Hot rolling)
In the present invention, there are no particular restrictions on the hot rolling conditions, but preferably a lower hot rolling start temperature suppresses precipitation promotion and precipitate coarsening during hot rolling, and formation of coarse recrystallized grains. Is suppressed and strength and formability are not deteriorated. Preferably it is 500 ° C. or lower, more preferably 400 ° C. or lower, and the lower limit is preferably 250 ° C. or higher, more preferably 300 ° C. or higher. When the temperature is higher than this, the precipitates become coarse, and recrystallization occurs, and coarse recrystallized grains are generated during hot rolling, thereby reducing strength and formability. Further, when the hot rolling start temperature is less than 250 ° C., the hot rolling itself becomes difficult.

(熱延板の焼鈍)
この熱延板の冷間圧延前の焼鈍 (荒鈍) は、必要に応じて行なう。製造の効率化や製造コストの低減のために省略し、熱延板を予め焼鈍を施こすことなく、冷間圧延を行っても良い。
(Hot rolled sheet annealing)
The hot rolled sheet is annealed (roughened) before cold rolling as necessary. It may be omitted for the sake of manufacturing efficiency and reduction of manufacturing cost, and cold rolling may be performed without pre-annealing the hot-rolled sheet.

(冷間圧延)
熱間圧延の後に冷間圧延を行なって、所望の板厚の冷延板 (コイルも含む) を製作する。
(Cold rolling)
Cold rolling after hot rolling is performed to produce cold rolled sheets (including coils) with a desired thickness.

(溶体化および焼入れ処理)
溶体化処理の条件は、後の低温短時間の人工時効硬化処理により析出して、強度向上に寄与する時効析出物を十分粒内に固溶させるために、好ましくは500 ℃以上、融点以下までの温度範囲で行う。
(Solution and quenching)
The conditions for the solution treatment are preferably 500 ° C. or higher and the melting point or lower in order to sufficiently precipitate the aging precipitates that contribute to the improvement of strength by precipitation by the subsequent low-temperature and short-time artificial age hardening treatment. In the temperature range.

続く溶体化処理温度からの焼入れ処理では、冷却速度が遅いと、粒界上にSi、Mg2Si などが析出しやすくなり、プレス成形や曲げ加工時の割れの起点となり易く、これら成形性が低下する。この冷却速度を確保するために、焼入れ処理は、ファンによる強制空冷、ミスト、スプレー、浸漬等の水冷手段や条件を各々選択して用い、冷却速度を100 ℃/ 分以上の急冷とすることが好ましい。 In the subsequent quenching treatment from the solution treatment temperature, if the cooling rate is slow, Si, Mg 2 Si, etc. are likely to precipitate on the grain boundary, which tends to be the starting point of cracks during press molding and bending, and these formability descend. In order to ensure this cooling rate, the quenching process should be performed by selecting and using water cooling means and conditions such as forced air cooling with a fan, mist, spraying, immersion, etc., respectively, and quenching at a rate of 100 ° C / min or more. preferable.

本発明では、成形パネルの塗装焼き付け工程などの人工時効硬化処理での時効硬化性を高めるため、溶体化焼入れ処理後のクラスターの生成を抑制し、GPゾーンの析出を促進するために、予備時効処理をしても良い。この予備時効処理は、50〜140 ℃の温度範囲に1 〜24時間の必要時間保持することが好ましい。   In the present invention, in order to enhance age-hardening in an artificial age-hardening treatment such as a paint baking process of a molded panel, in order to suppress the formation of clusters after solution hardening and to promote the precipitation of GP zone, pre-aging It may be processed. This preliminary aging treatment is preferably maintained in a temperature range of 50 to 140 ° C. for a required time of 1 to 24 hours.

この予備時効処理として、溶体化処理後の焼入れ終了温度を50〜140 ℃と高くした後に、直ちに再加熱乃至そのまま保持して行う。あるいは、溶体化処理後常温までの焼入れ処理の後に、直ちに50〜140 ℃に再加熱して行う。また、連続溶体化焼入れ処理の場合には、前記予備時効の温度範囲で焼入れ処理を終了し、そのままの高温でコイルに巻き取るなどして行う。なお、コイルに巻き取る前に再加熱しても、巻き取り後に保温しても良い。また、常温までの焼入れ処理の後に、前記温度範囲に再加熱して高温で巻き取るなどしてもよい。   As the preliminary aging treatment, the quenching end temperature after the solution treatment is increased to 50 to 140 ° C., and then immediately reheated or kept as it is. Alternatively, it is immediately reheated to 50 to 140 ° C. after quenching to room temperature after solution treatment. Further, in the case of continuous solution quenching, the quenching process is completed within the temperature range of the preliminary aging, and the coil is wound around a coil at the same high temperature. In addition, you may reheat before winding up to a coil, and you may heat-retain after winding. Moreover, after the quenching process to room temperature, it may be reheated to the above temperature range and wound at a high temperature.

この他、用途や必要特性に応じて、更に高温の時効処理や安定化処理を行い、より高強度化などを図ることなども勿論可能である。   In addition to this, it is of course possible to further increase the strength by performing aging treatment or stabilization treatment at a higher temperature according to the application or required characteristics.

