JPH02122055A - Manufacture of rolled aluminum alloy sheet for forming - Google Patents
Manufacture of rolled aluminum alloy sheet for formingInfo
- Publication number
- JPH02122055A JPH02122055A JP27703888A JP27703888A JPH02122055A JP H02122055 A JPH02122055 A JP H02122055A JP 27703888 A JP27703888 A JP 27703888A JP 27703888 A JP27703888 A JP 27703888A JP H02122055 A JPH02122055 A JP H02122055A
- Authority
- JP
- Japan
- Prior art keywords
- less
- rolled
- heating
- aluminum alloy
- corrosion resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000838 Al alloy Inorganic materials 0.000 title claims abstract description 40
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 19
- 238000010438 heat treatment Methods 0.000 claims abstract description 70
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 58
- 239000000956 alloy Substances 0.000 claims abstract description 58
- 238000001816 cooling Methods 0.000 claims abstract description 48
- 238000011282 treatment Methods 0.000 claims abstract description 46
- 238000000034 method Methods 0.000 claims abstract description 43
- 230000007797 corrosion Effects 0.000 claims abstract description 36
- 238000005260 corrosion Methods 0.000 claims abstract description 36
- 238000000137 annealing Methods 0.000 claims abstract description 27
- 230000008569 process Effects 0.000 claims abstract description 26
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 23
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 21
- 239000012535 impurity Substances 0.000 claims abstract description 18
- 238000005097 cold rolling Methods 0.000 claims abstract description 16
- 238000005098 hot rolling Methods 0.000 claims abstract description 13
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 8
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 8
- 238000005096 rolling process Methods 0.000 claims abstract description 8
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 6
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 5
- 229910052742 iron Inorganic materials 0.000 claims abstract description 5
- 229910052802 copper Inorganic materials 0.000 claims abstract description 4
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 4
- 229910018566 Al—Si—Mg Inorganic materials 0.000 claims abstract 6
- 238000009749 continuous casting Methods 0.000 claims description 20
- 238000000465 moulding Methods 0.000 claims description 20
- 238000012545 processing Methods 0.000 claims description 16
- 238000003466 welding Methods 0.000 claims description 11
- 238000000265 homogenisation Methods 0.000 claims description 8
- 238000005275 alloying Methods 0.000 claims description 4
- 229910007981 Si-Mg Inorganic materials 0.000 claims 1
- 229910008316 Si—Mg Inorganic materials 0.000 claims 1
- 239000000203 mixture Substances 0.000 abstract description 15
- 238000005266 casting Methods 0.000 abstract description 9
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 44
- 239000000463 material Substances 0.000 description 38
- 230000007423 decrease Effects 0.000 description 15
- 238000012360 testing method Methods 0.000 description 15
- 239000003973 paint Substances 0.000 description 13
- 238000012937 correction Methods 0.000 description 12
- 230000000694 effects Effects 0.000 description 11
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 9
- 238000010422 painting Methods 0.000 description 9
- 238000010791 quenching Methods 0.000 description 9
- 230000000171 quenching effect Effects 0.000 description 9
- 239000011248 coating agent Substances 0.000 description 7
- 238000000576 coating method Methods 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 239000006104 solid solution Substances 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 238000003483 aging Methods 0.000 description 4
- 230000032683 aging Effects 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 238000005728 strengthening Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000010960 cold rolled steel Substances 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 238000001953 recrystallisation Methods 0.000 description 3
- 239000011856 silicon-based particle Substances 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- 238000005482 strain hardening Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229910000881 Cu alloy Inorganic materials 0.000 description 2
- 229920000877 Melamine resin Polymers 0.000 description 2
- 229910019064 Mg-Si Inorganic materials 0.000 description 2
- 229910019752 Mg2Si Inorganic materials 0.000 description 2
- 229910019406 Mg—Si Inorganic materials 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 229920000180 alkyd Polymers 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000004070 electrodeposition Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 229910000765 intermetallic Inorganic materials 0.000 description 2
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000002791 soaking Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- PCTMTFRHKVHKIS-BMFZQQSSSA-N (1s,3r,4e,6e,8e,10e,12e,14e,16e,18s,19r,20r,21s,25r,27r,30r,31r,33s,35r,37s,38r)-3-[(2r,3s,4s,5s,6r)-4-amino-3,5-dihydroxy-6-methyloxan-2-yl]oxy-19,25,27,30,31,33,35,37-octahydroxy-18,20,21-trimethyl-23-oxo-22,39-dioxabicyclo[33.3.1]nonatriaconta-4,6,8,10 Chemical compound C1C=C2C[C@@H](OS(O)(=O)=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2.O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/C=C/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 PCTMTFRHKVHKIS-BMFZQQSSSA-N 0.000 description 1
- QYEXBYZXHDUPRC-UHFFFAOYSA-N B#[Ti]#B Chemical compound B#[Ti]#B QYEXBYZXHDUPRC-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 229910000861 Mg alloy Inorganic materials 0.000 description 1
- 229910017639 MgSi Inorganic materials 0.000 description 1
- 229910000979 O alloy Inorganic materials 0.000 description 1
- 229910033181 TiB2 Inorganic materials 0.000 description 1
- 229910008481 TiSi3 Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000012237 artificial material Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000009931 harmful effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000012778 molding material Substances 0.000 description 1
- 238000007591 painting process Methods 0.000 description 1
- 208000014451 palmoplantar keratoderma and congenital alopecia 2 Diseases 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000004881 precipitation hardening Methods 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 101150048412 secB gene Proteins 0.000 description 1
- 101150055937 secD gene Proteins 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- LRXTYHSAJDENHV-UHFFFAOYSA-H zinc phosphate Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O LRXTYHSAJDENHV-UHFFFAOYSA-H 0.000 description 1
- 229910000165 zinc phosphate Inorganic materials 0.000 description 1
Landscapes
- Metal Rolling (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
この発明は、耐食性及び溶接性の良好な成形加工用アル
ミニウム合金圧延板及の製造方法に関し、特に強度が要
求されしがも類1寸塗装を施して1重用される用途、例
えば自動車車体等に適した成形加工用アルミニウム合金
圧延板の製造方法に関する。Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a rolled aluminum alloy plate for forming work that has good corrosion resistance and weldability, and a method for manufacturing the same. The present invention relates to a method for manufacturing aluminum alloy rolled sheets for forming and processing, which are suitable for single-use applications such as automobile bodies.
(従来の技術)
自動車車体のボディシートには、従来は主として冷延鋼
板が用いられることが多かったが、最近では車体軽量化
の要求から、アルミニウム合金圧延板を使用する検討が
なされている。自動車車体のボディシートは、プレス成
形を施して「重用されることから成形加工性が優れてい
ること、特に沖び、張出し性が優れておりかつ成形加工
時における外観不良であるリューダースマーク、フロー
ラインの発生がないことが要求され、しかも焼付塗装を
施すところから、焼1寸塗装接の強度が高いことが要求
される。(Prior Art) In the past, cold-rolled steel sheets were mainly used for the body sheets of automobile bodies, but recently, due to the demand for reducing the weight of car bodies, consideration has been given to using rolled aluminum alloy sheets. Body sheets for automobile bodies are press-formed, and as they are used extensively, they have excellent molding properties, especially the Lüders mark, which has excellent molding properties and has excellent appearance properties during molding. It is required that no flow lines occur, and since the baking coating is applied, the strength of the baked one-inch coating bond is required to be high.
ところで強度が要求される成形加工品の用途に1吏用さ
れるアルミニウム合金板としては従来から種々のものが
あるが、その主要なものは合金成分系によって次のよう
に分けられる。By the way, there have been various types of aluminum alloy plates used for forming products that require strength, but the main types can be classified as follows depending on the alloy composition.
(イ)非熱処理型Aff−Mg系合金である5052合
金(Mg−2,2〜2.8%、Cr0115〜0.35
%残部Siおよび不可避的不純物)のO材あるいは同じ
<5182合金(Mn0.20〜0,50%、Mg−1
,0〜5.0%、残部へρおよび不可避的不純物)のO
材。(a) 5052 alloy (Mg-2, 2-2.8%, Cr0115-0.35
% balance Si and unavoidable impurities) or the same <5182 alloy (Mn0.20-0.50%, Mg-1
, 0-5.0%, the remainder ρ and unavoidable impurities)
Material.
(ロ)熱処理型AR−Cu系合金である2036合金(
Cu−2,2’−3,0%、Mno、 i 〜o、 、
qqg、Mg−0,3〜0.6%、残部、lおよび不可
避的不純物)のTII処理材。(b) 2036 alloy, which is a heat-treatable AR-Cu alloy (
Cu-2,2'-3,0%, Mno, i ~ o, ,
qqg, Mg-0.3-0.6%, balance, l and unavoidable impurities) TII treated material.
(ハ)熱処理型A12 MgZn−Cu系合金のT4処
理材。この系のアルミニウム合金としては、例えば特開
昭52−141409号の合金、特開昭53−1039
14号の合金、あるいは特開昭57−98648号の合
金などがある。(c) Heat-treated A12 T4-treated material of MgZn-Cu alloy. Examples of this type of aluminum alloy include the alloy of JP-A No. 52-141409, the alloy of JP-A No. 53-1039
There are alloys such as No. 14 alloy and JP-A-57-98648 alloy.
また、日経ニューマテリアル、1986.4−7、No
、8.第63−72頁、特に第64頁で紹介されている
Al−t1.5Mg−0,38Cu1.46Zn−0,
18Fe−0,09Siもある。Also, Nikkei New Material, 1986.4-7, No.
, 8. Al-t1.5Mg-0,38Cu1.46Zn-0 introduced on pages 63-72, especially page 64,
There is also 18Fe-0,09Si.
(ニ)熱処理型AR−Mg−Si系合金である6009
合金(Mg−0,11〜0.8%、Si−o、6〜1.
0%、Cu−0,15〜0.6%、Mn−0,2〜0.
8%、残部Siおよび不可避的不純!i+i])のT4
処理材や同じ<6010合金(Mg−0,6〜1.0%
、Si−0,8〜1゜2%、Cu−0,15〜0.6%
、MnO12〜0−89’11、残部Siおよび不可避
的不純物)のT4処理材。これらの合金を提案する特公
昭59−39 tl 99号によると、0.4〜1.2
%Si、O14〜1.1%Mg、0.05〜0.35%
Fe、0.1〜0.6%Cu、に加えて、0.2〜0.
8%Mn、0.1〜0.3%Cr、および0.05〜0
.15%Zrの少なくとも1種を含有する組成のT4ま
たはT6処理材が開示される1、さらに、特公昭61−
15148号に提案される(A)1%Si、0.6%M
g、(B)1.8%Si、0.6%Mg、(C)18
S 1.0 、2 %’VI g、(D)1.2%Si
、0.6%Mgの4点て囲ま?LるSi、Mg組成を有
し、さらに0.3%以下のCr、Mn、Zr、または/
′及びTiを含有するAC120規格化材。(d) 6009, which is a heat treatment type AR-Mg-Si alloy
Alloy (Mg-0.11-0.8%, Si-o, 6-1.
0%, Cu-0.15-0.6%, Mn-0.2-0.
8%, remaining Si and unavoidable impurities! i+i]) T4
Treated material and same <6010 alloy (Mg-0,6~1.0%
, Si-0.8~1°2%, Cu-0.15~0.6%
, MnO12~0-89'11, remainder Si and unavoidable impurities) T4 treated material. According to Japanese Patent Publication No. 59-39 TL 99 which proposes these alloys, 0.4 to 1.2
%Si, O14~1.1%Mg, 0.05~0.35%
In addition to Fe, 0.1-0.6% Cu, 0.2-0.
8% Mn, 0.1-0.3% Cr, and 0.05-0
.. A T4 or T6 treated material having a composition containing at least one of 15% Zr is disclosed.
(A) 1% Si, 0.6% M proposed in No. 15148
g, (B) 1.8%Si, 0.6%Mg, (C) 18
S 1.0, 2%'VI g, (D) 1.2%Si
, 4 points of 0.6% Mg? has a Si, Mg composition, and further contains 0.3% or less of Cr, Mn, Zr, or/
AC120 standardized material containing ' and Ti.
しかしながらこれらの従来のアルミニウム合金ては、自
動車車体のボディシートに要求される前述の特性を全て
充分に満足させることは困難であった。However, it has been difficult for these conventional aluminum alloys to fully satisfy all of the above-mentioned characteristics required for body sheets of automobile bodies.