(温間成形方法)
次に、本発明6000系Al合金板が適用されて好ましい温間成形方法を以下に説明する。
本発明6000系Al合金板は、深絞り、張出などの種々の温間でのプレス成形に適用できる。言い換えると、温間成形方法自体は、深絞り、張出などの通常のプレス成形が適用できる。また、これらの温間成形方法で使用するプレス装置も、通常の温間成形用プレス機が適用できる。
(Warm forming method)
Next, a preferred warm forming method to which the 6000 series Al alloy plate of the present invention is applied will be described below.
The 6000 series Al alloy plate of the present invention can be applied to press forming at various warm temperatures such as deep drawing and overhanging. In other words, as the warm forming method itself, normal press forming such as deep drawing and overhanging can be applied. Moreover, the press apparatus used with these warm forming methods can also apply a normal warm forming press.

図2 のプレス成形機の断面図を用いて、深絞りを意図したプレス成形を説明する。図2 において、1は成形される6000系アルミニウム合金板、5はパンチ(パンチ)、6はダイス(金型)、7は板押さえである。そして、2は板押さえ7とダイス(金型)6によって挟持された板1の周囲のフランジ部分、3は板1のダイス6内に流入した筒状成形品の筒壁部分、4はパンチ5の底部に当接して成形(荷重負荷)される筒状成形品の筒底部分である。   Press forming intended for deep drawing will be described with reference to a cross-sectional view of the press forming machine in FIG. In FIG. 2, 1 is a 6000 series aluminum alloy plate to be formed, 5 is a punch, 6 is a die (die), and 7 is a plate retainer. Reference numeral 2 denotes a flange portion around the plate 1 sandwiched between the plate presser 7 and a die (die) 6, 3 denotes a cylindrical wall portion of the cylindrical molded product that flows into the die 6 of the plate 1, and 4 denotes a punch 5. It is the cylinder bottom part of the cylindrical molded product shape | molded by contact | abutting to the bottom part of (no load).

ここで、好ましい温間成形方法としては、板1のフランジ部分2をダイス6内に流入しやすくするために、この板1のフランジ部分2を150〜400℃の比較的高温とする。このために、この板1のフランジ部分2を加熱する。この加熱方法は、プレス機に導入する前に予めヒーターや炉などを用いて、板全体か、板1のフランジ部分2のみを加熱するか、または、図示するダイス6および/または板押さえ7をヒーター8などで加熱して、プレス機に導入後に板1の周囲のフランジ部分2を部分的に加熱する。   Here, as a preferable warm forming method, the flange portion 2 of the plate 1 is set to a relatively high temperature of 150 to 400 ° C. so that the flange portion 2 of the plate 1 can easily flow into the die 6. For this purpose, the flange part 2 of the plate 1 is heated. In this heating method, the entire plate or only the flange portion 2 of the plate 1 is heated in advance using a heater, a furnace or the like before being introduced into the press, or the die 6 and / or the plate presser 7 shown in the figure is used. It heats with the heater 8 etc., and the flange part 2 around the board 1 is partially heated after introducing into a press.

本発明では、前記した通り、温間成形される6000系Al合金板の含有するSiとMgとの組成バランスによって、Al合金板のパンチされる部分は、板のフランジ部分として加熱された際の流動応力が低く、パンチ底部との当接部として冷却された際の破断強度が高くしている。即ち、冷却された際の破断強度と、加熱された際の流動応力との差が大きい特性となり、温間成形性を向上させている。   In the present invention, as described above, the punched portion of the Al alloy plate is heated as a flange portion of the plate due to the composition balance between Si and Mg contained in the 6000 series Al alloy plate that is warm-formed. The flow stress is low, and the breaking strength when cooled as a contact portion with the punch bottom is increased. That is, the difference between the breaking strength when cooled and the flow stress when heated is large, and the warm formability is improved.

ただ、この加熱温度は150℃以上とすることが好ましい。この加熱温度が150℃未満では、加熱温度が低過ぎ、通常の室温成形と変わりなくなり、本発明6000系Al合金板であっても、温間成形自体の利点が損なわれる。   However, the heating temperature is preferably 150 ° C. or higher. If the heating temperature is less than 150 ° C., the heating temperature is too low, which is no different from normal room temperature forming, and even the 6000 series Al alloy sheet of the present invention impairs the advantages of warm forming itself.

一方、この加熱温度が400℃を越えた場合、温度が高過ぎ、本発明6000系Al合金板であっても、材料のダイス6への流入量が多くなり過ぎる可能性があり、成形品にしわが発生しやすくなる。   On the other hand, when the heating temperature exceeds 400 ° C., the temperature is too high, and even the 6000 series Al alloy plate of the present invention may cause the amount of material flowing into the die 6 to be too large. I am prone to wrinkles.

これに対して、板1のパンチされる部分として、パンチ5のコーナー部に当接する板3のコーナー部や、パンチ5の底部に当接する板4の部分を、破断強度を高めるために、100℃以下の比較的低温とする。   On the other hand, as the portion to be punched of the plate 1, the corner portion of the plate 3 that contacts the corner portion of the punch 5 and the portion of the plate 4 that contacts the bottom portion of the punch 5, Use a relatively low temperature of ℃ or less.

このために、前記加熱された板を冷却する必要があり、パンチ5の底部を循環水により冷却するなどして、100℃以下の比較的低温とする。なお、100℃以下の下限の温度については、パンチ5による板4の冷却能力にも依るが、室温程度となる。   For this purpose, it is necessary to cool the heated plate, and the bottom of the punch 5 is cooled to a relatively low temperature of 100 ° C. or less by circulating water or the like. The lower limit temperature of 100 ° C. or less is about room temperature although it depends on the cooling ability of the plate 4 by the punch 5.

ただ、この温度が100℃を越えた場合、本発明6000系Al合金板であっても、パンチ5のコーナー部に当接する板3のコーナー部や、パンチ5の底部に当接する板4の部分の破断強度が低くなり、成形途中で割れが生じる可能性が高くなる。   However, when this temperature exceeds 100 ° C., even in the 6000 series Al alloy plate of the present invention, the corner portion of the plate 3 that contacts the corner portion of the punch 5 and the portion of the plate 4 that contacts the bottom portion of the punch 5 The breaking strength of the sheet becomes low, and the possibility of cracking during the molding increases.

このような温間成形条件と、本発明6000系Al合金板の含有するSiとMgとの組成バランスによって、更に温間成形性が向上する。   Warm formability is further improved by such a warm forming condition and a composition balance between Si and Mg contained in the 6000 series Al alloy plate of the present invention.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらは何れも本発明の技術的範囲に含まれる。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. It is also possible to implement, and they are all included in the technical scope of the present invention.

次に、本発明の実施例を説明する。表1に示す1 〜9 (発明例)、10〜16(比較例)の各組成およびSiとMgとの組成バランスを有する6000系Al合金板を製造し、これを各々温間成形し、その成形性を評価した。   Next, examples of the present invention will be described. 6000 series Al alloy plates having each composition of 1 to 9 (invention example) and 10 to 16 (comparative example) shown in Table 1 and a composition balance of Si and Mg were produced, each of which was warm-formed, The moldability was evaluated.

各試験材Al合金板の、より具体的な共通する製造条件は以下の通りである。表1 に示す各組成の500mm 厚さ、2000mm幅、7m長さの鋳塊を、DC鋳造法により溶製後、480 ℃×2 時間の均質化熱処理を施した。この均質化熱処理後に、開始温度390 ℃、終了温度280 ℃として、厚さ2.5mmtまで熱間圧延した。この熱延板を、荒鈍を省略した上で、直接冷間圧延を行い、厚さ1.0mmtの冷延板コイルを得た。この板コイルを、連続炉で550 ℃×数秒の溶体化処理後に、300 ℃/ 分の冷却速度で室温まで冷却する水焼入れ処理を行った。その後、直ちに、70℃の温度に再加熱して、この温度範囲に2 時間保持するなどの一連の調質処理を行なった。   More specific common production conditions for each test material Al alloy plate are as follows. An ingot of 500 mm thickness, 2000 mm width, and 7 m length of each composition shown in Table 1 was melted by a DC casting method and then subjected to a homogenization heat treatment at 480 ° C. × 2 hours. After this homogenization heat treatment, hot rolling was performed at a start temperature of 390 ° C. and an end temperature of 280 ° C. to a thickness of 2.5 mmt. The hot-rolled sheet was subjected to direct cold rolling after omitting the roughening to obtain a cold-rolled sheet coil having a thickness of 1.0 mmt. The plate coil was subjected to a solution quenching process at 550 ° C. for several seconds in a continuous furnace, followed by a water quenching process for cooling to room temperature at a cooling rate of 300 ° C./min. Immediately thereafter, a series of tempering treatments were carried out, such as reheating to a temperature of 70 ° C. and maintaining in this temperature range for 2 hours.

(供試板引張特性)
これら調質処理後の各板から供試板 (ブランク) を切り出し、300 ℃における板の機械的な温間特性(As 特性) を調査、評価した。300 ℃における板の局部伸び(%)、全伸び(%)、(局部伸び/全伸び)×100 (%)の結果を表2 に各々示す。
(Test plate tensile properties)
A test plate (blank) was cut out from each plate after tempering, and the mechanical warming properties (As characteristics) of the plates at 300 ° C were investigated and evaluated. Table 2 shows the results of local elongation (%), total elongation (%), (local elongation / total elongation) × 100 (%) of the plate at 300 ° C.

引張り試験は、具体的には、上記調質処理後の板から、圧延方向に対し直角方向のJIS Z2201 の5 号試験片(幅25mm×標点距離50mm×板厚)を採取し、300 ℃で引張り試験を行った。この引張り試験はJIS Z2241(1980)(金属材料引張り試験方法)に基づいた。また、クロスヘッド速度は5mm / 分で、試験片が破断するまで一定の速度で行った。   Specifically, the tensile test was performed by taking a JIS Z2201 No. 5 test piece (width 25 mm x gauge distance 50 mm x plate thickness) perpendicular to the rolling direction from the tempered plate and heating it to 300 ° C. A tensile test was performed. This tensile test was based on JIS Z2241 (1980) (metal material tensile test method). The crosshead speed was 5 mm / min, and the test piece was run at a constant speed until the test piece broke.