すなわち(イ)の合金では、強度が不充分であり、しか
も成形加工時にリューダースマークが発生し易い問題が
あり、さらには塗装焼付工程において強度が低下する問
題があった。また(口)の合金では、成形性が劣り、か
つまた塗装焼は工程によって強度が低下する問題もあっ
た。さらに(ハ)の合金では、成形加工性、特に曲げ性
が充分と言えず、また塗装焼付工程で強度が低下する問
題もあった。That is, the alloy (a) has insufficient strength, has the problem of easily generating Lüders marks during molding, and further has the problem of reduced strength during the paint baking process. In addition, the alloy described above had poor formability and also had the problem that the strength of the paint baking process decreased depending on the process. Furthermore, the alloy (c) has problems in that the moldability, especially the bendability, is not sufficient, and the strength decreases during the paint baking process.
(ニ)の合金は、リューダースマークが発生し難く、焼
1寸硬化性により冷延鋼板と同等の強度を有するなどの
特長を有するが、成形加工性の〜尺度となる伸びが冷延
鋼板より著しく低いことが知られている。The alloy (d) has features such as being hard to produce Lüders marks and having strength equivalent to that of cold-rolled steel sheets due to its hardenability, but the elongation, which is a measure of formability, is lower than that of cold-rolled steel sheets. known to be significantly lower.
以上のようにIK来よりアルミニウム合金では、自動車
車体のボディシートに要求される特性、すなわち浸れた
成形加工性を有すること、特に伸び、張出し成形加工性
が優れかつリューダースマークの発生がないこと、また
強度、特に塗装填f:f後の強度が高いことさらに耐食
性及び溶接性が優れていることの諸要求のすべてを満足
させるべく研究開発が行なわれてきた9
(発明が解決しようとする課題)
本発明が属する合金系のSi−91−Mg系では上記諸
要求をかなりの程度満足する合金が公知になっているも
のの、自動車車体用ボディシートに普通使用されている
鋼板よりは価格の面で不利なアルミニウム合金圧延板の
性能に対する要求は厳しくならざるを得す、これに十分
に応えるアルミニウム合金圧延板は未だ提供されておら
ない。As mentioned above, since IK, aluminum alloys have the characteristics required for automobile body sheets, that is, they have excellent formability, especially excellent elongation and stretch formability, and there is no Lüders mark. In addition, research and development has been carried out to satisfy all the requirements of strength, especially high strength after coating f:f, and excellent corrosion resistance and weldability. Problem) In the Si-91-Mg alloy system to which the present invention belongs, alloys that satisfy the above requirements to a considerable extent are known, but they are less expensive than steel sheets commonly used for automobile body sheets. The demands on the performance of rolled aluminum alloy sheets, which are disadvantageous in terms of performance, must become stricter, and an aluminum alloy rolled sheet that satisfactorily meets these requirements has not yet been provided.
具体的に述べると、先ず、成形加工性の一指標である伸
びが低く、このため成形加工性が未だ不十分である。Specifically, first, the elongation, which is an index of moldability, is low, and therefore the moldability is still insufficient.
また、自動車車体のボディシートに用いるアルミニウム
合金の耐食性については、従来、塗装−Fの欠陥がなけ
れば、アルミニウム合金そのものの耐食性がSr1板よ
り優れているため、問題とならないとの見解(前掲日経
ニューマテリアル)や、クロムめっき皮膜のふくれ欠陥
に対する耐食性をCASS試験で調査した実@(前掲特
公昭59391199号)などがある。ところで最近で
は、成形加工用アルミニウム合金圧延板の耐食性の要求
はより明確になりかつ従来は検討されていなかった特定
の性質の具備が要求されている。すなわちA2合金自体
の性質に関する未塗装板耐食性、耐ピツト性の池に、焼
1寸塗装後に塗膜はがれ(ブリスター)、糸状腐食等が
発生しないことが要求される。In addition, regarding the corrosion resistance of aluminum alloys used for body sheets of automobile bodies, the conventional opinion was that if there were no defects in Paint-F, the corrosion resistance of the aluminum alloy itself was superior to that of Sr1 sheets, so there was no problem (Nikkei cited above). New Materials), and JItsu@ (Japanese Patent Publication No. 59391199, cited above), which investigated the corrosion resistance of chrome plating films against blistering defects using CASS tests. Recently, however, the requirements for corrosion resistance of rolled aluminum alloy sheets for forming have become clearer, and specific properties that have not been considered in the past have been required. In other words, in addition to the corrosion resistance and pitting resistance of unpainted plates related to the properties of the A2 alloy itself, it is required that the coating film does not peel off (blister), thread-like corrosion, etc. occur after baking and painting.
しかし、かかる耐食性がすぐれており、しかも、強度と
成形加工性を兼ねそなえた成形加工用アルミニウム合金
圧延板は知られていない。However, there is no known aluminum alloy rolled sheet for forming that has such excellent corrosion resistance and also has both strength and formability.
自動車車体のボディシートの溶接はスポット溶接により
行われることが殆どであるが、部位によっては、M I
GもしくはTIG溶接によるいわゆるアーク溶接が行
われる部位がある。板厚が2.0mm以下の比較的薄い
板がアーク溶接されることが−殻内であるため、一般に
溶接に困牝が伴うので、溶接性の良好な圧延板が求めら
れている。Most of the welding of body sheets of automobile bodies is done by spot welding, but depending on the location, M I
There are parts where so-called arc welding using G or TIG welding is performed. Since relatively thin plates with a thickness of 2.0 mm or less are arc welded inside the shell, welding is generally difficult, so there is a need for rolled plates with good weldability.
この発明は以上の事情を背景としてなされたもので、成
形加工性、特に伸び、張出し性が優れかつ成形加工時に
おける外観不良であるリューダースマーク、フローライ
ンの発生がなく、しかも高強度を有し、特に成形加工後
の塗装焼付工程での強度低下がなく、むしろ成形加工後
の塗装焼付工程によって強度が上昇することにより高い
強度を有する成形品が得られるようにするとともに、耐
食性および溶接性を改良したアルミニウム合金圧延板、
およびその製造方法を提供することを目的とするもので
ある。This invention was made against the background of the above-mentioned circumstances, and has excellent molding processability, especially elongation and stretchability, and does not generate Lüders marks or flow lines, which are poor appearance during molding, and has high strength. However, in particular, there is no decrease in strength during the paint baking process after molding, but rather the strength increases through the paint baking process after molding, so that molded products with high strength can be obtained, and corrosion resistance and weldability are improved. improved aluminum alloy rolled plate,
The object of the present invention is to provide a method for producing the same.
(課題を解決するための手段)
本発明の第一は、合金元素として:SiO,6〜1.2
%、 Mg−0,6〜1.1%、不純物として:Fe−
0.15%未満、Cu−005%未満、Mn、Cr、Z
rおよび■のそれぞれが0.05%未満、その他の不純
物元素合計で0.05%未満、Al2.Si、Mg、F
e以外の元素の合計が0.10%未満から成る合金溶湯
を半3!!続i造により鋳造し、得られた鋳塊を450
〜590℃の1〜48時間加熱して、圧延加熱を兼ねる
均質化処理を行ない、その後熱間圧延および冷間圧延を
行ない、熱間圧延直後又は冷間圧延の中間において保持
温度範囲260〜450℃で保持時間48時間以下の中
間焼鈍を行い、その後冷間圧延して形成した圧延板を4
50〜590℃の温度範囲内で溶体化処理し、5℃/
s e c以上の冷却速度で焼入し、その後歪矯正を施
し、そのI&60〜360℃の範囲内の温度まで、第1
図に示される斜線領域内の加熱速度で加熱して、その温
度で第2図に示される斜線領域内の時間保持し、しかる
後第1図に示される斜線領域内の冷却速度で冷却するこ
とを特徴とする成形加工性、耐食性及び溶接性のすぐれ
たAg−51Mg系成形加工用アルミニウム合金圧延板
の製造方法であり、り、
本発明の第二は、合金元素として+Si−0,6〜1.
2%、Mg0.6〜1.1%、不純物として:Fe−0
.15%未満、Cu−0゜05%未満、Mn、Cr、Z
rおよび■のそれぞれが0.05%未満、その他の不純
物元素合計で0.05%未満、Ag、Si、Mg、Fe
以外の元素の合計が0.10%未満から成る合金溶湯を
連続鋳造により鋳造し、得られたコイル状鋳塊を冷間圧
延し゛ζ形成した圧延板を450〜590℃の温度範囲
内で溶体化処理し、5℃/ s e c以上の冷却速度
で焼入し、その後歪矯正を施し、その後60〜360℃
の範囲内の温度まで、第1図に示される斜線領域内の加
熱速度で加熱して、その温度で第2図に示される斜線領
域内の時間保持し、しかる後第1図に示される斜線領域
内の冷却速度で冷却することを特徴とする成形加工性、
耐食性及び溶接性のすぐれたAl2−51−Mg系成形
加工用アルミニウム合金圧延板の製造方法である。(Means for Solving the Problems) The first aspect of the present invention is as an alloying element: SiO, 6 to 1.2
%, Mg-0.6~1.1%, as impurity: Fe-
Less than 0.15%, Cu-005%, Mn, Cr, Z
Each of r and ■ is less than 0.05%, the total amount of other impurity elements is less than 0.05%, Al2. Si, Mg, F
Half an alloy molten metal containing less than 0.10% of elements other than e! ! The ingot obtained by continuous casting was cast at 450
Heating at ~590°C for 1 to 48 hours to perform a homogenization treatment that also serves as rolling heating, followed by hot rolling and cold rolling, and holding temperature range 260 to 450 immediately after hot rolling or in the middle of cold rolling. A rolled plate formed by intermediate annealing for a holding time of 48 hours or less at ℃ and then cold rolling was
Solution treatment within the temperature range of 50-590℃, 5℃/
Quenched at a cooling rate of s e c or higher, then subjected to strain straightening, to a temperature within the range of I & 60 to 360°C.
Heating at a heating rate within the shaded area shown in the figure, holding at that temperature for a time within the shaded area shown in Figure 2, and then cooling at a cooling rate within the shaded area shown in Figure 1. The second aspect of the present invention is a method for producing an Ag-51Mg aluminum alloy rolled plate for forming, which is characterized by excellent formability, corrosion resistance, and weldability. 1.
2%, Mg0.6-1.1%, as impurity: Fe-0
.. Less than 15%, Cu-0°05%, Mn, Cr, Z
Each of r and ■ is less than 0.05%, the total of other impurity elements is less than 0.05%, Ag, Si, Mg, Fe
A molten alloy containing less than 0.10% of all other elements is cast by continuous casting, and the obtained coiled ingot is cold rolled to form a rolled plate, which is melted in a temperature range of 450 to 590°C. quenched at a cooling rate of 5°C/sec or higher, then subjected to strain correction, and then heated to 60 to 360°C.
heating at a heating rate within the shaded area shown in Figure 1 to a temperature within the range of , held at that temperature for a time within the shaded area shown in Figure 2, and then heated at a heating rate within the shaded area shown in Figure 1. Formability characterized by cooling at a cooling rate within a range,
This is a method for manufacturing an Al2-51-Mg aluminum alloy rolled sheet for forming process, which has excellent corrosion resistance and weldability.
先ず、この発明の組成限定理由について説明する。First, the reason for limiting the composition of the present invention will be explained.
Si:Siは、添加量の一部が金属Si粒子としてA2
合金中に存在し、成形加工性特に伸び特性を向上させる
。又、他の一部のSiはMgと共年してMg2Siを生
成し、析出硬化により強度向−Lに寄与する。特に、M
g、Si−を生成する、M g2 S i化学量論組成
よりSiが充分に過剰であり、さらに金属Si粒子を生
成することが強度向上に重要である。この過剰のSi粒
子は、再結晶粒の微細化にも有効である。Si: A part of the amount added is A2 as metal Si particles.
It is present in alloys and improves formability, especially elongation properties. Further, some other Si forms Mg2Si together with Mg, and contributes to the strength direction -L by precipitation hardening. In particular, M
It is important for strength improvement to have a sufficient excess of Si from the stoichiometric composition of M g2 Si, which produces g, Si-, and to further produce metal Si particles. This excess Si particles are also effective in making recrystallized grains finer.
又Siは、メカニズムは不明であるが、MIG及びTI
G等のアーク溶接の溶接性も改善する。Si含有量が0
.6%未満では、これらの強度、成形加工性および溶接
性の改善の効果が不十分であり、その含有量が1.2%
を越えると、糸サビ性が低下する。In addition, although the mechanism is unknown, Si
It also improves the weldability of arc welding such as G. Si content is 0
.. If the content is less than 6%, the effects of improving strength, formability and weldability are insufficient, and the content is 1.2%.
If the value exceeds , the thread rust resistance decreases.
Mg+Mgは既に述べたようにSiとの共存によりMg
2Siを生成して強度を付与する。As mentioned above, Mg+Mg becomes Mg due to the coexistence with Si.
Generates 2Si to impart strength.
Mgが0,6%未満では強度が不充分であり、方1.1
%を越えると伸びが低下するから、Mg含有量の範囲は
0.6〜1.1%とした9Cuは耐食性特に糸サビff
rJi性を低下させる。Cuの含有量が0.05%を越
えるとその弊害が顕著になるため、Cuの含有量は0.
05%未満とした。If Mg is less than 0.6%, the strength is insufficient, and method 1.1
%, the elongation decreases, so the Mg content range is 0.6 to 1.1%. 9Cu has excellent corrosion resistance, especially yarn rust ff
Decreases rJi properties. If the Cu content exceeds 0.05%, the harmful effects become noticeable, so the Cu content should be set to 0.05%.
It was set to less than 0.05%.
Feは糸サビ性および成形加工性を低下させる。Feの
含有量が0.20%を越えると晶出物が多くなり、これ
らを起点として糸サビが発生し易くなりまた成形時に割
れが発生し易くなる9よって、特性的にはFeは低いほ
ど望ましいが、経済上の観点および糸サビ発生の許容レ
ベルを考慮するとFeの上限は0.15%未満である。Fe reduces yarn rust resistance and moldability. If the Fe content exceeds 0.20%, the amount of crystallized substances increases, and thread rust is likely to occur from these, and cracks are more likely to occur during molding9. Therefore, in terms of characteristics, the lower the Fe content, the more Although it is desirable, the upper limit of Fe is less than 0.15%, considering the economical point of view and the permissible level of occurrence of yarn rust.
好ましいFeの上限は0.05%未満である。The preferable upper limit of Fe is less than 0.05%.
Mn Cr、Zr、Vは一最には結晶粒aS化の目的
で添加されることが多いが、これらの元素は糸サビ性を
低下させることが判明した。これらの元素は成形加工性
も低下させるので、できるだけ少ない含有量が望ましい
。その含有量の上限は0.05%未満であることが必要
である。Mn, Cr, Zr, and V are often added primarily for the purpose of converting crystal grains to aS, but it has been found that these elements reduce yarn rust resistance. Since these elements also reduce moldability, it is desirable that their content be as low as possible. The upper limit of its content needs to be less than 0.05%.
その他の不純物は何れも糸サビ性に悪影響を与える。経
済的な面も考慮に入れると、M g 。All other impurities have an adverse effect on yarn rust resistance. Considering the economic aspect, Mg.
Si−、Fe、Siを除いた元素の合計が0.10%を
越えないことが重要である。It is important that the total amount of elements excluding Si-, Fe, and Si does not exceed 0.10%.
なお通常のアルミニウム合金においては鋳塊の結晶粒微
細化のためにTi、あるいはTiおよびBを微量添加す
ることがあり、この発明のアルミニウム合金板圧延板に
おいてもSi、合金成分、及び不純物の残部として微量
のTi、あるいはTiおよびBを含有していても良い、
但し、Tiを添加する場合0.005%未満ではその効
果が得られず、0.15以上では初晶TiSi3が晶出
して成形加工性を害するから、Tiは0゜005〜0.
15%の範囲内とすることが好ましい。またTiととも
にBを添加する場合、ippm未満ではその効果がなく
、500ppmを越えれば、TiB2の粗大粒子が混入
して成形加工性を害するから、Bは1〜500ppmの
範囲内とすることが好ましい。In addition, in ordinary aluminum alloys, a small amount of Ti or Ti and B may be added to refine the crystal grains of the ingot, and the rolled aluminum alloy sheet of the present invention also contains the remaining Si, alloy components, and impurities. may contain a trace amount of Ti or Ti and B,
However, when adding Ti, if it is less than 0.005%, the effect cannot be obtained, and if it is more than 0.15%, primary crystal TiSi3 will crystallize and impair moldability.
It is preferably within the range of 15%. In addition, when B is added together with Ti, if it is less than ippm, there is no effect, and if it exceeds 500 ppm, coarse particles of TiB2 will be mixed in, impairing the moldability, so it is preferable that B is within the range of 1 to 500 ppm. .
本願発明の第一の出発工程では上記合金組成からなる溶
湯を矩形の断面を有する鋳塊に半連続鋳造する。鋳造速
度は、矩形の鋳塊が鋳造できれば特に定めないが、通常
25mm/minから250mm/minの範囲で鋳造
されることが好ましい。In the first starting step of the present invention, a molten metal having the above alloy composition is semi-continuously cast into an ingot having a rectangular cross section. The casting speed is not particularly determined as long as a rectangular ingot can be cast, but it is usually preferable to cast within a range of 25 mm/min to 250 mm/min.
この鋳塊は熱間圧延に先立ち450〜590℃で1時間
〜48時間加熱される。鋳塊の不均一性を解消し、成形
加工性を向上させることを目的とする鋳塊の加熱では、
加熱温度が450℃未満又は加熱時間が1時間未満であ
ると均質化が不充分であり、加熱温度が590℃を越え
ると局部融解が起こり、加熱時間が48時間を越えると
経済性が低下しかつ均質化の効果が飽和する。This ingot is heated at 450 to 590°C for 1 to 48 hours prior to hot rolling. When heating an ingot, the purpose of which is to eliminate unevenness in the ingot and improve formability.
If the heating temperature is less than 450°C or the heating time is less than 1 hour, homogenization will be insufficient, if the heating temperature exceeds 590°C, local melting will occur, and if the heating time exceeds 48 hours, economic efficiency will decrease. And the homogenization effect is saturated.
その後、熱間圧延したアルミニウム合金板は引き続いて
冷間圧延され板厚3.0〜0.5mmに圧下される。Thereafter, the hot rolled aluminum alloy plate is successively cold rolled and reduced to a thickness of 3.0 to 0.5 mm.
そして冷間圧延の途中もしくは熱間圧延と冷間圧延の間
に中間焼鈍を入れ、再結晶の効果によりアルミニウム合
金板の特性、特に強度と成形加工性を向上させる。すな
わち、熱間圧延時に、粗大な結晶粒が発生した場合、熱
延板を中間焼鈍なしに冷間圧延し溶体化処理をすると、
この粗大結晶粒が圧延方向に沖びたバンド組織が生じ、
成形加工時にリジング又はフローラインと称するうねり
が発生し、成形品外観を劣化させる。そこで、中間焼鈍
により一度再結晶を生じさせると、熱間圧延時に生じた
粗大粒の影響を解消させることが可能となる。ここで、
中間焼鈍の温度が280℃未満であると再結晶が起こら
ず、又温度が450℃を越えると、結晶粒粗大rヒが起
こり易くなる。Intermediate annealing is performed during cold rolling or between hot rolling and cold rolling to improve the properties of the aluminum alloy sheet, particularly its strength and formability, due to the effect of recrystallization. In other words, if coarse grains are generated during hot rolling, if the hot rolled sheet is cold rolled and solution treated without intermediate annealing,
A band structure is formed in which these coarse grains extend in the rolling direction,
Waviness called ridging or flow lines occurs during molding, which deteriorates the appearance of the molded product. Therefore, once recrystallization is caused by intermediate annealing, it becomes possible to eliminate the influence of coarse grains produced during hot rolling. here,
If the intermediate annealing temperature is less than 280°C, recrystallization does not occur, and if the temperature exceeds 450°C, grain coarsening tends to occur.
また保持時間が48時間を越える中間焼鈍は経済的でな
い。Moreover, intermediate annealing for which the holding time exceeds 48 hours is not economical.
本発明の上記合金組成の特性を十分に発揮させるために
は、アルミニウム合金圧延板を450〜590℃で溶体
化処理し、5℃/sec以上の冷却速度で冷却すること
が必要である。この溶体化処理により所定の強度及び成
形加工性を得るに必要な量の固溶MgとSiが得られる
。温度がL150℃未満では、溶体化が不充分であり、
冷却後及びベーキング後の強度が充分に得られない。In order to fully exhibit the characteristics of the above-mentioned alloy composition of the present invention, it is necessary to solution heat the rolled aluminum alloy plate at 450 to 590°C and cool it at a cooling rate of 5°C/sec or more. Through this solution treatment, the amount of solid solution Mg and Si necessary to obtain a predetermined strength and moldability can be obtained. If the temperature is less than L150°C, solutionization is insufficient,
Sufficient strength cannot be obtained after cooling and baking.
方温度が590℃8越えると共晶溶融の恐れがある。On the other hand, if the temperature exceeds 590°C, there is a risk of eutectic melting.
また、焼入れ速度(冷却速度)が5℃/ s eCより
遅いと、強度が不充分であるばかりでなく、粒界腐食等
に対する耐食性も劣化する。よって、5℃/sec以上
の焼入れ速度が必要である。Further, if the quenching rate (cooling rate) is slower than 5°C/sec, not only the strength will be insufficient, but also the corrosion resistance against intergranular corrosion etc. will deteriorate. Therefore, a quenching rate of 5° C./sec or higher is required.
上記溶体化処理は、量産性等を考慮すると、コイルを連
続的に溶体化焼入処理をする技法が好ましい。保持時間
はO(所定の温度に到達すると同時に冷却)てもよいが
通常は10秒以上が好ましい。In consideration of mass productivity, etc., the solution treatment is preferably a technique in which the coil is subjected to continuous solution quenching treatment. The holding time may be 0 (cooling at the same time as the predetermined temperature is reached), but it is usually preferably 10 seconds or more.
コイルを連続的に溶体化焼入れする場合、経済的観点か
ら、溶体化温度での保持時間は5分が上限である。この
連続溶体化焼入を用いる場合、通常5℃/sec以上の
加熱速度が得られるため、結晶粒が微細化され、成形加
工性が向上する。When continuously solution hardening a coil, from an economical point of view, the upper limit of the holding time at the solution temperature is 5 minutes. When this continuous solution quenching is used, a heating rate of 5° C./sec or more is usually obtained, so crystal grains are refined and moldability is improved.
溶体化処理は、元来は、Mg、Si等の強化に寄与する
合金元素を充分に再固溶させることを目的としたもので
ある。そこで必要な強度を得るためには、その強度を得
るに必要な量の強化寄与合金元素を再固溶させればよく
、その為には、添加したMg、Siを充分に固溶させる
、いわゆる完全溶体化処理が行なわれる9しがし特に自
動車用の成形用途では車体の部位によっては、強度より
成形加工性を重視せざるを得ない場合もある。The original purpose of the solution treatment is to sufficiently dissolve alloy elements contributing to strengthening, such as Mg and Si, into a solid solution again. Therefore, in order to obtain the required strength, it is only necessary to re-dissolve the alloying elements that contribute to strengthening in the amount necessary to obtain the strength. Particularly in automotive molding applications where complete solution treatment is performed, moldability may have to be more important than strength depending on the part of the vehicle body.
この場合は、Mg含有量及びSi含有量を多くし、溶体
化処理時に強化に必要景なだけのMgSiを再固溶させ
るいわば不完全溶体化処理によってもよい。In this case, a so-called incomplete solution treatment may be performed in which the Mg content and Si content are increased and MgSi is redissolved in an amount necessary for strengthening during the solution treatment.
具体的には、溶体化処理時の時間を短くもしくは温度を
低目にすればよい。特に、連続溶体fヒ焼入装置を用い
る場合、保持時間を雉くとることが可能となり、これに
より連続溶体化処理時のラインスピードを上げることが
でき、経済的な利点が得られる。不完全溶体化処理を行
なう堝会、溶体化I/8理前のMg及びSiの存在状態
が変動すると、それに伴い再固溶されるMg及びSiの
量が異なり、m緘的性質が変動する。したがって、溶体
(ヒ処理前のMg及びSiの存在状態を一定にしておく
ことが要点となる。Specifically, it is sufficient to shorten the time or lower the temperature during solution treatment. In particular, when a continuous solution hardening device is used, it becomes possible to shorten the holding time, thereby increasing the line speed during continuous solution treatment, resulting in economical advantages. When the state of existence of Mg and Si before the incomplete solution treatment is changed, the amount of Mg and Si that is re-dissolved changes accordingly, and the m-type properties change. . Therefore, it is important to keep the presence state of Mg and Si constant before the solution treatment.