(供試板成形性)
また、上記調質処理後の板から供試板 (ブランク) を切り出し、図1に示すプレス機を用いて、温間成形試験により、限界絞り比(LDR )の評価を行なった。これらの結果を表2に各々示す。
(Sample plate formability)
Further, a test plate (blank) was cut out from the tempered plate, and the limit drawing ratio (LDR) was evaluated by a warm forming test using the press shown in FIG. These results are shown in Table 2, respectively.

この際、図1に示すプレス機による温間成形の温度条件としては、できるだけ前記した好ましい条件内になるように行なった。即ち、板1のフランジ部分2を260℃にヒーター8を用いて加熱した。また、パンチ5の底部を循環水により冷却して、パンチ5のコーナー部に当接する板3のコーナー部や、パンチ5の底部に当接する板4の部分を100℃以下の比較的低温とした。これらの温度は接触式温度計により測定し、所定測定時間内での複数回測定における平均温度とした。   At this time, the temperature conditions for warm forming by the press shown in FIG. That is, the flange portion 2 of the plate 1 was heated to 260 ° C. using the heater 8. Moreover, the bottom part of the punch 5 is cooled with circulating water, and the corner part of the plate 3 in contact with the corner part of the punch 5 and the part of the plate 4 in contact with the bottom part of the punch 5 are set to a relatively low temperature of 100 ° C. or less. . These temperatures were measured with a contact-type thermometer and used as an average temperature in a plurality of measurements within a predetermined measurement time.

限界絞り比(LDR )は、供試板から種々の直径の試験片を打抜きにより作製した上で、パンチ:50mmφ- 肩R4.5mm、ダイス:54.5〜56.0mmφ- 肩R8〜10mm、日本工作油製の潤滑材CF853を用いて、しわ押さえ荷重0.8kg/cm2 、パンチ速度20mm/minの条件で深絞り試験を行った。そして、深絞り成形できない成形限界ブランク径を決定し、次の式により限界絞り比を算出した。限界絞り比=成形限界ブランク径/ パンチ径。限界絞り比が大きいほど、深絞り成形性に優れている事を意味し、例えば自動車用パネルへの成形に要求される深絞り成形性を満足するためには、2.4 以上であればよい。 The limit drawing ratio (LDR) was determined by punching test pieces of various diameters from the test plate, punch: 50mmφ-shoulder R4.5mm, die: 54.5-56.0mmφ-shoulder R8-10mm, Nippon Tool Oil A deep drawing test was carried out using a lubricant CF853 manufactured under the conditions of a wrinkle holding load of 0.8 kg / cm 2 and a punch speed of 20 mm / min. And the shaping | molding limit blank diameter which cannot be deep-drawn was determined, and the limit drawing ratio was computed by the following formula | equation. Limit drawing ratio = forming limit blank diameter / punch diameter. The larger the limit drawing ratio, the better the deep drawing formability. For example, in order to satisfy the deep drawing formability required for forming an automobile panel, it may be 2.4 or more.

発明例1〜9は、表1の各組成の合金を用い、表2の通り、各Al−Mg−Si系合金板が、含有するSiとMgとがMg2Si 組成相当の含有量で0.25〜1.25 at%の範囲であり、これらSiとMgとの含有量のMg2Si バランスからのずれが各々±0.5at%以下の範囲であり、残部アルミニウムおよび不可避的不純物からなる。また、この板の特性として、300 ℃における局部伸びが20% 以上で、かつ、この局部伸びの全伸びに対する比率が60% 以上である。この結果、表2の通り、発明例1〜9は温間成形性が優れている。 Inventive Examples 1 to 9 use alloys having respective compositions shown in Table 1, and as shown in Table 2, each Al-Mg-Si alloy plate contains Si and Mg in a content equivalent to Mg 2 Si composition of 0.25. The deviation of the content of Si and Mg from the Mg 2 Si balance is in the range of ± 0.5 at% or less, and the balance is aluminum and inevitable impurities. Further, as a characteristic of the plate, the local elongation at 300 ° C. is 20% or more, and the ratio of the local elongation to the total elongation is 60% or more. As a result, as shown in Table 2, Invention Examples 1 to 9 have excellent warm formability.

これに対して、表2の通り、比較例10〜13、17、18は、各Al−Mg−Si系合金板が、含有するSiとMgとは各々の好ましい含有量範囲を満足するものの、SiとMgとがMg2Si 組成相当の含有量で0.25〜1.25 at%の範囲からか、これらSiとMgとの含有量のMg2Si バランスからのずれが各々0.5at%以下の範囲から外れる。 On the other hand, as shown in Table 2, each of the Al-Mg-Si-based alloy plates in Comparative Examples 10-13, 17, and 18 satisfies the preferable content ranges of Si and Mg, The content of Si and Mg is within the range of 0.25 to 1.25 at% corresponding to the Mg 2 Si composition, or the deviation of the Si and Mg content from the Mg 2 Si balance is out of the range of 0.5 at% or less. .

この結果、比較例10〜13、17、18は、300 ℃における局部伸びは20% 未満で、かつ、この局部伸びの全伸びに対する比率が60% 未満である。この結果、表2の通り、比較例10〜13、17、18は温間成形性が劣っている。   As a result, in Comparative Examples 10 to 13, 17, and 18, the local elongation at 300 ° C. is less than 20%, and the ratio of the local elongation to the total elongation is less than 60%. As a result, as shown in Table 2, Comparative Examples 10 to 13, 17, and 18 have poor warm formability.

また、表2の通り、比較例14〜16は、各Al−Mg−Si系合金板が、SiとMgとがMg2Si 組成相当の含有量範囲内であり、Mg2Si バランスからのずれの範囲内である。しかし、表1の通り、比較例14はMn、比較例15はCr、比較例16はZrが各々多過ぎる。この結果、表2の通り、比較例14〜16も同様に温間成形性が劣っている。 Further, as shown in Table 2, in Comparative Examples 14 to 16, each Al—Mg—Si based alloy plate has Si and Mg within the content range corresponding to the Mg 2 Si composition, and the deviation from the Mg 2 Si balance. Is within the range. However, as shown in Table 1, Comparative Example 14 contains too much Mn, Comparative Example 15 contains Cr, and Comparative Example 16 contains too much Zr. As a result, as shown in Table 2, the comparative examples 14 to 16 are similarly inferior in warm formability.

以上の実施例から、本発明各要件あるいは好ましい条件の、臨界的な意義が裏付けられる。   The above examples support the critical significance of each requirement or preferred condition of the present invention.

Figure 2008019483
Figure 2008019483

Figure 2008019483
Figure 2008019483

本発明によれば、温間成形性を向上させた6000系Al合金板とその温間成形方法とを提供できる。この結果、自動車パネルなどのプレス成形用途に、6000系アルミニウム合金板の適用を拡大できる。   ADVANTAGE OF THE INVENTION According to this invention, the 6000 series Al alloy plate which improved warm formability, and its warm forming method can be provided. As a result, the application of the 6000 series aluminum alloy plate can be expanded to press forming applications such as automobile panels.

本発明が規定するMg2Si 組成バランスの範囲を示す説明図である。The Mg 2 Si composition range of the balance to which the present invention is defined is an explanatory diagram showing. アルミニウム合金板の温間成形を示す断面図である。It is sectional drawing which shows warm forming of an aluminum alloy plate.

符号の説明Explanation of symbols

1:板、2:板フランジ部、3:板壁部、4:板底部(ポンチとの接触部)、
5:ポンチ、6:ダイス(金型)、7:板押さえ
1: plate, 2: plate flange, 3: plate wall, 4: plate bottom (contact portion with punch),
5: Punch, 6: Die (mold), 7: Plate holder

Claims (3)

Al−Mg−Si系合金板が、含有するSiとMgとがMg2Si 組成相当の含有量で0.25〜1.25 at%の範囲であり、これらSiとMgとの含有量のMg2Si バランスからのずれが各々±0.5at%以下の範囲であり、残部アルミニウムおよび不可避的不純物からなり、この板の特性として、200 〜300 ℃における局部伸びが20% 以上で、かつ、この局部伸びの全伸びに対する比率が60% 以上であることを特徴とする温間成形用アルミニウム合金板。 The Al-Mg-Si alloy plate contains Si and Mg in the range of 0.25 to 1.25 at% in terms of the content equivalent to the Mg 2 Si composition. From the Mg 2 Si balance of the content of these Si and Mg The deviation of each is within ± 0.5 at%, consisting of the balance aluminum and inevitable impurities. The characteristic of this plate is that the local elongation at 200-300 ° C is 20% or more and the total elongation of this local elongation is The aluminum alloy plate for warm forming, characterized in that the ratio to is 60% or more. 前記アルミニウム合金板が、質量% で、Si:0.30 〜1.8%、Mg:0.45 〜2.6%を含み、その他の元素として、Fe:1.0% 以下、Ti:0.05%以下、Mn:1.0% 以下、Cr:0.3% 以下、Zr:0.3% 以下、V:0.3%以下、Cu:1.0% 以下、Zn=1.0% 以下の含有まで許容し、残部アルミニウムおよび不可避的不純物からなる、請求項1に記載の温間成形用アルミニウム合金板。   The aluminum alloy plate contains, by mass%, Si: 0.30 to 1.8%, Mg: 0.45 to 2.6%, Fe: 1.0% or less, Ti: 0.05% or less, Mn: 1.0% or less, Cr The temperature according to claim 1, comprising: 0.3% or less, Zr: 0.3% or less, V: 0.3% or less, Cu: 1.0% or less, and Zn = 1.0% or less, and is composed of the balance aluminum and inevitable impurities. Aluminum alloy sheet for hot forming. 請求項1または2に記載のアルミニウム合金板を温間成形するに際して、このアルミニウム合金板のフランジ部分を150〜400℃の比較的高温とする一方、このアルミニウム合金板のパンチされる部分を100℃以下の比較的低温としてプレス成形することを特徴とする温間成形方法。   When the aluminum alloy plate according to claim 1 or 2 is warm-formed, the flange portion of the aluminum alloy plate is set to a relatively high temperature of 150 to 400 ° C, while the punched portion of the aluminum alloy plate is set to 100 ° C. A warm forming method characterized by press forming at a relatively low temperature as follows.
JP2006193113A 2006-07-13 2006-07-13 Aluminum alloy sheet for warm forming Expired - Fee Related JP5329746B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006193113A JP5329746B2 (en) 2006-07-13 2006-07-13 Aluminum alloy sheet for warm forming