この、溶体化処理前のMg、Siの存在状態をコントロ
ールするためには、熱間圧延前の加熱条Fト、熱間圧延
条件を厳密に管理するゼ・要があるが、中間焼鈍を製造
工程に入れると一層好ましい。In order to control the presence of Mg and Si before solution treatment, it is necessary to strictly control the hot rolling conditions before hot rolling. It is even more preferable to include it in the process.
前記の通りの温度の中間焼鈍を受けたアルミニウム合金
圧延板では、中間焼鈍以前の熱履歴により決定されたM
g及びSi−の存在状態が安定化かつ一定化され、その
結果、不完全溶体化処理によるMg、Siの再固溶量は
安定し、機械的性能の安定化が一層容易となる。In aluminum alloy rolled plates that have undergone intermediate annealing at the temperatures described above, the M determined by the thermal history before intermediate annealing is
The existing state of Mg and Si- is stabilized and constant, and as a result, the amount of Mg and Si re-solid-dissolved by the incomplete solution treatment becomes stable, making it easier to stabilize mechanical performance.
溶体化処理時の急速加熱および焼入れ時の急速冷却によ
って圧延板が変形し歪となるので、この歪を除去するた
め溶体死処f1m入れ後に歪矯正を行なう。この歪矯正
は、レベリング、テンションレベリング、スキンバス、
あるいはストレッチ等のいずれでも良く、いずれの方法
でも若干の冷間加工を与えることによって歪の除去が行
なわれる。歪矯正工程での加工の程度は溶体化処理焼入
後の歪の程度によっても異なるが、通常は歪矯正工程を
入れることにより、耐力は1kg、/mm2以−1−上
昇し、成形加工性はエリクセン値で0.2mm以」−低
下する。Rapid heating during solution treatment and rapid cooling during quenching cause the rolled plate to deform and become strained, so in order to remove this strain, strain correction is performed after the solution death process f1m. This distortion correction includes leveling, tension leveling, skin bath,
Alternatively, it may be stretched or the like, and in either method, distortion is removed by applying a slight cold working. The degree of processing in the strain straightening process varies depending on the degree of strain after solution annealing and quenching, but usually by including the strain straightening process, the yield strength increases by more than 1 kg/mm2, and the formability improves. decreases by 0.2 mm or more in Erichsen value.
このように歪矯正工程により成形加工性能の低下した圧
延板に対し、次いで60〜360℃の範囲内に加熱して
保持後もしくは直ちに冷却する最終熱処理(fi終焼鈍
ということらある)を施す。この熱処理は、加熱保持温
度に対応して第117の斜線領域すなわち点A、B、C
,D、Eを結ぶ直線もしくは曲線によって囲まれる領域
内の加熱速度で加熱昇温し、加熱保持温度に対応して第
2図の斜線領域すなわち点a、b、c、dを結ぶ直線ら
しくは曲線によって囲まれる範囲内の時間保持し、さら
にその加熱保持温度に対応して第1図の不斜線領域内の
冷却速度で冷却する。ここで第1図中の各点A〜Eにお
ける温度および加熱冷却速度は次の通りである。The rolled plate whose forming performance has been degraded due to the strain straightening process is then subjected to a final heat treatment (also referred to as fi final annealing) in which the sheet is heated to a temperature in the range of 60 to 360°C, held, or immediately cooled. This heat treatment is carried out in the 117th shaded area, that is, points A, B, and C, corresponding to the heating holding temperature.
, D, and E at a heating rate within the area surrounded by the straight line or curved line, and the line connecting the hatched area in Figure 2, that is, points a, b, c, and d, corresponds to the heating holding temperature. It is held for a time within the range surrounded by the curve, and further cooled at a cooling rate within the shaded area in FIG. 1 corresponding to the heating holding temperature. Here, the temperature and heating/cooling rate at each point A to E in FIG. 1 are as follows.
A: 60℃14X10−3℃/ s e cB:14
0℃14X10−’℃/5ecC: 360℃13×1
0℃/ s e cD : 230℃54X10’℃/
5ecE; 60℃14X10’℃/secまた第2
図中の各点a〜dにおける温度、時間は次の通りである
。A: 60℃14X10-3℃/secB:14
0℃14X10-'℃/5ecC: 360℃13×1
0℃/secD: 230℃54X10'℃/
5ecE; 60℃14X10'℃/sec and second
The temperature and time at each point a to d in the figure are as follows.
a : 200℃、 0sec
b : 360℃、 0sec
c:130℃、105sec
d: 60″C110’s e c
このように歪矯正後の最終熱処理について加熱速度、保
持時間、冷却時間の範囲を定めた理由を説明する。a: 200°C, 0sec b: 360°C, 0sec c: 130°C, 105sec d: 60″C110's e c In this way, the ranges of heating rate, holding time, and cooling time were determined for the final heat treatment after straightening the strain. Explain why.
この発明で対象としているSi−Mg−Si系合金は熱
処理型の合金であるため、加熱、保持、冷却中に加工歪
の除去のみならず、時効硬化が生じる可能性かあり、そ
の場合強度が上昇して成形加工性が低下したり、過時効
により成形加工後の塗装焼付強度もしくはT6処理後強
度が低下したりするおそれがある。そこでこれらの問題
の発生を招かないようにしながら、歪矯正工程での加工
歪を除去する必要があり、その他平坦度を維持すること
や経済性等をも考慮する必要があり、これらの観点から
次のように各範囲が定められた。Since the Si-Mg-Si alloy targeted by this invention is a heat-treatable alloy, there is a possibility that not only the processing strain will be removed during heating, holding, and cooling, but also age hardening will occur, in which case the strength will decrease. There is a risk that moldability may decrease due to the increase in moldability, or the paint baking strength after molding or the strength after T6 treatment may decrease due to overaging. Therefore, it is necessary to eliminate processing distortion in the distortion straightening process while preventing these problems from occurring, and it is also necessary to consider other aspects such as maintaining flatness and economic efficiency. Each range was determined as follows.
(加熱速度)
第1図の直線AI3よつ下側の領域では、材料の性能と
しては問題がないが、これ以上の徐加熱では昇温に著し
い長時間を要するため生産性が低下し、経済的ではなく
なる。したがって直線ABより上の加熱速度とした。(Heating rate) In the area below the straight line AI3 in Figure 1, there is no problem with the performance of the material, but if the temperature is heated more gradually than this, it will take an extremely long time to raise the temperature, resulting in a decrease in productivity and an economical It becomes irrelevant. Therefore, the heating rate was set above the straight line AB.
第1図の曲線[3Cより下側の加熱速度の遅い領域では
、加熱昇温中に時効硬化が生じて、強度は上昇する反面
、成形加工性が低下する。そこで曲mBCより上側の領
域とした。In the region where the heating rate is slow below the curve [3C in FIG. 1], age hardening occurs during heating and temperature rise, and although the strength increases, the moldability decreases. Therefore, the area was set above the song mBC.
次に直線DCより上側の領域においては、加熱が急速す
ぎて昇温中に歪が発生してしまい、歪矯正の効果が失わ
れてしまう。したがって直線DCより下側の領域とした
。Next, in the region above the straight line DC, heating is too rapid and distortion occurs during temperature rise, and the effect of distortion correction is lost. Therefore, the area was set below the straight line DC.
直線DEより上側の領域は、実質的にオイルバス投入に
よる加熱速度を越える加熱速度であり、これ以上の加熱
速度でも効果はあるが実用的ではなく、無意味であるか
ら、直線DEより下側の領域とした。The area above the straight line DE is a heating rate that substantially exceeds the heating rate due to oil bath injection, and although higher heating rates are effective, they are not practical and are meaningless, so the area below the straight line DE is The area of
直線EAの左側、すなわち加熱温度が60℃未満の低温
では、加熱速度のlIu何にかかわらず、歪矯正による
加工歪を除去しきれないから、直線EAの左側領域は除
外した。On the left side of the straight line EA, that is, at a low heating temperature of less than 60° C., the processing strain caused by strain correction cannot be completely removed regardless of the heating rate, so the area on the left side of the straight line EA was excluded.
以上から、加熱速度の範囲は加熱保持温度によって異な
るが、第1図中の点A、B、C,D、Eで囲まれる斜線
領域内とすることが必要である。From the above, although the range of the heating rate varies depending on the heating holding temperature, it is necessary to set it within the shaded area surrounded by points A, B, C, D, and E in FIG.
(保持温度・時間)
第2図中における直線abに関して、保持温度200〜
360℃では、その温度域に到達して直ちに冷却を開始
しても、すなわち保持時間を0秒としてム加工歪を除去
できる。したがって保持温度200〜360℃の温度域
では保持時間の下限を0秒、すなわち直線abとした。(Holding temperature/time) Regarding the straight line ab in Fig. 2, the holding temperature is 200~
At 360° C., even if cooling is started immediately after reaching that temperature range, that is, by setting the holding time to 0 seconds, the strain caused by processing can be removed. Therefore, in the holding temperature range of 200 to 360°C, the lower limit of the holding time was set to 0 seconds, that is, the straight line ab.
また曲線bcより右上の領域では、加工歪は除去できる
が、高温時効硬化により強度が上昇し、成形加工性が低
下してしまう、また特に高温領域では過時効となり、成
形加工性が低下するとともに、成形後の焼1寸塗装もし
くはT6処理により所定の強度が得られなくなる。した
がって曲線bcの左下の領域とする必要がある。In addition, in the upper right region of curve bc, processing strain can be removed, but strength increases due to high temperature age hardening, and formability decreases.In addition, especially in the high temperature region, overaging occurs, and formability decreases. , predetermined strength cannot be obtained due to baking one-dimensional painting or T6 treatment after molding. Therefore, it is necessary to set the area to the lower left of the curve bc.
直線(dより上側では、加工歪を除去できて成形加工性
の回復が可能であるが、保持時間が24時間を越え、経
済的に無意味であり、したがって直線cdより下側とし
た。Above the straight line (d), processing strain can be removed and moldability can be restored, but the holding time exceeds 24 hours and it is economically meaningless, so it is set below the straight line cd.
曲線daより左下の領域では、加工歪を除去するに必要
な熱が与えられず、成形加工性の回復が認められない。In the region below and to the left of the curve da, the heat necessary to remove processing strain is not applied, and recovery of moldability is not observed.
したがって曲1idaの右上の領域とする必要がある。Therefore, it is necessary to set it to the upper right area of the song 1ida.
以上から、加熱保持時間は、加熱保持温度によって異な
るが、結局第2図中の点abcdで囲まれる斜線領域内
とする必要がある。From the above, although the heating holding time differs depending on the heating holding temperature, it is ultimately necessary to keep it within the shaded area surrounded by points abcd in FIG. 2.
(冷却速度)
冷却速度は、加熱速度と同様に第1図中のABCDで囲
まれる斜線領域内とする必要がある。(Cooling Rate) Like the heating rate, the cooling rate must be within the shaded area surrounded by ABCD in FIG.
直線ABより下側の領域では、材料の性能としては問題
がないが、これ以上の徐速冷却では冷却に著しい長時間
を要するため経済的でない、したがって直線ABより上
側の領域とした。In the region below the straight line AB, there is no problem with the performance of the material, but slow cooling beyond this is not economical because cooling takes a significantly long time, so the region above the straight line AB was selected.
曲線BCより下側の冷却速度の遅い領域では、冷却中に
時効析出が生じ、成形加工性が低下するとともに、過時
効によって成形後の焼付塗装もしくはT6処理で所定の
強度を得ることができなくなる。したがって曲線BCよ
り上側の領域とした。直線DCより上側の冷却速度では
、冷却速度が大き過ぎて材料に歪変形が生じてしまい、
最終熱処理前の歪矯正の効果が失われてしまう。したが
って直線DCより下側の領域とした。In the region below the curve BC where the cooling rate is slow, aging precipitation occurs during cooling, reducing formability, and due to over-aging, it becomes impossible to obtain the specified strength by baking painting or T6 treatment after forming. . Therefore, the area was set above curve BC. If the cooling rate is above the straight line DC, the cooling rate will be too high and cause distortion in the material.
The effect of strain correction before the final heat treatment is lost. Therefore, the area was set below the straight line DC.
直線DEより上側の領域では、実質的に水冷を越える冷
却速度となり、実用上無意味であるから、直線DEより
下側の冷却速度とした。In the region above the straight line DE, the cooling rate substantially exceeds water cooling and is practically meaningless, so the cooling rate is set below the straight line DE.