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006193113A JP5329746B2 (en) 2006-07-13 2006-07-13 Aluminum alloy sheet for warm forming

Publications (2)

Publication Number Publication Date
JP2008019483A true JP2008019483A (en) 2008-01-31
JP5329746B2 JP5329746B2 (en) 2013-10-30

Family

ID=39075665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006193113A Expired - Fee Related JP5329746B2 (en) 2006-07-13 2006-07-13 Aluminum alloy sheet for warm forming

Country Status (1)

Country Link
JP (1) JP5329746B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009149981A (en) * 2007-11-27 2009-07-09 Nippon Steel Corp Warm press forming method for bake hardening type aluminum alloy sheet
JP2009241856A (en) * 2008-03-31 2009-10-22 Kobe Steel Ltd Method of manufacturing aluminum alloy panel member for automobile
JP2010012517A (en) * 2008-06-06 2010-01-21 Kobe Steel Ltd Method for manufacturing press-formed product of light metal alloy
JP2014218696A (en) * 2013-05-08 2014-11-20 新日鐵住金株式会社 Aluminum alloy for warm compacting, manufacturing method therefor and compacting method therefor
WO2015112450A1 (en) * 2014-01-21 2015-07-30 Alcoa Inc. 6xxx aluminum alloys
JP2016020530A (en) * 2014-07-14 2016-02-04 株式会社Uacj WARM MOLDING METHOD FOR Al-Mg-Si BASED ALLOY ROLLED SHEET
CN113560363A (en) * 2021-07-13 2021-10-29 太原理工大学 Device and method for improving circular local mechanical property of large-size magnesium alloy sheet
US11345980B2 (en) 2018-08-09 2022-05-31 Apple Inc. Recycled aluminum alloys from manufacturing scrap with cosmetic appeal

Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58167757A (en) * 1982-03-29 1983-10-04 Nippon Light Metal Co Ltd Preparation of al-mg-si alloy for processing excellent in corrosion resistance, weldability and hardenability
JPH01259142A (en) * 1988-04-11 1989-10-16 Furukawa Alum Co Ltd Aluminum alloy plate for can end and its manufacture
JPH02122055A (en) * 1988-10-31 1990-05-09 Honda Motor Co Ltd Manufacture of rolled aluminum alloy sheet for forming
JPH02122045A (en) * 1988-10-31 1990-05-09 Honda Motor Co Ltd Rolled aluminum-alloy plate for forming and its production
JPH03180453A (en) * 1989-12-07 1991-08-06 Kobe Steel Ltd Production of aluminum alloy stock for cold forging
JPH0711368A (en) * 1993-04-30 1995-01-13 Kobe Steel Ltd Al-mg-si series alloy extruded material excellent in bendability
JPH08296011A (en) * 1995-04-24 1996-11-12 Nkk Corp Production of aluminum alloy sheet for high speed forming excellent in baking hardenability of coating film and cold stability
JPH0931616A (en) * 1995-07-21 1997-02-04 Nippon Steel Corp Aluminum-magnesium-silicon alloy sheet excellent in formability and its production
JPH10183287A (en) * 1996-12-22 1998-07-14 Kobe Steel Ltd Aluminum alloy for cold forging and its production
JP2000144294A (en) * 1998-11-12 2000-05-26 Kobe Steel Ltd Aluminum alloy sheet excellent in press formability and hem workability
JP2000158050A (en) * 1998-12-01 2000-06-13 Kobe Steel Ltd Al ALLOY SHEET FOR PRESS FORMING
JP2000273567A (en) * 1999-03-18 2000-10-03 Nippon Steel Corp Aluminum alloy sheet excellent in formability and corrosion resistance and its production
JP2000319741A (en) * 1998-09-10 2000-11-21 Kobe Steel Ltd Al-Mg-Si BASED ALLOY SHEET
JP2001011557A (en) * 1999-06-24 2001-01-16 Showa Alum Corp Cold forging stock of aluminum alloy
JP2001059124A (en) * 1999-06-16 2001-03-06 Nippon Light Metal Co Ltd Al-Mg-Si ALUMINUM ALLOY COLD FORGED PART EXCELLENT IN APPEARANCE QUALITY AND ITS PRODUCTION
JP2001131670A (en) * 1999-11-09 2001-05-15 Kobe Steel Ltd Al-Mg-Si BASE Al ALLOY SHEET EXCELLENT IN PRESS FORMABILITY
JP2002180220A (en) * 2000-12-13 2002-06-26 Kobe Steel Ltd Continuous solution quenching treatment method for aluminum alloy rolled thin sheet having excellent formability and flatness
JP2002256368A (en) * 2001-03-05 2002-09-11 Kobe Steel Ltd Al-Mg-Si BASED ALUMINUM ALLOY EXTRUSION MATERIAL HAVING EXCELLENT PRESS WORKABILITY
JP2003105472A (en) * 2001-09-28 2003-04-09 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet, and production method therefor
JP2003105471A (en) * 2001-09-28 2003-04-09 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet, and production method therefor
JP2003129156A (en) * 2001-10-22 2003-05-08 Kobe Steel Ltd Al ALLOY SHEET SUPERIOR IN FORMABILITY FOR STRETCH FLANGE AND MANUFACTURING METHOD THEREFOR
JP2004124175A (en) * 2002-10-02 2004-04-22 Furukawa Sky Kk Method for manufacturing 6000 system alloy plate for forming excellent in formability, baking hardenability, and springback characteristic
JP2004277786A (en) * 2003-03-14 2004-10-07 Nippon Light Metal Co Ltd Method for manufacturing heat treatment type aluminum alloy material for cold working superior in machinability
JP2005146375A (en) * 2003-11-18 2005-06-09 Furukawa Sky Kk Aluminum alloy sheet for forming, and method for producing the same
JP2005240113A (en) * 2004-02-26 2005-09-08 Kobe Steel Ltd Aluminum alloy sheet having excellent ridging mark property
JP2005240083A (en) * 2004-02-25 2005-09-08 Kobe Steel Ltd Method for molding aluminum alloy material
JP2005298922A (en) * 2004-04-13 2005-10-27 Furukawa Sky Kk Aluminum alloy plate to be formed, and manufacturing method therefor
JP2006009066A (en) * 2004-06-23 2006-01-12 Aisin Keikinzoku Co Ltd Member made of aluminum alloy having excellent ductility
JP2006161153A (en) * 2004-11-09 2006-06-22 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet material having excellent drawing formability and its production method
JP2006205244A (en) * 2005-01-31 2006-08-10 Sumitomo Light Metal Ind Ltd Warm-formed article and its production method