直線EAより左側では、冷却速度の如何にかかわらず、
加工歪を除去できない。したがって直線EAより右側の
領域とした。On the left side of straight line EA, regardless of the cooling rate,
Processing distortion cannot be removed. Therefore, the area was set to the right of the straight line EA.
したがって冷却速度ら、加熱速度途同様に、加熱保持温
度によって異なるが、第1図中のABCDHによって囲
まれる斜線領域とした。Therefore, the cooling rate and the heating rate vary depending on the heating and holding temperature, but the shaded area surrounded by ABCDH in FIG. 1 is used.
以上のような条件ての最終熱処理を歪矯正加工後に施せ
ば、歪矯正工程て導入された加工歪が除去されて、その
歪矯正により低下した成形加工性、とくに張出し性が回
復され、溶体化処理焼入れにより得られていたT4テン
パー状態での良好な成形加工性、とくに張出し性を有す
る状態に戻すことができるのである。またこの最終熱処
理においては、時効硬化や過時効が生じないような適切
な条件に定めているため、それらによる成形加工性の低
下を招くことがなく、また成形後の焼1寸塗装やT6処
理によって所要の強度を得ることができる。さらに最終
熱処理の条CI−は、急熱急冷による新たな歪の発生を
招かないように定めているから、その・前の歪矯正工程
による平坦度改善の効果が保たれる。If the final heat treatment under the above conditions is performed after the strain correction process, the processing strain introduced in the strain correction process will be removed, and the formability, especially the stretchability, deteriorated due to the strain correction will be restored, and the solution process will be improved. It is possible to restore the T4 tempered state obtained by treatment quenching to a state with good moldability, especially stretchability. In addition, in this final heat treatment, appropriate conditions are set so that age hardening and over-aging do not occur, so there is no deterioration in molding workability due to these conditions, and there is no need for post-molding 1-inch painting or T6 treatment. The required strength can be obtained by Furthermore, since the final heat treatment line CI- is set so as not to cause new distortion due to rapid heating and cooling, the flatness improvement effect of the previous distortion correction process can be maintained.
その後、表面清浄化、化成処理、成形加工、溶接、塗装
、焼付硬化等を行なう。After that, surface cleaning, chemical conversion treatment, molding, welding, painting, baking hardening, etc. are performed.
(以下余白)
大型の半連続鋳造鋳塊の代わりに1本発明の第二におい
ては、2つのロール間に連続的に溶湯を供給して連続鋳
造板又はコイルを作る。この場合は鋳造速度の制限が特
にない。(Left below) Instead of a large semi-continuously cast ingot, in the second aspect of the present invention, molten metal is continuously supplied between two rolls to produce a continuously cast plate or coil. In this case, there is no particular restriction on casting speed.
また通常熱間圧延をせず冷間圧延を行うが、圧延に先立
ち均質化を促進し、冷間圧延性を向上させるため、30
0〜b
備加熱をしてらよい。引き続いて冷間圧延を行ない、板
厚を3,0〜0.5mmにする。In addition, although cold rolling is usually performed without hot rolling, in order to promote homogenization prior to rolling and improve cold rollability,
0-b You can preheat it. Subsequently, the plate is cold rolled to a thickness of 3.0 to 0.5 mm.
冷間圧延の最初もしくは冷間圧延の途中に中間焼鈍を入
れる場合があるが、これは半連続鋳造を経て圧延を行な
う本発明の第一の場合と異なり、冷間圧延を耳割れや板
切れなしに行なうためのものであり、これらの圧延トラ
ブルのおそれがない時は省略される。ここで、中間焼鈍
の温度が280℃未満であると圧延加工性が改善され、
又温度が450℃を越えると、結晶粒粗大化が起こり易
くなる。また保持時間が48時間を越える中間焼鈍は経
済的でない。Intermediate annealing may be performed at the beginning of cold rolling or in the middle of cold rolling, but this differs from the first case of the present invention in which rolling is performed through semi-continuous casting. It is omitted when there is no risk of these rolling troubles. Here, when the temperature of intermediate annealing is less than 280°C, rolling workability is improved,
Moreover, when the temperature exceeds 450°C, coarsening of crystal grains tends to occur. Moreover, intermediate annealing for which the holding time exceeds 48 hours is not economical.
また溶体化処理は5量産性等を考慮すると、コイルを連
続的に溶体fヒ焼入処理をする技法が好ましい。保持時
間は0(所定の温度に到達すると同時に冷却)でもよい
が通常は10秒以上が好ましい。Furthermore, in consideration of mass productivity, etc., it is preferable to use a technique in which the coil is continuously subjected to solution hardening treatment. The holding time may be 0 (cooling at the same time as the predetermined temperature is reached), but it is usually preferably 10 seconds or more.
コイルを連続的に溶体化焼入れする場合、経済的観点か
ら、溶体化温度での保持時間は5分が上限である。この
連続溶体化焼入を用いる場合、通常5℃/ s e c
以上の加熱速度が得られるため、結晶粒力媚を細化され
、成形加工性が向上する。When continuously solution hardening a coil, from an economical point of view, the upper limit of the holding time at the solution temperature is 5 minutes. When using this continuous solution quenching, the temperature is usually 5℃/s.e.c.
Since the above heating rate can be obtained, the grain strength is reduced and moldability is improved.
溶体化処理は、元来は、Mg、!9i等の強化に寄与す
る合金元素を、充分に再固溶させることを目的としたも
のである。そこで、強化元素を強化に必要量固溶させる
ためには450〜590℃の温度で溶体化処理する必要
がある9
溶体化処理温度での保持時間は経済的理由からは短時間
である方が好ましい。一方、従来から知られているよう
に連続鋳造では溶湯が11〜10mmの板厚の板に直接
鋳造されるため、鋳造時の冷却速度が半連続鋳造に比べ
て大きい。このため連続鋳造によればMgおよびSiの
鋳造段階およびそれ以降の段階での固溶量が半連続鋳造
よりも大きくなる。また、連続鋳造によればMgとSi
からなり、鋳造時生成される金属間化合物は半連続鋳造
よりも著しく小さくなる。これらの連続鋳造時の特長に
より、連続鋳造により得られた板では溶体化処理時に、
金属間化合物の溶解が進み易く、まな固溶量が多くなり
、結果として溶体化処理が進み易くなる。したがって、
連続鋳造材がら得られた板に連続炉による短時間の溶体
化処理を適用しても、半連続鋳造材の場合に比較して強
度の低下が少ない。逆に、溶体化処理時(’F−が同じ
であるとすると、連続鋳造材では半連続鋳造材の場合に
比較して強度が向上する。Solution treatment was originally applied to Mg,! The purpose of this is to sufficiently re-dissolve alloy elements that contribute to strengthening, such as 9i. Therefore, in order to dissolve the necessary amount of reinforcing elements into solid solution, it is necessary to perform solution treatment at a temperature of 450 to 590°C9.For economic reasons, it is better to keep the holding time at the solution treatment temperature short. preferable. On the other hand, as is conventionally known, in continuous casting, the molten metal is directly cast into a plate having a thickness of 11 to 10 mm, so the cooling rate during casting is higher than in semi-continuous casting. Therefore, in continuous casting, the amount of solid solution of Mg and Si in the casting stage and subsequent stages becomes larger than in semi-continuous casting. In addition, according to continuous casting, Mg and Si
The intermetallic compounds produced during casting are significantly smaller than in semi-continuous casting. Due to these features of continuous casting, plates obtained by continuous casting have the following properties:
The intermetallic compound is easily dissolved, the amount of solid solution is increased, and as a result, the solution treatment is easier to proceed. therefore,
Even if a short-time solution treatment in a continuous furnace is applied to a plate obtained from a continuously cast material, the strength decreases less than in the case of a semi-continuously cast material. On the contrary, during solution treatment (assuming that 'F- is the same), the strength of continuous cast material is improved compared to that of semi-continuous cast material.
均熱処理および中間焼鈍は冷間圧延性を向上させる必要
がある場合に行なわれる。均熱および中間焼鈍の温度が
400″Cを越えると、粗大なMg、Siが析出してし
まい、結果としてMg2Siを強制固溶した連続鋳造の
利点は失われる。しかし400℃を越える温度でこれら
の処理を行なっても半連続鋳造材と同等の特性は得られ
るので、第一の場合と同様に1100℃を越える温度ら
許容される。Soaking treatment and intermediate annealing are performed when it is necessary to improve cold rollability. If the temperature of soaking and intermediate annealing exceeds 400"C, coarse Mg and Si will precipitate, and as a result, the advantage of continuous casting with forced solid solution of Mg2Si will be lost.However, at temperatures exceeding 400"C, these Even if the above treatment is performed, properties equivalent to those of semi-continuously cast material can be obtained, so temperatures exceeding 1100° C. are allowed as in the first case.
第二の場合における歪矯正後の最終熱処理の条件やその
限定理由は第一の場合と同様である。In the second case, the conditions for the final heat treatment after straightening the strain and the reasons for their limitations are the same as in the first case.
(作用)
溶体死処■!lT後の人工時効(T4)状態における本
発明のアルミニウム合金圧延板の特性は次の通りである
。(Effect) Solution death ■! The properties of the aluminum alloy rolled sheet of the present invention in the artificially aged (T4) state after 1T are as follows.
機械的性質:耐力(σ。4□)−11kg/mm2以上
、引張強さ−(σ、)約25kg/mm2以上、及び伸
び約29%以上。Mechanical properties: proof stress (σ, 4□) - 11 kg/mm2 or more, tensile strength - (σ,) about 25 kg/mm2 or more, and elongation about 29% or more.
成形加工性;エリクセン値−6010合金と同等以上、
最小曲げ(180°)−6010合金と同等具L、リュ
ーダースマーク、フローラインなどの等の外観不良なし
。Formability: Erichsen value - equivalent to or higher than 6010 alloy,
Minimum bending (180°) - Equivalent to 6010 alloy, no appearance defects such as tool L, Lüders marks, flow lines, etc.
焼付硬化性:成形加工を想定した10%以下の冷間加工
を付加した陸、塗装焼1寸を想定した175℃×1時間
の熱処理を施すと耐力の増加1kg/mm2以上。Bake hardenability: When heat treated at 175°C for 1 hour, assuming 1 inch of paint baking, the yield strength increases by 1 kg/mm2 or more.
耐食性:電着下塗り、中塗り、上塗りよりなる通常の自
動車車体用3コート塗装後の塗装板の耐食性が、601
0合金より優れ、5182合金と同等以上。Corrosion resistance: The corrosion resistance of the painted plate after the normal three-coat coating for automobile bodies consisting of electrodeposited undercoat, intermediate coat, and topcoat is 601.
Superior to 0 alloy, equivalent to or better than 5182 alloy.
溶接性:溶接性が従来TIG、MIG溶接されていた例
えば6009合金の薄板と比較して良好となる。Weldability: The weldability is better than, for example, a thin plate of 6009 alloy, which has been conventionally TIG or MIG welded.
上記の如き特性を有する本発明の製造方法により得られ
た成形加工用アルミニウム合金圧延板は従来の圧延板よ
り自動車車体用ボディシート材として各種性質のバラン
スが良好であり、a性が著しく増大している。The aluminum alloy rolled sheet for forming processing obtained by the manufacturing method of the present invention having the above characteristics has a better balance of various properties as a body sheet material for automobile bodies than conventional rolled sheets, and has a significantly increased a property. ing.
以下、実施例によりさらに詳しく本発明を説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.
(実施例)
実施例 1
表1の組成を有するアルミニウム合金溶湯を断面500
X1000mmのスラブに鋳造速度60mm/minで
半連続鋳造した。続いて、530℃X10hrで均質化
処理を行なった後、[J!14 m mに熟間圧延し、
引続いて板J″:J−3mmに冷間圧延した。ここで表
2に示す様に冷間圧延板の一部については350℃X2
hrの中間焼鈍を施した。引続き板厚1mmまで冷間圧
延を行なった。次に表2に示す条件で連続溶体化処理に
より冷間圧延板コイルを溶体化処理焼入れをした。ここ
で、一部の比較合金は非熱処理合金系である為、連続溶
体化焼入れ処理は行なわず、通常のバッチ焼鈍(350
℃X2hr、)により溶体化処理を行なった。連続溶体
化処理を施されたコイルは引続いてテンションレベリン
グにより変形の矯正処理を施された。次に矯正を施され
た板の一部はそのまま、一部は表2に示す如き最終焼鈍
に1寸した後、最終の圧延板とした。この様にして得ら
れ−た種々の最終圧延板は、機械的性質、成形加工性、
焼1寸硬化性、リューダースマーク、フローライン、溶
接割れ性、系鋼性等について試験が実施された。(Example) Example 1 A molten aluminum alloy having the composition shown in Table 1 was cut into 500 cross sections.
Semi-continuous casting was performed at a casting speed of 60 mm/min into a slab of x1000 mm. Subsequently, after performing homogenization treatment at 530°C for 10 hours, [J! Deep rolled to 14 mm,
Subsequently, the plate was cold-rolled to J″: J-3mm.Here, as shown in Table 2, some of the cold-rolled plates were heated at 350°C
Intermediate annealing was performed for hr. Subsequently, cold rolling was performed to a plate thickness of 1 mm. Next, the cold rolled plate coils were solution heat treated and hardened by continuous solution heat treatment under the conditions shown in Table 2. Here, since some comparative alloys are non-heat treated alloys, they were not subjected to continuous solution quenching, but were subjected to normal batch annealing (350
Solution treatment was carried out at ℃×2 hr). The coils subjected to continuous solution treatment were subsequently corrected for deformation by tension leveling. Next, a part of the straightened plate was left as is, and another part was subjected to final annealing as shown in Table 2, and then made into a final rolled plate. The various final rolled plates obtained in this way have mechanical properties, formability,
Tests were conducted on 1-inch hardenability, Lüders mark, flow line, weld cracking resistance, steel properties, etc.
(以下余白)
こhらの材料の機械的性質及び成形加工性を表3に示す
。(Left below) Table 3 shows the mechanical properties and moldability of these materials.
なお、耐力、引張強さはkg/mm2、伸びは5°≦、
エリクセン値および最小面げはmmで表示されている。In addition, proof stress and tensile strength are kg/mm2, elongation is 5°≦,
Erichsen values and minimum surface run-outs are expressed in mm.
ツユ−ダースマークについて切欠エリクセン試験を、フ
ローラインについては100φの球頭張出し試験を行な
い、外観を観察し、つぎの判定基準により判定した。A notch Erichsen test was conducted for the Zünders mark, and a 100φ ball head overhang test was conducted for the flow line, and the appearance was observed and judged based on the following criteria.
○:全くない
Δ:認められる(外観のきびしい用途
には使えない)
×:強い
(以下余白)
表3から明らかなように、本発明によるAB、Cはいず
れも張り出し性、曲げ性が優れ、かつリューダースマー
ク、フローラインの発生もないことが判る。○: Not at all Δ: Recognized (cannot be used for applications with severe appearance) ×: Strong (blank below) As is clear from Table 3, AB and C according to the present invention both have excellent stretchability and bendability. Moreover, it can be seen that there are no Luders marks or flow lines.
記号D〜Jは本発明合金を本発明方法の要件を満たさな
い方法で処理したものである。Symbols D to J are alloys of the present invention processed by a method that does not meet the requirements of the method of the present invention.
記号りは中間焼鈍がないために、フローラインが不良で
ある。The flow line is defective because there is no intermediate annealing.
記号Eは最終焼鈍を行なっていないために、溶体化処理
された板のレベリングによる成形加工性低下が生じてい
る。In the case of symbol E, final annealing was not performed, so that the formability deteriorated due to leveling of the solution-treated plate.
記号F〜Jは最終焼鈍の条件が本発明外のものである。Symbols F to J have final annealing conditions outside the scope of the present invention.
。
記号Gは温度のわりに保持時間が短いために低下した成
形加工性の回復が少ない。. In the case of symbol G, the holding time is short compared to the temperature, so that there is little recovery of the deteriorated moldability.
記号F、H,Iでは時効が進みすぎて成形加工性が低下
している。Fでは温度のわりに加熱速度が遅すぎるため
に、I(では温度のわりに保持時間が長すぎるために、
■では温度のわりに冷却速度が遅すぎるために、過度に
時効が進行する。For samples F, H, and I, aging has progressed too much and moldability has deteriorated. With F, the heating rate is too slow compared to the temperature, and with I (because the holding time is too long compared to the temperature,
In case (2), the cooling rate is too slow relative to the temperature, so aging progresses excessively.
記号Jでは成形加工性の回復は達成されているものの、
冷却速度が高すぎるためにせっかくレベリングにより矯
正された変形が再び発生している。よって、本発明法に
よらなければ成形加工性、変形等の性能が低下すること
は明らかである。Although recovery of moldability was achieved with symbol J,
Because the cooling rate is too high, the deformation that was corrected by leveling is occurring again. Therefore, it is clear that performance such as moldability and deformation will deteriorate unless the method of the present invention is used.
また記号A〜Qの材料について常温時効後の板に対し、
成形加工後の塗装焼付工程による強度の変化を調べるた
め、製品成形加工に対応する5%冷間加工らしくは10
°6冷間加工を施し、さらに塗装焼付に相当する175
℃×1時間の加熱処理を、冷間加工を行なわなかったも
の(0%冷間加工材)、および5%冷間加工材、10?
≦冷間加工材について行ない、各段階での強度を調べた
。In addition, for materials with symbols A to Q, for plates after aging at room temperature,
In order to investigate the change in strength due to the paint baking process after molding, 5% cold processing, which corresponds to product molding, was 10%.
175 which corresponds to °6 cold working and further paint baking
℃ × 1 hour heat treatment without cold working (0% cold worked material), 5% cold worked material, 10?
≦This was done on cold-worked materials, and the strength at each stage was investigated.
その結果を表4に示す。The results are shown in Table 4.
(以下余白)
に71から、本発明合金では成形加工酸のvi装炉焼1
を工程−ζ強度が向FJ−ることか明らかである。(Hereinafter, blank space) From 71 to
It is clear that the process-ζ intensity is in the direction of FJ-.
次に、フィッシュボーン割れ試験片をT I G溶接し
、割れ率をか!べた。結果を表5に示す。Next, we TIG welded the fishbone crack test piece and calculated the cracking rate. Beta. The results are shown in Table 5.
なお、TIG溶接条件は:TIG自動溶接(肉盛なし)
;電流60A;走行25cm/min;?b、fffi
タングステン’2.4mmφ;Ar気流;アーク長3
m mであった。The TIG welding conditions are: TIG automatic welding (no overlay)
;Current 60A;Traveling 25cm/min;? b, fffi
Tungsten'2.4mmφ; Ar air flow; arc length 3
It was mm.
フィンシーt、ボーン試験片の寸法を第3図に示す。The dimensions of the fin sheet T and bone test piece are shown in Figure 3.
(以下余白) 次フ 溶接性 ここで割れ率は次式でLbしたらのである。(Margin below) Next page Weldability Here, the cracking rate is calculated by dividing Lb by the following formula.
表5より、発明合金は溶接性にすぐれていること゛がわ
かる。Table 5 shows that the invention alloy has excellent weldability.
以1−の結果をまとめると次の事が分かる。Summarizing the results of 1- above, we find the following.
低Si、高Mg、高Cuの組成を有する比較例L(合#
L5)は強度、成形加工性が劣り、溶接性ら悪い、高C
uの比較例K(合金71 )は溶接性が悪い 7f、S
i、高Mgの組成を有する比較例M(合金6)は成形加
工性が悪い。Comparative example L (composite #1 with a composition of low Si, high Mg, and high Cu)
L5) has poor strength, poor formability, poor weldability, and high C.
Comparative example K (alloy 71) of u has poor weldability 7f, S
i. Comparative Example M (alloy 6), which has a high Mg composition, has poor formability.
N−Qは従来の代表的成形加工用材料である。N-Q is a typical conventional molding material.
本発明の材料は総合特性においてこれらよりすぐれてい
る。すなわち0本発明の材料は2036(記号0)に対
しては、成形加工性、伸び、焼(=f硬化性、溶接性の
点で、A12−Mg−ZnCu(記号Q〉に対しては、
焼1寸硬化性、溶接性の点て、6010(記号P)に対
しては伸び、成形加工性および溶接性の点ですぐtして
いる。The materials of the invention are superior to these in terms of overall properties. In other words, the material of the present invention has moldability, elongation, sinterability (= f hardenability, and weldability) for 2036 (symbol 0), and for A12-Mg-ZnCu (symbol Q),
It is superior to 6010 (symbol P) in elongation, formability and weldability in terms of hardenability and weldability.
次に、圧延板A、 [1,C,に、 L、 L N、
O,P、 Qを切断して7016Illx150II+
1の試験片を準備し、耐食性の実験を行なった。Next, rolled plate A, [1, C, L, L N,
Cut O, P, and Q to make 7016Illx150II+
A test piece of No. 1 was prepared and a corrosion resistance experiment was conducted.
実験1;未塗装板耐食性試験
圧延板の表面を10%N a OH水溶液(50℃)で
1分間脱脂後、蒸留水で洗浄し、さらに15%HN O
]水溶液を用いてスマットを除去し、そして洗滌しな。Experiment 1: Corrosion resistance test of unpainted plate The surface of the rolled plate was degreased with 10% NaOH aqueous solution (50°C) for 1 minute, washed with distilled water, and further degreased with 15% HNO
] Remove smut using an aqueous solution and do not wash.
このように処理した圧延板についてJIS Z
2371による塩水噴霧試験を行なった。噴霧時間は1
000時間である。耐食性の評価は次の基準による目視
a察によった。Regarding rolled plates treated in this way, JIS Z
A salt spray test was conducted using 2371. Spray time is 1
000 hours. Corrosion resistance was evaluated by visual inspection based on the following criteria.
◎ :全くビットなし O:ピット数個 △ ;かなりのビット X :全面にビット 結果を表6に示す。◎: No bits at all O: Several pits △ ; Quite a bit X: Bits on the entire surface The results are shown in Table 6.
(以下余白)
表6
判定結果
実験2:塗装後のブリスター、糸サビ腐食性上記切断圧
延板をアルカリ脱脂し、水洗後リン酸亜鉛処理した。水
洗後乾燥し、エポキシ塗料のカチオン電着を厚さ20μ
mに行ない、その陵160℃で30分間焼1寸を行なっ
た。(Margin below) Table 6 Judgment Results Experiment 2: Corrosion of blisters and thread rust after painting The above cut and rolled plates were degreased with alkali, washed with water, and then treated with zinc phosphate. After washing with water and drying, apply cationic electrodeposition of epoxy paint to a thickness of 20 μm.
The mold was baked at 160°C for 30 minutes.
この電着塗装に中塗として、メラミンアルキド塗料を膜
厚30μm被覆し、1110℃で25分間焼1・[し、
次に上塗りとしてメラミンアルキド塗料を膜厚35 μ
m被覆し、そして1 t15℃で25分間焼付した。次
いで、各試験片の表面にクロスカットを入れ、塩水噴霧
試験をJ I 52371に準拠して48時間行なった
。また温度45℃2湿度95%での湿潤試験を30日間
行ない、表面のブリスター、糸状腐食〈又は糸サビ)を
下記基準(表7)で評価した結果を表8に示す。This electrodeposition coating was coated with 30 μm thick melamine alkyd paint as an intermediate coat, and baked at 1110°C for 25 minutes.
Next, apply melamine alkyd paint as a top coat to a thickness of 35 μm.
and baked for 25 minutes at 15°C. A cross cut was then made on the surface of each test piece and a salt spray test was conducted for 48 hours in accordance with J I 52371. In addition, a humidity test was conducted at a temperature of 45° C. and a humidity of 95% for 30 days, and surface blisters and filamentous corrosion (or thread rust) were evaluated according to the following criteria (Table 7). Table 8 shows the results.
(以下余白)
表7
評価基準
(以下余白)
表8
判定結果
本発明の製法による合金は、未塗装板の耐食性及び塗装
後の耐食性いずれも、比較例の製法および従来例に比し
優れており、従来合金の中でも耐食性の良好とされる5
182−0材(記号N)に比してら同等以北の耐食性を
冶すことが明らかである。(Hereinafter in the margins) Table 7 Evaluation criteria (hereinafter in the margins) Table 8 Judgment results The alloy manufactured by the manufacturing method of the present invention is superior to the manufacturing method of the comparative example and the conventional example in both the corrosion resistance of unpainted plates and the corrosion resistance after painting. 5, which is said to have good corrosion resistance among conventional alloys.
It is clear that the corrosion resistance is equivalent to or higher than that of the 182-0 material (symbol N).
実施例における以−Fの結果を総合すれば、本発明製法
による材料は1合金成分と製造工程の絶妙なる組合わせ
により、自動車用アルミニウム合金圧延板として必要な
強度、成形加工性、外観、溶接性、耐食性を兼すそなえ
、これらの性質のバランスよい材料であることが明らか
である。Combining the results of Examples below, the material manufactured by the manufacturing method of the present invention has the strength, formability, appearance, and weldability required for aluminum alloy rolled sheets for automobiles due to the exquisite combination of one alloy component and manufacturing process. It is clear that it is a material with a good balance of these properties.