Patent Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58167757A (en) * 1982-03-29 1983-10-04 Nippon Light Metal Co Ltd Preparation of al-mg-si alloy for processing excellent in corrosion resistance, weldability and hardenability
JPH01259142A (en) * 1988-04-11 1989-10-16 Furukawa Alum Co Ltd Aluminum alloy plate for can end and its manufacture
JPH02122055A (en) * 1988-10-31 1990-05-09 Honda Motor Co Ltd Manufacture of rolled aluminum alloy sheet for forming
JPH02122045A (en) * 1988-10-31 1990-05-09 Honda Motor Co Ltd Rolled aluminum-alloy plate for forming and its production
JPH03180453A (en) * 1989-12-07 1991-08-06 Kobe Steel Ltd Production of aluminum alloy stock for cold forging
JPH0711368A (en) * 1993-04-30 1995-01-13 Kobe Steel Ltd Al-mg-si series alloy extruded material excellent in bendability
JPH08296011A (en) * 1995-04-24 1996-11-12 Nkk Corp Production of aluminum alloy sheet for high speed forming excellent in baking hardenability of coating film and cold stability
JPH0931616A (en) * 1995-07-21 1997-02-04 Nippon Steel Corp Aluminum-magnesium-silicon alloy sheet excellent in formability and its production
JPH10183287A (en) * 1996-12-22 1998-07-14 Kobe Steel Ltd Aluminum alloy for cold forging and its production
JP2000319741A (en) * 1998-09-10 2000-11-21 Kobe Steel Ltd Al-Mg-Si BASED ALLOY SHEET
JP2000144294A (en) * 1998-11-12 2000-05-26 Kobe Steel Ltd Aluminum alloy sheet excellent in press formability and hem workability
JP2000158050A (en) * 1998-12-01 2000-06-13 Kobe Steel Ltd Al ALLOY SHEET FOR PRESS FORMING
JP2000273567A (en) * 1999-03-18 2000-10-03 Nippon Steel Corp Aluminum alloy sheet excellent in formability and corrosion resistance and its production
JP2001059124A (en) * 1999-06-16 2001-03-06 Nippon Light Metal Co Ltd Al-Mg-Si ALUMINUM ALLOY COLD FORGED PART EXCELLENT IN APPEARANCE QUALITY AND ITS PRODUCTION
JP2001011557A (en) * 1999-06-24 2001-01-16 Showa Alum Corp Cold forging stock of aluminum alloy
JP2001131670A (en) * 1999-11-09 2001-05-15 Kobe Steel Ltd Al-Mg-Si BASE Al ALLOY SHEET EXCELLENT IN PRESS FORMABILITY
JP2002180220A (en) * 2000-12-13 2002-06-26 Kobe Steel Ltd Continuous solution quenching treatment method for aluminum alloy rolled thin sheet having excellent formability and flatness
JP2002256368A (en) * 2001-03-05 2002-09-11 Kobe Steel Ltd Al-Mg-Si BASED ALUMINUM ALLOY EXTRUSION MATERIAL HAVING EXCELLENT PRESS WORKABILITY
JP2003105472A (en) * 2001-09-28 2003-04-09 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet, and production method therefor
JP2003105471A (en) * 2001-09-28 2003-04-09 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet, and production method therefor
JP2003129156A (en) * 2001-10-22 2003-05-08 Kobe Steel Ltd Al ALLOY SHEET SUPERIOR IN FORMABILITY FOR STRETCH FLANGE AND MANUFACTURING METHOD THEREFOR
JP2004124175A (en) * 2002-10-02 2004-04-22 Furukawa Sky Kk Method for manufacturing 6000 system alloy plate for forming excellent in formability, baking hardenability, and springback characteristic
JP2004277786A (en) * 2003-03-14 2004-10-07 Nippon Light Metal Co Ltd Method for manufacturing heat treatment type aluminum alloy material for cold working superior in machinability
JP2005146375A (en) * 2003-11-18 2005-06-09 Furukawa Sky Kk Aluminum alloy sheet for forming, and method for producing the same
JP2005240083A (en) * 2004-02-25 2005-09-08 Kobe Steel Ltd Method for molding aluminum alloy material
JP2005240113A (en) * 2004-02-26 2005-09-08 Kobe Steel Ltd Aluminum alloy sheet having excellent ridging mark property
JP2005298922A (en) * 2004-04-13 2005-10-27 Furukawa Sky Kk Aluminum alloy plate to be formed, and manufacturing method therefor
JP2006009066A (en) * 2004-06-23 2006-01-12 Aisin Keikinzoku Co Ltd Member made of aluminum alloy having excellent ductility
JP2006161153A (en) * 2004-11-09 2006-06-22 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet material having excellent drawing formability and its production method
JP2006205244A (en) * 2005-01-31 2006-08-10 Sumitomo Light Metal Ind Ltd Warm-formed article and its production method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6012046918; 40周年記念事業実行委員会記念出版部会編集: アルミニウムの組織と性質 , 19911130, p.278-279, 日本軽金属学会発行 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009149981A (en) * 2007-11-27 2009-07-09 Nippon Steel Corp Warm press forming method for bake hardening type aluminum alloy sheet
JP2009241856A (en) * 2008-03-31 2009-10-22 Kobe Steel Ltd Method of manufacturing aluminum alloy panel member for automobile
JP2010012517A (en) * 2008-06-06 2010-01-21 Kobe Steel Ltd Method for manufacturing press-formed product of light metal alloy
JP2014218696A (en) * 2013-05-08 2014-11-20 新日鐵住金株式会社 Aluminum alloy for warm compacting, manufacturing method therefor and compacting method therefor
WO2015112450A1 (en) * 2014-01-21 2015-07-30 Alcoa Inc. 6xxx aluminum alloys
US10190196B2 (en) 2014-01-21 2019-01-29 Arconic Inc. 6XXX aluminum alloys
JP2016020530A (en) * 2014-07-14 2016-02-04 株式会社Uacj WARM MOLDING METHOD FOR Al-Mg-Si BASED ALLOY ROLLED SHEET
US11345980B2 (en) 2018-08-09 2022-05-31 Apple Inc. Recycled aluminum alloys from manufacturing scrap with cosmetic appeal
CN113560363A (en) * 2021-07-13 2021-10-29 太原理工大学 Device and method for improving circular local mechanical property of large-size magnesium alloy sheet