実施例2
表9に示す化学組成を有する合金溶湯を2つの冷却ロー
ル間に注湯して連続鋳造し、得られた厚さ6 +n m
、幅1200mmの板を巻き取り、鋳造コイルとした
。これらの鋳造コイルの中で合金1.2については均質
死処TTなしに、合金3については530℃X10hr
め均質化処理を経て、板厚3mmまでに冷間圧延した9
冷間圧延板を350℃で2時間中間焼鈍した陸に、引き
続き板厚1mmまで最終冷間圧延した。最終冷間圧延板
を30℃/secの昇温速度で550℃まで昇温し、5
50℃に到達後直ちに(保持時間0sec)冷却した。Example 2 A molten alloy having the chemical composition shown in Table 9 was poured between two cooling rolls and continuously cast, resulting in a thickness of 6 + nm.
A plate having a width of 1200 mm was wound up to form a cast coil. Among these cast coils, Alloy 1.2 was treated without homogeneous death TT, and Alloy 3 was treated at 530℃×10hr.
9 which was homogenized and cold rolled to a plate thickness of 3 mm.
The cold rolled plate was intermediately annealed at 350° C. for 2 hours, and then finally cold rolled to a thickness of 1 mm. The final cold rolled plate was heated to 550°C at a heating rate of 30°C/sec, and
Immediately after reaching 50°C (holding time: 0 sec), it was cooled.
冷却速度は30℃/ s e cであった。かくして溶
体化処理されたコイルは、急速冷却により著しく熱変形
していた。The cooling rate was 30°C/sec. The coil thus solution-treated was significantly thermally deformed due to rapid cooling.
よって、これらのコイルをテンションレベリングライン
を通して平坦な板に成るよう矯正した。なお、矯正前に
各コイルから試料を採取した。矯正後再び各コイルから
試料を採取し、次のように処理した。合金1および3は
、30℃/Secの昇温速度で230℃まで昇温し、昇
温後直ちに(保持時間Qsec)30℃/ s e c
の冷却速度で冷却する連続焼鈍を実施した。これらの熱
処理条1′Fは第1図および第2図に示された本発明の
範囲内であった。また合金2は矯正後切板に切断し、引
き続いて平均昇温速度8X10−3℃/Secで110
℃まで昇温し、110℃で2時間保持し、その後平均冷
却速度1.5X10−2℃/Secで冷却するバッチ焼
鈍を行なった。これらの熱処理条件も第11′:Aおよ
び第2図に示す本発明の範囲内であった。上述のように
処理された合金1お、上び2の特性:(ま表10のとお
りであった9(以下余白)
表
(合金組成)
表10
機械的性質
成形加工性
表10より、合金1.2ともレベリングによって損なわ
ftた良好な伸び、エリクセン直等で表わされる成形加
工性が最終焼鈍によりレベリング前のレベルまで、回復
・したことが分かる。これらの最終焼鈍された板の変形
程度、フローライン、リューダースマーク等も、実施例
1と同様に評価したところ、いずれも良好であった。Therefore, these coils were straightened to form a flat plate through a tension leveling line. Note that samples were taken from each coil before correction. After correction, samples were taken again from each coil and processed as follows. Alloys 1 and 3 were heated to 230°C at a heating rate of 30°C/sec, and immediately after heating (holding time Qsec) at 30°C/sec.
Continuous annealing was performed by cooling at a cooling rate of . These heat treated strips 1'F were within the scope of the invention shown in FIGS. 1 and 2. Alloy 2 was cut into plates after straightening, and then heated to 110°C at an average heating rate of 8 x 10-3°C/Sec.
Batch annealing was performed in which the temperature was raised to 110°C, held for 2 hours, and then cooled at an average cooling rate of 1.5×10 −2°C/Sec. These heat treatment conditions were also within the scope of the present invention as shown in Section 11':A and FIG. Properties of Alloys 1 and 2 treated as described above: (Table 9 (blank below)) Table (alloy composition) Table 10 Mechanical properties Formability From Table 10, Alloy 1 It can be seen that in both cases, the good elongation and formability expressed by Erichsen's directivity, which were lost due to leveling, were restored to the level before leveling by final annealing.The degree of deformation and flow of these final annealed plates were Lines, Lüders marks, etc. were also evaluated in the same manner as in Example 1, and all were found to be good.
合金1,2は均質化処理による析出がないために、溶体
化処理が短時間の連続処理て行なわれたにもかかわらず
、溶体化が高度に進行している。これらの合金1.2と
実施例1の記号B、Cの材料はそれぞれ組成がほぼ同一
であり、製造方法も鋳造方法以外は同一であるが、これ
らを比較すると、連続鋳造材は半連続yI造材と比較し
て成形加工性は同等であり、強度が向上していることが
分かる。Since Alloys 1 and 2 do not undergo precipitation due to homogenization treatment, solution treatment progresses to a high degree even though the solution treatment was performed continuously for a short period of time. These Alloy 1.2 and the materials with symbols B and C of Example 1 have almost the same composition, and the manufacturing methods are the same except for the casting method, but when comparing them, the continuous cast material is semi-continuous yI It can be seen that the moldability is the same as that of artificial materials, and the strength is improved.
次に本実施例の各材料につき実施例1と同じ方法で成形
加工後の塗装焼は工程による強度変[ヒを調べた結果を
表11に示す。Flcllより成形加工後の塗装工程で
強度が向上することが明らかである。Next, Table 11 shows the results of examining the change in strength due to the process of painting and baking after molding each material of this example in the same manner as in Example 1. It is clear that the strength is improved in the painting process after molding compared to Flcll.
次に本実施例の各材料につき、実施例1と同様に溶接試
験および耐食性試験を行なった。表12に示すようにい
ずれの材料ら実施例1に示した従来合金に比べると良好
な特性が得られた。Next, a welding test and a corrosion resistance test were conducted on each material of this example in the same manner as in Example 1. As shown in Table 12, better properties were obtained from all the materials compared to the conventional alloy shown in Example 1.
表12
実施例2の以上の結果より、本発明法で処理された連続
鋳造材料はすぐれた自動車用板であることが明らかであ
る。特に、均質化処理を経ない連続鋳造材は半連続鋳造
剤より強度特性が優れしかもその他の特性は同等である
ため通用範囲が広くなったり、薄肉(ヒが可能になった
り、アルミニラ15板材の特長を一層活用することがて
きる。Table 12 From the above results of Example 2, it is clear that the continuous casting material treated by the method of the present invention is an excellent plate for automobiles. In particular, continuous casting materials that do not go through homogenization have superior strength properties than semi-continuous casting materials, but other properties are the same, so they can be used in a wider range of applications, can be thinner (thinner), and can be used for aluminum 15 plate materials. You can make better use of its features.
また、連続鋳造材は熱間圧延を経ないで製造が可能であ
るため、経済的に一層有利である9(発明の効果)
以上の実施例からら明らかなようにこの発明成形加工用
アルミニウム合金圧延板は、張出し性や曲げ性が優れか
つリューダースマークや、フローライン等の外観不良が
ない等、成形加工性が優れており、しかも強度も充分で
あって、特に成形加工岐に焼付塗装を行なう場合に塗装
焼1・[工程で強度が上昇して最終的に著しく高強度の
焼付塗装成形品を得ることができ、したがって特に自動
車車体ボディシートの如く、溶接及び焼付塗装が施され
て1吏用される高強度成形品の用途に最適なものである
。In addition, since continuous casting materials can be manufactured without hot rolling, they are more economically advantageous.9 (Effects of the Invention) As is clear from the above examples, the aluminum alloy for forming according to the invention Rolled plates have excellent stretchability and bendability, and have no appearance defects such as Lüders marks or flow lines, and have excellent formability. Furthermore, they have sufficient strength, and are especially suitable for baking coating in the forming process. When performing paint baking, the strength increases during the process and it is possible to finally obtain a baking-painted molded product with extremely high strength. It is ideal for high-strength molded products that are used once.
さらに、塗装後の耐食性及びTIG、MIG溶接性が優
れている。この発明のアルミニウム合金圧延板は、主要
元素としては通常の圧延板、押出村、鋳物等に最も広く
用いられている51Mgを含んているだけであるため、
他の合金のスクラップの1吏用が容易であり、また逆に
この発明の圧延板のスクランプを他の合金、他の用途に
1吏用することも容易であって、スクラップ処理性が良
好であり、経済的にも有利である。Furthermore, it has excellent corrosion resistance after painting and TIG and MIG weldability. The rolled aluminum alloy plate of the present invention only contains 51Mg, which is most widely used in ordinary rolled plates, extruded plates, castings, etc., as a main element.
It is easy to use the scrap of other alloys, and conversely, it is also easy to use the scrap of the rolled plate of this invention for other alloys and other uses, and the scrap processing property is good. It is also economically advantageous.
なおこの発明の方法で製造されたアルミニウム合金圧延
板は、前述のように自動車車体のボディシートに最適な
ものであるが、強度が要求される成形加工品のその他の
用途、例えばホイールやオイルタンク、エアクリーナー
等の自動車部品、あるいは各種キャップやブラインド、
アルミλL家庭用21物、計器カバー、電気機器のシャ
ーシー等に用いてもtlhた性能を発揮し得ることは勿
論である。The aluminum alloy rolled sheet manufactured by the method of the present invention is ideal for use as body sheets for automobile bodies as described above, but it can also be used for other applications of molded products that require strength, such as wheels and oil tanks. , automotive parts such as air cleaners, various caps and blinds,
Of course, aluminum λL can also exhibit excellent performance when used in household items, instrument covers, chassis of electrical equipment, etc.
第1図は歪矯正後の最P−熱処理における加熱温度 速
度不冷却温度 速度の範囲を示す図、第2図は保持温度
時間の範囲を示す図、第3図はフィシュボーン試験片
の図面(数字の単位はmm)
である。Figure 1 is a diagram showing the range of heating temperature, speed, non-cooling temperature and speed in the maximum P-heat treatment after straightening the strain, Figure 2 is a diagram showing the range of holding temperature and time, and Figure 3 is a diagram of the fishbone test piece ( The unit of numbers is mm).
Claims (1)
0.6〜1.1%、不純物として:Fe−0.15%未
満、Cu−0.05%未満、Mn、Cr、ZrおよびV
のそれぞれが0.05%未満、その他の不純物元素合計
で0.05%未満、Al、Si、Mg、Fe以外の元素
の合計が0.10%未満から成る合金溶湯を半連続鋳造
により鋳造し、得られた鋳塊を450〜590℃の1〜
48時間加熱して、圧延加熱を兼ねる均質化処理を行な
い、その後熱間圧延および冷間圧延をを行ない、熱間圧
延直後又は冷間圧延の中間において保持温度範囲260
〜450℃で保持時間48時間以下の中間焼鈍を行い、
その後冷間圧延して形成した圧延板を450〜590℃
の温度範囲内で溶体化処理し、5℃/sec以上の冷却
速度で焼入し、その後歪矯正を施し、その後60〜36
0℃の範囲内の温度まで、第1図に示される斜線領域内
の加熱速度で加熱して、その温度で第2図に示される斜
線領域内の時間保持し、しかる後第1図に示される斜線
領域内の冷却速度で冷却することを特徴とする成形加工
性、耐食性及び溶接性のすぐれたAl−Si−Mg系成
形加工用アルミニウム合金圧延板の製造方法。 2、前記溶体化処理を、コイルによる連続溶体化焼入装
置を用いて溶体化処理時間が0秒以上5分以下で行うこ
とを特徴とする請求項1に記載の成形加工性、耐食性及
び溶接性のすぐれたAl−Si−Mg系成形加工用アル
ミニウム合金圧延板の製造方法。 3、合金元素として:Si−0.6〜1.2%、Mg−
0.6〜1.1%、不純物として:Fe−0.15%未
満、Cu−0.05%未満、Mn、Cr、ZrおよびV
のそれぞれが0.05%未満、その他の不純物元素合計
で0.05%未満、Al、Si、Mg、Fe以外の元素
の合計が0.10%未満から成る合金溶湯を連続鋳造に
より鋳造し、得られたコイル状鋳塊を次に冷間圧延して
形成した圧延板を450〜590℃の温度範囲で溶体化
処理し、5℃/sec以上の冷却速度で焼入し、その後
歪矯正を施し、その後60〜360℃の範囲内の温度ま
で、第1図に示される斜線領域内の加熱速度で加熱して
、その温度で第2図に示される斜線領域内の時間保持し
、しかる後第1図に示される斜線領域内の冷却速度で冷
却することを特徴とする成形加工性、耐食性及び溶接性
のすぐれたAl−Si−Mg系成形加工用アルミニウム
合金圧延板の製造方法。 4、冷間圧延の中間において保持温度範囲260〜45
0℃で保持時間48時間以下の中間焼鈍を行い、その後
の冷間圧延後に前記溶体化処理を行うことを特徴とする
請求項3に記載の成形加工性、耐食性及び溶接性のすぐ
れたAl−Si−Mg系成形加工用アルミニウム合金圧
延板の製造方法。 5、前記溶体化処理を、コイルによる連続溶体化焼入装
置を用いて溶体化処理時間が0秒以上5分以下で行うこ
とを特徴とする請求項3又は4に記載の成形加工性、耐
食性及び溶接性のすぐれたAl−Si−Mg系成形加工
用アルミニウム合金圧延板の製造方法。 6、連続鋳造と冷間圧延の間にコイル状鋳塊を、300
〜590℃の温度範囲で1〜48時間加熱して均質化す
ることを特徴とする請求項3、4、又は5記載の成形加
工性、耐食性及び溶接性のすぐれたAl−Si−Mg系
成形加工用アルミニウム合金圧延板の製造方法。[Claims] 1. As alloying elements: Si-0.6 to 1.2%, Mg-
0.6-1.1%, as impurities: Fe - less than 0.15%, Cu - less than 0.05%, Mn, Cr, Zr and V
A molten alloy containing less than 0.05% of each of the above, less than 0.05% in total of other impurity elements, and less than 0.10% in total of elements other than Al, Si, Mg, and Fe is cast by semi-continuous casting. , the obtained ingot was heated to 1 to 450 to 590℃.
Heating for 48 hours to perform homogenization treatment that also serves as rolling heating, followed by hot rolling and cold rolling, and holding temperature range 260 immediately after hot rolling or in the middle of cold rolling.
Perform intermediate annealing at ~450°C for a holding time of 48 hours or less,
After that, the rolled plate formed by cold rolling is heated to 450 to 590℃.
Solution treatment is carried out within the temperature range of
Heating at a heating rate within the shaded area shown in Figure 1 to a temperature within the range of 0°C, holding at that temperature for a time within the shaded area shown in Figure 2, then heating as shown in Figure 1. A method for producing an Al-Si-Mg aluminum alloy rolled sheet for forming process, which has excellent formability, corrosion resistance, and weldability, characterized by cooling at a cooling rate within a shaded area. 2. Formability, corrosion resistance, and welding according to claim 1, wherein the solution treatment is performed using a continuous solution hardening device using a coil for a solution treatment time of 0 seconds or more and 5 minutes or less. A method for producing an Al-Si-Mg-based aluminum alloy rolled sheet for forming process with excellent properties. 3. As alloying elements: Si-0.6-1.2%, Mg-
0.6-1.1%, as impurities: Fe - less than 0.15%, Cu - less than 0.05%, Mn, Cr, Zr and V
A molten alloy consisting of less than 0.05% of each of the above, less than 0.05% in total of other impurity elements, and less than 0.10% in total of elements other than Al, Si, Mg, and Fe is cast by continuous casting, The resulting coiled ingot was then cold-rolled to form a rolled plate, which was then solution-treated at a temperature range of 450 to 590°C, quenched at a cooling rate of 5°C/sec or more, and then subjected to strain straightening. The product is then heated to a temperature within the range of 60 to 360°C at a heating rate within the shaded area shown in Figure 1, held at that temperature for a time within the shaded area shown in Figure 2, and then A method for manufacturing an Al-Si-Mg aluminum alloy rolled sheet for forming process, which is characterized by cooling at a cooling rate within the shaded area shown in FIG. 1 and having excellent formability, corrosion resistance, and weldability. 4. Holding temperature range 260-45 in the middle of cold rolling
4. The aluminum alloy having excellent formability, corrosion resistance, and weldability according to claim 3, wherein intermediate annealing is performed at 0° C. for a holding time of 48 hours or less, and the solution treatment is performed after subsequent cold rolling. A method for producing a Si-Mg-based rolled aluminum alloy plate for forming processing. 5. Formability and corrosion resistance according to claim 3 or 4, wherein the solution treatment is performed using a continuous solution hardening device using a coil for a solution treatment time of 0 seconds or more and 5 minutes or less. and a method for manufacturing an Al-Si-Mg-based aluminum alloy rolled sheet for forming process with excellent weldability. 6. During continuous casting and cold rolling, the coiled ingot is
The Al-Si-Mg molding having excellent moldability, corrosion resistance, and weldability according to claim 3, 4, or 5, characterized in that it is homogenized by heating in a temperature range of ~590°C for 1 to 48 hours. A method for producing a rolled aluminum alloy plate for processing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27703888A JPH02122055A (en) | 1988-10-31 | 1988-10-31 | Manufacture of rolled aluminum alloy sheet for forming |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27703888A JPH02122055A (en) | 1988-10-31 | 1988-10-31 | Manufacture of rolled aluminum alloy sheet for forming |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02122055A true JPH02122055A (en) | 1990-05-09 |
Family
ID=17577915
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27703888A Pending JPH02122055A (en) | 1988-10-31 | 1988-10-31 | Manufacture of rolled aluminum alloy sheet for forming |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02122055A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05125506A (en) * | 1991-10-31 | 1993-05-21 | Furukawa Alum Co Ltd | Manufacture of baking hardenability aluminum alloy plate for forming |
US5634991A (en) * | 1995-08-25 | 1997-06-03 | Reynolds Metals Company | Alloy and method for making continuously cast aluminum alloy can stock |
JP2003129201A (en) * | 2001-10-18 | 2003-05-08 | Furukawa Electric Co Ltd:The | Production method for aluminum alloy plate excellent in bendability, and aluminum alloy plate excellent in bendability and produced by the method |
JP2004292899A (en) * | 2003-03-27 | 2004-10-21 | Kobe Steel Ltd | Al-Mg-Si-BASED ALLOY SHEET HAVING EXCELLENT SURFACE PROPERTY, PRODUCTION METHOD THEREFOR, AND PRODUCTION INTERMEDIATE MATERIAL THEREOF |
JP2008019483A (en) * | 2006-07-13 | 2008-01-31 | Kobe Steel Ltd | Aluminum alloy sheet for warm-forming and warm-forming method |
JP2014176883A (en) * | 2013-03-15 | 2014-09-25 | Kobe Steel Ltd | Automobile panel press molding method |
CN108998701A (en) * | 2018-08-09 | 2018-12-14 | 广西柳州银海铝业股份有限公司 | IH electric cooker lid aluminum alloy base material production method |
US10773756B2 (en) | 2015-10-12 | 2020-09-15 | Constellium Neuf-Brisach | Structural component of a motor vehicle shell |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4916697A (en) * | 1972-06-07 | 1974-02-14 | ||
JPS6191342A (en) * | 1984-10-12 | 1986-05-09 | Kobe Steel Ltd | Aluminum alloy plate having superior workability and filiform erosion resistance |
JPS62122744A (en) * | 1985-11-25 | 1987-06-04 | 株式会社神戸製鋼所 | Aluminum alloy ply metal having excellent moldability, baking hardenability and yarn rust resistance |
JPS62207642A (en) * | 1986-03-10 | 1987-09-12 | 株式会社神戸製鋼所 | Aluminum alloy flitch having excellent workability, baking hardenability and yarn corrosion resistance |
JPS62278256A (en) * | 1986-05-26 | 1987-12-03 | Sky Alum Co Ltd | Manufacture of aluminum-alloy rolled sheet |
-
1988
- 1988-10-31 JP JP27703888A patent/JPH02122055A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4916697A (en) * | 1972-06-07 | 1974-02-14 | ||
JPS6191342A (en) * | 1984-10-12 | 1986-05-09 | Kobe Steel Ltd | Aluminum alloy plate having superior workability and filiform erosion resistance |
JPS62122744A (en) * | 1985-11-25 | 1987-06-04 | 株式会社神戸製鋼所 | Aluminum alloy ply metal having excellent moldability, baking hardenability and yarn rust resistance |
JPS62207642A (en) * | 1986-03-10 | 1987-09-12 | 株式会社神戸製鋼所 | Aluminum alloy flitch having excellent workability, baking hardenability and yarn corrosion resistance |
JPS62278256A (en) * | 1986-05-26 | 1987-12-03 | Sky Alum Co Ltd | Manufacture of aluminum-alloy rolled sheet |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05125506A (en) * | 1991-10-31 | 1993-05-21 | Furukawa Alum Co Ltd | Manufacture of baking hardenability aluminum alloy plate for forming |
US5634991A (en) * | 1995-08-25 | 1997-06-03 | Reynolds Metals Company | Alloy and method for making continuously cast aluminum alloy can stock |
JP2003129201A (en) * | 2001-10-18 | 2003-05-08 | Furukawa Electric Co Ltd:The | Production method for aluminum alloy plate excellent in bendability, and aluminum alloy plate excellent in bendability and produced by the method |
JP2004292899A (en) * | 2003-03-27 | 2004-10-21 | Kobe Steel Ltd | Al-Mg-Si-BASED ALLOY SHEET HAVING EXCELLENT SURFACE PROPERTY, PRODUCTION METHOD THEREFOR, AND PRODUCTION INTERMEDIATE MATERIAL THEREOF |
JP2008019483A (en) * | 2006-07-13 | 2008-01-31 | Kobe Steel Ltd | Aluminum alloy sheet for warm-forming and warm-forming method |
JP2014176883A (en) * | 2013-03-15 | 2014-09-25 | Kobe Steel Ltd | Automobile panel press molding method |
US10773756B2 (en) | 2015-10-12 | 2020-09-15 | Constellium Neuf-Brisach | Structural component of a motor vehicle shell |
CN108998701A (en) * | 2018-08-09 | 2018-12-14 | 广西柳州银海铝业股份有限公司 | IH electric cooker lid aluminum alloy base material production method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4897124A (en) | Aluminum-alloy rolled sheet for forming and production method therefor | |
JP4939093B2 (en) | Method for producing 6000 series aluminum alloy plate for automobile panel having excellent hem bendability and bake hardness | |
JP3398085B2 (en) | Aluminum alloy materials for welded structures and their welded joints | |
JP2000129382A (en) | Aluminum alloy clad plate for forming, excellent in filiform corrosion resistance | |
WO2016031938A1 (en) | Aluminum alloy sheet | |
JPH02122055A (en) | Manufacture of rolled aluminum alloy sheet for forming | |
JPH08225874A (en) | Aluminum alloy extruded material for automobile structural member and its production | |
JP2003105471A (en) | Aluminum alloy sheet, and production method therefor | |
JP2996251B2 (en) | Rolled aluminum alloy sheet for forming and method of manufacturing the same | |
JP2003221637A (en) | Aluminum alloy plate for fabrication and its manufacturing process | |
CN108884524B (en) | Aluminum alloy sheet and method for producing aluminum alloy sheet | |
JP3754624B2 (en) | Method for producing automotive aluminum alloy panel material excellent in room temperature aging suppression and low temperature age hardening ability, and automotive aluminum alloy panel material | |
JPS62278256A (en) | Manufacture of aluminum-alloy rolled sheet | |
JPH05117826A (en) | Manufacture of high strength aluminum alloy-made rim | |
WO2017170835A1 (en) | Aluminum alloy sheet and aluminum alloy sheet manufacturing method | |
JPH0480109B2 (en) | ||
JP2678404B2 (en) | Manufacturing method of aluminum alloy sheet for forming | |
JPH04247842A (en) | Aluminum alloy sheet for automobile wheel and its manufacture | |
JP3766334B2 (en) | Aluminum alloy plate with excellent bending workability | |
JPH0617552B2 (en) | Method for producing rolled aluminum alloy plate for forming | |
JP3550943B2 (en) | Manufacturing method of 6000 series aluminum alloy extruded material with excellent dimensional accuracy | |
JPH0247234A (en) | High strength aluminum alloy for forming having suppressed age hardenability at room temperature and its manufacture | |
JP2003247040A (en) | Aluminum alloy sheet having excellent flat hem workability and production method thereof | |
JP2711957B2 (en) | Aluminum alloy material for upset butt welding | |
JPH0432532A (en) | Aluminum alloy sheet for zinc phosphate treatment and its manufacture |