Also Published As

Publication number Publication date
JP5329746B2 (en) 2013-10-30

Similar Documents

Publication Publication Date Title
JP4939093B2 (en) Method for producing 6000 series aluminum alloy plate for automobile panel having excellent hem bendability and bake hardness
EP3303649B1 (en) An automotive body part comprising an aluminium alloy and a method for producing the automotive body part
JP5329746B2 (en) Aluminum alloy sheet for warm forming
JP5498069B2 (en) Method for producing aluminum alloy sheet blank for cold press forming, and cold press forming method and molded product thereby
JPWO2005056859A1 (en) Method for producing Al-Mg-Si alloy plate excellent in bake hardness and hemmability
JP4939091B2 (en) Manufacturing method of aluminum alloy plate with excellent bending workability
JP2016020530A (en) WARM MOLDING METHOD FOR Al-Mg-Si BASED ALLOY ROLLED SHEET
JP5148896B2 (en) Aluminum alloy blank with excellent press forming
JP5260883B2 (en) Aluminum alloy plate for warm forming and warm forming method
JP4944474B2 (en) Aluminum alloy plate excellent in stretch flangeability and manufacturing method thereof
JP2006257505A (en) Aluminum alloy sheet having excellent extension flange formability
JP2008006483A (en) METHOD FOR PRODUCING HIGHLY FORMABLE Al-Mg BASED ALLOY PLATE
JP4515363B2 (en) Aluminum alloy plate excellent in formability and method for producing the same
JP5432439B2 (en) Aluminum alloy sheet for warm forming
CN110872665B (en) Al-Mg-Si alloy plate
JP4456505B2 (en) Manufacturing method of forming aluminum alloy sheet
JP2008062255A (en) SUPERPLASTIC MOLDING METHOD FOR Al-Mg-Si BASED ALUMINUM ALLOY SHEET HAVING REDUCED GENERATION OF CAVITY, AND Al-Mg-Si BASED ALUMINUM ALLOY MOLDED SHEET
JP3838504B2 (en) Aluminum alloy plate for panel forming and manufacturing method thereof
JP6581347B2 (en) Method for producing aluminum alloy plate
JP2008223054A (en) Aluminum alloy sheet for forming-work having excellent deep drawability and burning/softening resistance, and producing method therefor
CN108884524B (en) Aluminum alloy sheet and method for producing aluminum alloy sheet
JP2009242907A (en) Method for producing aluminum alloy blank for press forming
JP4022497B2 (en) Method for manufacturing aluminum alloy panel
WO2017170835A1 (en) Aluminum alloy sheet and aluminum alloy sheet manufacturing method
JP2008101239A (en) Method for manufacturing aluminum alloy sheet superior in bendability, and aluminum alloy sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110328

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130725

R150 Certificate of patent or registration of utility model

Ref document number: 5329746

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees