JPH0480109B2 - - Google Patents

Info

Publication number
JPH0480109B2
JPH0480109B2 JP62163900A JP16390087A JPH0480109B2 JP H0480109 B2 JPH0480109 B2 JP H0480109B2 JP 62163900 A JP62163900 A JP 62163900A JP 16390087 A JP16390087 A JP 16390087A JP H0480109 B2 JPH0480109 B2 JP H0480109B2
Authority
JP
Japan
Prior art keywords
less
solution treatment
temperature range
temperature
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62163900A
Other languages
Japanese (ja)
Other versions
JPS6411937A (en
Inventor
Mamoru Matsuo
Toshio Komatsubara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sky Aluminium Co Ltd
Original Assignee
Sky Aluminium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sky Aluminium Co Ltd filed Critical Sky Aluminium Co Ltd
Priority to JP16390087A priority Critical patent/JPS6411937A/en
Priority to US07/213,737 priority patent/US4897124A/en
Publication of JPS6411937A publication Critical patent/JPS6411937A/en
Publication of JPH0480109B2 publication Critical patent/JPH0480109B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
  • Metal Rolling (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明は、耐食性及び溶接性の良好な成形加
工用アルミニウム合金圧延板及びその製造方法に
関し、特に強度が要求されしかも焼付塗装を施こ
して使用される用途、例えば自動車用車体等に適
した成形加工用アルミニウム合金圧延板及びその
製造方法に関する。 〔従来の技術〕 自動車車体のボデイシートには、従来は主とし
て冷延鋼板が用いられることが多かつたが、最近
では車体軽量化の要求から、アルミニウム合金圧
延板を使用する検討がなされている。自動車車体
のボデイシートは、プレス成形を施して使用され
ることから成形加工性が優れていること、特に伸
び、張出し性が優れておりかつ成形加工時におけ
るリユーダースマークの発生がないことが要求さ
れ、しかも高強度を有することも必須であつて、
特に焼付塗装を施すところから、焼付塗装後の強
度が高いことが要求される。 ところで強度が要求される成形加工品の用途に
使用されるアルミニウム合金板としては従来から
種々のものがあるが、その主要なものは合金成分
系によつて次のように分けられる。 (イ) 非熱処理型Al−Mg系合金である5052合金
(Mg2.2〜2.8%、Cr0.15〜0.35%残部Alおよび
不可避的不純物)のO材あるいは同じく5182合
金(Mn0.20〜0.50%、Mg1.0〜5.0%、残部Al
および不可避的不純物)のO材。 (ロ) 熱処理型Al−Cu系合金である2036合金
(Cu2.2〜3.0%、Mn0.1〜0.4%、Mg0.3〜0.6%、
残部Alおよび不可避的不純物)のT4処理材。 (ハ) 熱処理型Al−Mg−Zn−Cu系合金のT4処理
材。この系のアルミニウム合金としては、例え
ば特開昭52−141409号の合金、特開昭53−
103914号の合金、あるいは特開昭57−98648号
の合金などがある。また、日経ニユーマテリア
ル、1986.4−7.No.8.第63−72頁、特に第64頁で
紹介されているAl−4.5Mg−0.38Cu−1.46Zn−
0.18Fe−0.09Siもある。 (ニ) 熱処理型Al−Mg−Si系合金である6009合金
(Mg0.4〜0.8%、Si0.6〜1.0%、Cu0.15〜0.6%、
Mn0.2〜0.8%、残部Alおよび不可避的不純物)
のT4処理材や同じく6010合金(Mg0.6〜1.0%、
Si0.8〜1.2%、Cu0.15〜0.6%、Mn0.2〜0.8%、
残部Alおよび不可避的不純物)のT4処理材。
これらの合金を提案する特公昭59−39499号に
よると、0.4〜1.2%Si、0.4〜1.1%Mg、0.05〜
0.35%Fe、0.1〜0.6%Cu、に加えて、0.2〜0.8
%Mn、0.1〜0.3%Cr、および0.05〜0.15%Zrの
少なくとも1種を含有する組成のT4またはT6
処理材が開示される。 さらに、特公昭61−15148号に提案される(A)1
%Si、0.6%Mg、(B)1.8%Si、0.6%Mg、(C)1.8%
Si、0.2%Mg、(D)1.2%Si、0.6%Mgの4点で囲ま
れるSi,Mg組成を有し、さらに0.3%以下のCr,
Mn,Zr、または/及びTiを含有するAC120規格
化材。 しかしながらこれらの従来のアルミニウム合金
では、自動車車体のボデイシートに要求される前
述の特性を全て充分に満足させることは困難であ
つた。 すなわち(イ)の合金では、強度が不充分であり、
しかも成形加工時にリユーダースマークが発生し
易い問題があり、さらには塗装焼付工程によつて
強度が低下する問題があつた。また(ロ)の合金で
は、成形性が劣り、かつまた塗装焼付工程によつ
て強度が低下する問題もあつた。さらに(ハ)の合金
では、成形性、特に曲げ性が充分と言えず、また
塗装焼付工程で強度が低下する問題もあつた。 (ニ)の合金は、リユーダースマークが発生し難
く、焼付硬化性により冷延鋼板と同等の強度を有
するなどの特長を有するが、成形性の一尺度とな
る伸びが冷延鋼板より著しく低いことが知られて
いる。 以上のように従来よりアルミニウム合金では、
自動車車体のボデイシートに要求される特性、す
なわち優れた成形加工性を有すること、特に伸
び、張出し成形性が優れかつリユーダースマーク
の発生がないこと、また強度、特に塗装焼付後の
強度が高いことさらに耐食性及び溶接性が優れて
いることの諸要求のすべてを満足させるべく研究
開発が行なわれて来た。 〔発明が解決しようとする問題点〕 本発明が属する合金系のAl−Si−Mg系では上
記諸要求をかなりの程度満足する合金が公知にな
つているものの、自動車車体用ボデイシートに普
通使用されている鋼板よりは価格の面で不利なア
ルミニウム合金圧延板の性能に対する要求は厳し
くならざるを得ず、これに十分に応えるアルミニ
ウム合金圧延板は未だ提供されておらない。 具体的に述べると、先ず、成形性の一指標であ
る伸びが低く、このため成形性が未だ不十分であ
る。 また、自動車車体のボデイシートに用いるアル
ミニウム合金の耐食性については、従来、塗装上
の欠陥がなければ、アルミニウム合金そのものの
耐食性が鋼板よりすぐれているため、問題となら
ないとの見解(前掲日経ニユーマテリアル)や、
クロムめつき皮膜のふくれ欠陥に対する耐食性を
CASS試験で調査した実験(前掲特公昭59−
39499号)などがある。ところが最近では、成形
加工用アルミニウム合金圧延板の耐食性の要求は
より明確になりかつ従来は検討されていなかつた
特定の性質の具備が要求されている。すなわち
Al合金自体の性質に関する未塗装板耐食性、耐
ピツト性の他に、焼付塗装後に塗膜はがれ(ブリ
スター)、糸状腐食等が発生しないことが要求さ
れる。 しかし、かかる耐食性がすぐれており、しか
も、強度と成形性を兼ねそなえた成形加工用アル
ミニウム合金圧延板は知られていない。 自動車車体のボデイシートの溶接は、スポツト
溶接により行なわれることが、殆んどであるが、
部位によつては、MIGもしくはTIG溶接による
いわゆるアーク溶接が行なわれる部位がある。板
厚が2.0mm以下の比較的薄い板がアーク溶接され
ることが一般的であるため、一般に溶接は困難で
あるので、溶接性の良好な圧延板が求められてい
る。 この発明は以上の事情を背景としてなされたも
ので、成形加工性、特に伸び、張出し性が優れか
つ成形加工時におけるリユーダースマークの発生
がなく、しかも高強度を有し、特に成形加工後の
塗装焼付工程での強度低下がなく、むしろ成形加
工後の塗装焼付工程によつて強度が上昇すること
により高い強度を有する成形品が得られるように
するとともに、耐食性および溶接性を改良したア
ルミニウム合金圧延板、およびその製造方法を提
供することを目的とするものである。 〔問題点を解決するための手段〕 本発明の第一は、Si1.2%を越え1.8%以下、
Mg0.6%を越え1.1%以下、及びFe0.05%〜0.5%
を含有しさらに、必要により、Mn0.6%以下、
Cr0.3%以下、Zr0.3%以下の三成分からなる群の
うち1種又は2種以上を含有し、残部が実質的に
不可避不純物とAlから成る組成を有し、成形加
工性、耐食性及び溶接性のすぐれたAl−Si−Mg
系成形加工用合金圧延板にある。 本発明の第二は、上記組成を有する合金溶湯を
半連続鋳造もしくは、連続鋳造により鋳造し、得
られた鋳塊を圧延して得た圧延板を450℃〜/590
℃の温度範囲で溶体化処理し、5℃/sec以上の
冷却速度を焼入れすることを特徴とする成形加工
性、耐食性及び溶接性のすぐれたAl−Si−Mg系
成形加工用アルミニウム合金圧延板の製造方法に
ある。 本発明の第三は、上記溶体化処理後、歪矯正を
施こした後、60〜360℃の範囲内の温度まで、第
1図に示される斜線領域内の加熱速度で加熱し
て、その温度で第2図に示される斜線領域内の時
間保持し、しかる後第1図に示される斜線領域内
の冷却速度で冷却することを特徴とする、成形加
工性、耐食性及び溶接性のすぐれたAl−Si−Mg
系成形加工用アルミニウム合金圧延板の製造方法
にある。 先ず、この発明の組成限定理由について説明す
る。 Si:Siは、一部が金属Si粒子としてAl合金中に
存在し、成形加工性特に伸び特性を向上させる。
又、他の一部のSiはMgと共存してMg2Siを生成
し、析出硬化により強度向上に寄与する。とく
に、Mg2Siを生成する、Mg2Si化学量論組成より
Siが充分に過剰であり、さらに金属Si粒子を生成
することが強度向上に重要である。 又Siは、メカニズムは不明であるが、MIG及
びTIG等のアーク溶接の溶接性も改善する。Si含
有量が1.2%未満では、これらの強度、成形加工
性、溶接性改善の効果が不十分であり、その含有
量が1.8%を越えると、低Si−アルミニウム合金
を溶解する際のスクラツプとして本合金を使用す
る制限が出て来る。 Mg:Mgは既に述べたようにSiとの共存によ
りMg2Siを生成して強度を付与する。Mgが0.6%
未満では強度が不充分であり、一方1.1%を越え
ると伸びが低下するから、Mg含有量の範囲は0.6
〜1.1%とした。 Fe:Feは結晶粒の微細化を通じて強度向上に
寄与するが、0.05%未満では結晶粒が粗大化し、
一方0.4%を越えれば成形性が低下するから、Fe
含有量は0.05〜0.5%の範囲内とした。 Mn,Cr,Zr:これらの元素はいずれも再結晶
粒を微細化させ、組織を安定化させるとともに、
成形性を向上させる。Mnが0.05%未満、Crが
0.05%未満、Zrが0.05%未満では上記の効果が充
分得られないため、これらの元素の効果を積極的
に利用するには0.05%以上を添加することが必要
である。 一方Mnが0.6%をこえれば成形性が低下し、Cr
が0.3%、Zrが0.3%を越えれば巨大金属間化合物
が生成されて伸びが低下するから、Mnは0.6%以
下、Crは0.05〜0.3%以下、Zrは0.3%以下とした。 このMn,Cr,Zrは、結晶粒微細化に有効な元
素であるが、溶体化処理時の加熱速度が5℃/
sec以上であれば、必らずしも、これらの元素を
添加しなくとも微細結晶粒を形成することができ
る。 以上の各成分の残部はAlおよび不可避的不純
物とすれば良い。不純物中Cuは、材料の耐食性
を著しく劣化させ、また溶接性も阻害するので
Cuは、0.1%未満に制限する。 なお通常のアルミニウム合金においては鋳塊の
結晶粒微細化のためにTi、あるいはTiおよびB
を微量添加することがあり、この発明のアルミニ
ウム合金板圧延板においてもAl、合金成分、及
び不純物の残部として微量のTi、あるいはTiお
よびBを含有していても良い。但しTiを添加す
る場合0.01%未満ではその効果が得られず、0.15
%以上では初晶TiAl3が晶出して形成性を害する
から、Tiは0.01〜0.15%の範囲内とすることが好
ましい。またTiとともにBを添加する場合、
1ppm未満ではその効果がなく、500ppmを越えれ
ば、TiB2の粗大粒子が混入して成形性を害する
から、Bは1〜500ppmの範囲内とすることが好
ましい。 次に、本発明のアルミニウム合金圧延板の製造
方法について説明する。本発明の上記合金組成の
特性を十分に発揮させるためには、アルミニウム
合金圧延板を450℃〜590℃で溶体化処理し、5
℃/sec以上の冷却速度で冷却することが必要で
ある。この溶体化処理により、所定の強度及び成
形性を得るに必要な量の固溶Mg,Siを得る。温
度が450℃未満では、溶体化が不充分であり、冷
却後及びベーキング後の強度が充分に得られな
い。一方温度が590℃を越えると共晶溶融の恐れ
がある。 また、焼入れ速度(冷却速度)が5℃/secよ
り遅いと、強度が不充分であるばかりでなく、粒
界腐食等の耐食性も劣化する。よつて、5℃/
sec以上の焼入速度が必要である。 さらに、上記合金組成の特性の一層の向上を図
るためには次の方法、条件等に従う製造方法が望
ましい。上記合金組成からなる溶湯を、矩形の断
面を有する鋳塊に半連続鋳造する。鋳造速度は、
矩形の鋳塊が鋳造できれば特に定めないが、通常
25mm/minから250mm/minの範囲で鋳造される。
この鋳塊は、熱間圧延に先立ち、450−590℃で1
時間〜48時間加熱される。鋳塊の不均一さを解消
し、成形性を向上させることを目的として、加熱
温度が450℃未満又は加熱時間が1時間未満であ
ると均質化が不充分であり、加熱温度が590℃を
越えると局部融解が起こり、加熱時間が48時間を
越えると経済性が低下しかつ均質化の効果が飽和
する。なお、大型の半連続鋳造塊の代りに、2つ
のロール間に連続的に溶湯を供給して得る連続鋳
造板を用いてもよい。この場合は鋳造速度の制限
が特になく、また通常熱間圧延をせず冷間圧延を
行なうが、圧延に先立ち、均質化を促進し、成形
加工性を向上せしむるべく、300℃〜590℃×1〜
48時間予備加熱すれば一層効果的である。以上の
如く熱間圧延したアルミニウム合金板は、引き続
いて、冷間圧延を行ない、板厚3.0〜0.5mmとす
る。冷間圧延と、冷間圧延の途中もしくは、熱間
圧延と、冷間圧延の間に、中間焼鈍を入れると再
結晶の効果によりアルミニウム合金板の特性とく
に強度と成形性の向上に一層の効果がある。 すなわち、熱間圧延時に、粗大な結晶粒が発生
した場合、これを、熱延板を中間焼鈍なしに、冷
間圧延し、溶体化処理をすると、この粗大結晶粒
が圧延方向に伸びたバンド組織が生じ、成形加工
時に、リジング又はフローラインと称する、うね
りが発生し、成形品外観を劣化させる。そこで、
中間焼鈍により一度再結晶を生じせしめると、熱
間圧延時に生じた粗大粒の影響が解消せしむこと
可能となる。ここで、中間焼鈍の温度が280℃未
満であると再結晶が起こらず、又温度が450℃を
越えると、結晶粒粗大化が起こり易くなる。また
保持時間が48時間を越える中間焼鈍は経済的でな
い。上記溶体化処理は、量産性等を考慮すると、
コイルを連続的に溶体化焼入処理をすることが好
ましい。保持時間は0(所定の温度に到達すると
同時に冷却)でもよいが通常は10秒以上が好まし
い。 コイルを連続的に溶体化焼入する場合、経済的
観点から、溶体化温度での保持時間は5分が上限
である。この連続溶体化焼入を用いる場合、通常
5℃/sec以上の加熱速度が得られるため、結晶
粒が微細化され、成形性が向上する。 溶体化処理は、元来は、Mg,Si等の強化に寄
与する合金元素を、充分に、再固溶させることを
目的としたものである。そこで必要な強度を得る
ためには、その強度を得るに必要な量の強化に寄
与する合金元素を、再固溶させればよく、その為
には、添加したMg,Siを、充分に固溶させる、
いわゆる完全溶体化処理が行なわれる。しかし特
に自動車用の成形用途では車体の部位によつて
は、強度より成形性を重視せざるを得ない場合も
ある。 この場合は、Mg含有量及びSi含有量を多くし、
溶体化処理時に強化に必要量なだけのMg,Siを
再固溶させるいわば不完全溶体化処理によつても
よい。 具体的には、溶体化処理時の時間を短かくもし
くは温度を低目にすればよい。 とくに、連続溶体化焼入装置を用いる場合、保
持時間を短かくとることが可能となり、これによ
り、連続溶体化処理時のラインスピードを上げる
ことができ、経済的な利点が得られる。 不完全溶体化処理を行なう場合、溶体化処理前
のMg及びSiの存在状態が変動すると、それに伴
ない再固溶されるMg及びSiの量が異なり、機械
的性質が変動する。したがつて、溶体化処理前の
Mg及びSiの存在状態を一定にしておくことが要
点となる。 この、溶体化処理前のMg,Siの存在状態をコ
ントロールするためには、熱間圧延前の加熱条
件、熱間圧延条件を厳密に管理する必要がある
が、中間焼鈍を製造工程に入れると、一層好まし
い。 前記の通りの温度の中間焼鈍を受けると、中間
焼鈍以前の熱履歴により決定されたMg及びSiの
存在状態が安定化かつ一定化され、その結果、不
完全溶体化処理によるMg,Siの再固溶量は安定
し、機械的性能の安定化が一層容易となる。 なお、溶体化処理後はアルミニウム合金圧延板
を歪矯正する。その後、表面清浄化、化成処理、
成形加工、溶接、塗装、焼付硬化等を行なう。 溶体化処理時の急速加熱および焼入れ時の急速
冷却によつて、圧延板に急激な熱膨張と収縮が生
じ、これにより圧延板が変形し、歪となる。そこ
でこの歪を除去するため、溶体化処理焼入れ後に
歪矯正を行なう。この歪矯正は、レベリング、テ
ンシヨンレベリング、スキンパス、あるいはスト
レツチ等のいずれでも良く、いずれの方法でも若
干の冷間加工を与えることによつて歪の除去が行
なわれる。歪矯正工程での加工の程度は、溶体化
処理焼入れ後の歪の程度によつても異なるが、通
常は歪矯正工程を入れることにより、耐力は1
Kg/mm2以上上昇し、成形性は、エリクセン値で
0.2mm以上低下する。 このように歪矯正工程により成形性能の低下し
た圧延板に対し、次いで60〜360℃の範囲内に加
熱して保持後もしくは直ちに冷却する最終熱処理
を施す。この熱処理は、加熱保持温度に対応して
第1図の斜線領域すなわち点A,B,C,D,E
を結ぶ直線もしくは曲線によつて囲まれる領域内
の加熱速度で加熱昇温し、加熱保持温度に対応し
て第2図の斜線領域すなわち点a,b,c,dを
結ぶ直線もしくは曲線によつて囲まれる範囲内の
時間保持し、さらにその加熱保持温度に対応して
第1図の斜線領域内の冷却速度で冷却する。ここ
で第1図中の各点A〜Eにおける温度および加
熱・冷却速度は次の通りである。 A:60℃、4×10-3℃/sec B:140℃、4×10-3℃/sec C:360℃、3×10℃/sec D:230℃、4×103℃/sec E:60℃、4×103℃/sec また第2図中の各点a〜dにおける温度、時間
は次の通りである。 a:200℃、0sec b:360℃、0sec c:130℃、105sec d:60℃、105sec このように歪矯正後の最終熱処理について加熱
速度、保持時間、冷却時間の範囲を定めた理由を
説明する。 この発明で対象としているAl−Mg−Si系合金
は熱処理型の合金であるため、加熱、保持、冷却
中に加工歪の除去のみならず、時効硬化が生じる
可能性があり、その場合強度が上昇して成形性が
低下したり、過時効により成形加工後の塗装焼付
後強度もしくはT6処理後強度が低下したりする
おそれがある。そこでこれらの問題の発生を招か
ないようにしながら、歪矯正工程での加工歪を除
去する必要があり、その他平坦度を維持すること
や経済性等をも考慮する必要があり、これらの観
点から次のように各範囲が定められた。 (加熱速度) 第1図の直線ABより下側の領域では、材料の
性能としては問題がないが、これ以上の徐加熱で
は昇温に著しい長時間を要するため生産性が低下
し、経済的ではなくなる。したがつて直線ABよ
り上の加熱速度とした。 第1図の曲線BCより下側の加熱速度の遅い領
域では、加熱昇温中に時効硬化が生じて、強度は
上昇する反面成形性が低下する。そこで曲線BC
より上側の領域とした。 次に直線DCより上側の領域においては、加熱
が急速すぎて昇温中に歪が発生してしまい、歪矯
正の効果が失われてしまう。したがつて直線DC
より下側の領域とした。 直線DEより上側の領域は、実質的にオイルバ
ス投入による加熱速度を越える加熱速度であり、
これ以上の加熱速度でも効果はあるが実用的では
なく、無意味であるから、直線DEより下側の領
域とした。 直線EAの左側、すなわち加熱温度が60℃未満
の低温では、加熱速度の如何にかかわらず、歪矯
正による加工歪を除去し切れないから、直線EA
の左側領域は除外した。 以上から、加熱速度の範囲は加熱保持温度によ
つて異なるが、第1図中の点A,B,C,D,E
で囲まれる斜線領域内とすることが必要である。 (保持温度・時間) 第2図中における直線abに関して、保持温度
200〜360℃では、その温度域に到達して直ちに冷
却を開始しても、すなわち保持時間を0秒として
も加工歪を除去できる。したがつて保持温度200
〜360℃の温度域では保持時間の下限を0秒、す
なわち直線abとした。 また曲線bcより右上の領域では、加工歪は除
去できるが、高温時効硬化により強度が上昇し、
成形性が低下してしまう。また特に高温領域では
過時効となり、成形性が低下するとともに、成形
後の焼付塗装もしくはT6処理により所定の強度
が得られなくなる。したがつて曲線bcの左下の
領域とする必要がある。 直線cdより上側では、加工歪を除去できて成
形性の回復が可能であるが、保持時間が24時間を
越え、経済的に無意味であり、したがつて直線
cdより下側とした。 曲線daより左下の領域では、加工歪を除去す
るに必要な熱が与えられず、成形性の回復が認め
られない。したがつて曲線daの右上の領域とす
る必要がある。 以上から、加熱保持時間は、加熱保持温度によ
つて異なるが、結局第2図中の点abcdで囲まれ
る斜線領域内とする必要がある。 (冷却速度) 冷却速度は、加熱速度と同様に第1図中の
ABCDEで囲まれる斜線領域内とする必要があ
る。 直線ABより下側の領域では、材料の性能とし
ては問題がないが、これ以上の徐速冷却では冷却
に著しい長時間を要するため経済的でない。した
がつて直線ABより上側の領域とした。 曲線BCより下側の冷却速度の遅い領域では、
冷却中に時効析出が生じ、成形性が低下するとと
もに、過時効によつて成形後の焼付塗装もしくは
T6処理で所定の強度を得ることができなくなる。
したがつて曲線BCより上側の領域とした。 直線DCより上側の冷却速度では、冷却速度が
大き過ぎて材料に歪変形が生じてしまい、最終熱
処理前の歪矯正の効果が失われてしまう。したが
つて直線DCより下側の領域とした。 直線DEより上側の領域では、実質的に水冷を
越える冷却速度となり、実用上無意味であるか
ら、直線DEより下側の冷却速度とした。 直線EAより左側では、冷却速度の如何にかか
わらず、加工歪を除去できない。したがつて直線
EAより右側の領域とした。 したがつて冷却速度も、加熱速度と同様に、加
熱保持温度によつて異なるが、第1図中の
ABCDEによつて囲まれる斜線領域とした。 以上のような条件での最終熱処理を歪矯正加工
後に施せば、歪矯正工程で導入された加工歪が除
去されて、その歪矯正により低下した成形性、特
に張出し性が回復され、溶体化処理焼入れにより
得られていたT4テンパー状態での良好な成形性、
特に張出し性を有する状態に戻すことができるの
である。またこの最終熱処理においては、時効硬
化や過時効が生じないような適切な条件に定めて
いるため、それらによる成形性の低下を招くこと
がなく、また成形後の焼付塗装やT6処理によつ
て所要の強度を得ることができる。さらに最終熱
処理の条件は、急熱急冷による新たな歪の発生を
招かないように定めているから、その前の歪矯正
工程による平坦度改善の効果が保たれる。 〔作用〕 溶体化処理後の人工時効(T4)状態における
本発明のアルミニウム合金圧延板の典型的特性は
次のとおりである。 機械的性質:耐力(σ0.2)−15Kg/mm2以上、引張
強さ−(σB)約30Kg/mm2以上、及び伸び約29%以
上。 成形加工性:エリクセン値−6010合金と同等以
上、最小曲げ(180°)−6010合金と同等以上、限
界絞り比(LDR)−従来の成形加工用アルミニウ
ム合金板と同等、リユーダースマーク−なし。 焼付硬化性:成形加工を想定した10%以下の冷
間加工を付加した後、塗装焼付を想定した175℃
×1時間の熱処理を施すと耐力の増加1Kg/mm2
上、最大約2Kg/mm2。6010合金同等以上。 耐食性:電着下塗り、中塗、上塗りよりなる通
常の自動車車体用3コート塗装後の塗装板の耐食
性が、6010合金より優れ、5182合金と同等。 溶接性:溶接性が従来TIG,MIG溶接されて
いた例えば6009合金の薄板と比較して良好とな
る。 上記の如き特性を有する本発明の成形加工用ア
ルミニウム合金圧延板は従来の圧延板より自動車
車体用ボデイシート材として性質のバランスが良
好であり、適性が著しく増大している。 以下、実施例によりさらに詳しく本発明を説明
する。 〔実施例〕 実施例 1 表1の組成を有するアルミニウム合金溶湯を
500×1000mmの断面のスラブに鋳造速度60mm/
minで半連続鋳造した。
[Industrial Field of Application] The present invention relates to a rolled aluminum alloy plate for forming with good corrosion resistance and weldability, and a method for manufacturing the same, and particularly for applications where strength is required and where baking is applied, such as automobiles. The present invention relates to a rolled aluminum alloy plate for forming processing suitable for automobile bodies, etc., and a method for manufacturing the same. [Prior Art] In the past, cold-rolled steel plates were often used for the body sheets of automobile bodies, but recently, due to the demand for lighter vehicle bodies, consideration has been given to using rolled aluminum alloy plates. . Since body sheets for automobile bodies are used after being press-formed, they are required to have excellent molding properties, especially excellent elongation and extrusion properties, and no reuders marks during the molding process. It is also essential to have high strength.
In particular, since baking is applied, high strength is required after baking. By the way, there have been various types of aluminum alloy plates used for forming products that require strength, but the main ones can be classified as follows depending on the alloy composition system. (a) O material of 5052 alloy (Mg 2.2 to 2.8%, Cr 0.15 to 0.35% balance Al and unavoidable impurities), which is a non-heat treatment type Al-Mg alloy, or 5182 alloy (Mn 0.20 to 0.50%) , Mg1.0~5.0%, balance Al
and unavoidable impurities). (b) 2036 alloy, which is a heat-treatable Al-Cu alloy (Cu2.2-3.0%, Mn0.1-0.4%, Mg0.3-0.6%,
(Remaining Al and unavoidable impurities) T4 treated material. (c) T4 treated material of heat-treated Al-Mg-Zn-Cu alloy. Examples of this type of aluminum alloy include the alloy of JP-A-52-141409, the alloy of JP-A-53-141409,
There are alloys such as No. 103914 and JP-A No. 57-98648. Also, Al−4.5Mg−0.38Cu−1.46Zn− introduced in Nikkei New Material, 1986.4−7.No.8, pages 63−72, especially page 64.
0.18Fe−0.09Si is also available. (d) 6009 alloy, which is a heat-treatable Al-Mg-Si alloy (Mg0.4-0.8%, Si0.6-1.0%, Cu0.15-0.6%,
Mn0.2~0.8%, balance Al and unavoidable impurities)
T4 treated material and 6010 alloy (Mg0.6~1.0%,
Si0.8~1.2%, Cu0.15~0.6%, Mn0.2~0.8%,
(Remaining Al and unavoidable impurities) T4 treated material.
According to Japanese Patent Publication No. 59-39499 proposing these alloys, 0.4~1.2% Si, 0.4~1.1% Mg, 0.05~
0.35% Fe, 0.1~0.6% Cu, plus 0.2~0.8
T4 or T6 with a composition containing at least one of %Mn, 0.1 to 0.3% Cr, and 0.05 to 0.15% Zr
A treated material is disclosed. Furthermore, (A) 1 proposed in Special Publication No. 61-15148
%Si, 0.6%Mg, (B) 1.8%Si, 0.6%Mg, (C) 1.8%
It has a Si, Mg composition surrounded by four points: Si, 0.2%Mg, (D) 1.2%Si, 0.6%Mg, and 0.3% or less Cr,
AC120 standardized material containing Mn, Zr, or/and Ti. However, with these conventional aluminum alloys, it has been difficult to fully satisfy all of the above-mentioned characteristics required for body sheets of automobile bodies. In other words, alloy (a) has insufficient strength;
Furthermore, there was a problem in that reuders marks were likely to occur during the molding process, and furthermore, there was a problem in that the strength was reduced due to the paint baking process. Furthermore, the alloy (b) had problems of poor formability and reduced strength due to the paint baking process. Furthermore, the alloy (c) had insufficient formability, especially bendability, and also had the problem of reduced strength during the paint baking process. The alloy (d) has features such as being less likely to generate Lyuders' marks and having the same strength as cold-rolled steel sheets due to its bake hardenability, but its elongation, which is a measure of formability, is significantly lower than that of cold-rolled steel sheets. It is known. As mentioned above, conventionally, aluminum alloys
The properties required for automobile body sheets include excellent moldability, especially excellent elongation and stretch moldability, and no reuders marks, and high strength, especially after paint baking. Research and development has been carried out in order to satisfy all of the requirements for excellent corrosion resistance and weldability. [Problems to be solved by the invention] Al-Si-Mg alloys to which the present invention belongs are known, which satisfy the above requirements to a considerable extent, but they are not commonly used in body sheets for automobiles. The performance requirements for aluminum alloy rolled sheets, which are disadvantageous in terms of price than conventional steel sheets, must become stricter, and an aluminum alloy rolled sheet that satisfactorily meets these requirements has not yet been provided. Specifically, first, the elongation, which is an index of moldability, is low, and therefore the moldability is still insufficient. In addition, regarding the corrosion resistance of aluminum alloys used for automobile body sheets, the conventional opinion was that unless there were defects in the coating, the corrosion resistance of the aluminum alloy itself was superior to that of steel sheets, so there was no problem (Nikkei New Materials cited above). )or,
Corrosion resistance against blistering defects in chrome-plated films
Experiments investigated in the CASS test
39499) etc. However, recently, the requirements for corrosion resistance of rolled aluminum alloy sheets for forming have become clearer, and specific properties that have not been considered in the past are required. i.e.
In addition to corrosion resistance and pit resistance related to the properties of the Al alloy itself, it is also required that the coating film does not peel off (blister) or cause filiform corrosion after baking. However, there is no known aluminum alloy rolled sheet for forming that has such excellent corrosion resistance and also has both strength and formability. Most of the welding of automobile body seats is done by spot welding.
Depending on the location, so-called arc welding using MIG or TIG welding is performed. Since relatively thin plates with a thickness of 2.0 mm or less are generally arc welded, welding is generally difficult, so rolled plates with good weldability are required. This invention was made against the background of the above-mentioned circumstances, and has excellent molding processability, especially elongation and stretchability, no generation of reuders marks during molding, and high strength, especially after molding. An aluminum alloy that does not reduce its strength during the paint baking process, but rather increases its strength through the paint baking process after forming, making it possible to obtain molded products with high strength, and with improved corrosion resistance and weldability. The object of the present invention is to provide a rolled plate and a method for manufacturing the same. [Means for solving the problem] The first aspect of the present invention is that Si exceeds 1.2% and is 1.8% or less,
Mg over 0.6% and 1.1% or less, and Fe 0.05% to 0.5%
Furthermore, if necessary, Mn 0.6% or less,
Contains one or more of the three components consisting of Cr0.3% or less and Zr0.3% or less, with the remainder essentially consisting of unavoidable impurities and Al, and has good moldability and corrosion resistance. and Al-Si-Mg with excellent weldability.
It is an alloy rolled plate for system forming processing. The second aspect of the present invention is to cast a molten alloy having the above composition by semi-continuous casting or continuous casting, and roll the obtained ingot to produce a rolled plate at a temperature of 450°C to 590°C.
Al-Si-Mg aluminum alloy rolled sheet for forming process, which has excellent formability, corrosion resistance, and weldability, and is characterized by solution treatment in the temperature range of ℃ and quenching at a cooling rate of 5℃/sec or more. It is in the manufacturing method. The third aspect of the present invention is that after the above-mentioned solution treatment, the strain is straightened and then heated to a temperature within the range of 60 to 360°C at a heating rate within the shaded area shown in Figure 1. The material has excellent formability, corrosion resistance, and weldability, and is maintained at a temperature within the shaded area shown in Figure 2 for a period of time, and then cooled at a cooling rate within the shaded area shown in Figure 1. Al−Si−Mg
A method of manufacturing an aluminum alloy rolled plate for system forming processing. First, the reason for limiting the composition of the present invention will be explained. Si: Si is partially present in the Al alloy as metallic Si particles and improves formability, particularly elongation properties.
In addition, some other Si coexists with Mg to produce Mg 2 Si, which contributes to improving strength through precipitation hardening. In particular, from the Mg 2 Si stoichiometry that produces Mg 2 Si
It is important for strength improvement to have a sufficient excess of Si and to generate metal Si particles. Although the mechanism is unknown, Si also improves the weldability of arc welding such as MIG and TIG. If the Si content is less than 1.2%, the effects of improving strength, formability, and weldability will be insufficient, and if the content exceeds 1.8%, it will be used as scrap when melting low Si-aluminum alloys. There are limitations to using this alloy. Mg: As already mentioned, Mg coexists with Si to generate Mg 2 Si and impart strength. Mg 0.6%
If it is less than 1.1%, the strength is insufficient, while if it exceeds 1.1%, the elongation decreases, so the Mg content range is 0.6%.
~1.1%. Fe: Fe contributes to improving strength by making crystal grains finer, but if it is less than 0.05%, crystal grains become coarser,
On the other hand, if it exceeds 0.4%, formability will decrease, so Fe
The content was within the range of 0.05 to 0.5%. Mn, Cr, Zr: All of these elements refine the recrystallized grains, stabilize the structure, and
Improves formability. Mn less than 0.05%, Cr
If the Zr content is less than 0.05%, the above effects cannot be obtained sufficiently, so in order to actively utilize the effects of these elements, it is necessary to add 0.05% or more. On the other hand, if Mn exceeds 0.6%, formability decreases and Cr
If Zr exceeds 0.3% and Zr exceeds 0.3%, giant intermetallic compounds are formed and elongation decreases, so Mn was set at 0.6% or less, Cr at 0.05-0.3% or less, and Zr at 0.3% or less. These Mn, Cr, and Zr are effective elements for grain refinement, but the heating rate during solution treatment is 5℃/
sec or more, fine crystal grains can be formed without necessarily adding these elements. The remainder of each of the above components may be Al and inevitable impurities. Cu in impurities significantly deteriorates the corrosion resistance of the material and also impairs weldability.
Cu is limited to less than 0.1%. In addition, in ordinary aluminum alloys, Ti or Ti and B are added to refine the crystal grains of the ingot.
The rolled aluminum alloy plate of the present invention may also contain a trace amount of Ti or Ti and B as the remainder of Al, alloy components, and impurities. However, when adding Ti, the effect cannot be obtained if it is less than 0.01%, and 0.15
% or more, primary TiAl 3 crystallizes and impairs formation properties, so Ti is preferably in the range of 0.01 to 0.15%. Also, when B is added together with Ti,
If it is less than 1 ppm, there is no effect, and if it exceeds 500 ppm, coarse particles of TiB 2 will be mixed in, impairing the moldability, so B is preferably in the range of 1 to 500 ppm. Next, a method for manufacturing an aluminum alloy rolled plate of the present invention will be explained. In order to fully exhibit the characteristics of the above alloy composition of the present invention, an aluminum alloy rolled plate is solution-treated at 450°C to 590°C, and
It is necessary to cool at a cooling rate of ℃/sec or higher. Through this solution treatment, solid solution Mg and Si are obtained in the amount necessary to obtain predetermined strength and formability. If the temperature is less than 450°C, solution treatment will be insufficient and sufficient strength will not be obtained after cooling and after baking. On the other hand, if the temperature exceeds 590°C, there is a risk of eutectic melting. Further, if the quenching rate (cooling rate) is slower than 5° C./sec, not only the strength will be insufficient, but also the corrosion resistance such as intergranular corrosion will deteriorate. Therefore, 5℃/
A quenching speed of sec or higher is required. Furthermore, in order to further improve the characteristics of the above-mentioned alloy composition, it is desirable to use a manufacturing method according to the following methods and conditions. A molten metal having the above alloy composition is semi-continuously cast into an ingot having a rectangular cross section. The casting speed is
There is no particular requirement as long as a rectangular ingot can be cast, but usually
It is cast in the range of 25mm/min to 250mm/min.
This ingot was heated to 450-590℃ prior to hot rolling.
Heated for ~48 hours. In order to eliminate the non-uniformity of the ingot and improve the formability, if the heating temperature is less than 450℃ or the heating time is less than 1 hour, homogenization will be insufficient, so the heating temperature should be 590℃ or less. If the heating time exceeds 48 hours, local melting will occur, and if the heating time exceeds 48 hours, the economical efficiency will decrease and the homogenization effect will be saturated. Note that instead of a large semi-continuously cast ingot, a continuously cast plate obtained by continuously supplying molten metal between two rolls may be used. In this case, there is no particular restriction on the casting speed, and cold rolling is usually performed without hot rolling. ℃×1〜
It is even more effective if preheated for 48 hours. The aluminum alloy plate hot-rolled as described above is then cold-rolled to a thickness of 3.0 to 0.5 mm. If intermediate annealing is performed between cold rolling or between hot rolling and cold rolling, the recrystallization effect will further improve the properties of the aluminum alloy sheet, especially its strength and formability. There is. In other words, if coarse grains are generated during hot rolling, if the hot rolled sheet is cold rolled without intermediate annealing and subjected to solution treatment, these coarse grains will form a band extending in the rolling direction. A structure is formed, and during the molding process, undulations called ridging or flow lines occur, deteriorating the appearance of the molded product. Therefore,
Once recrystallization is caused by intermediate annealing, the influence of coarse grains produced during hot rolling can be eliminated. Here, if the intermediate annealing temperature is less than 280°C, recrystallization does not occur, and if the temperature exceeds 450°C, coarsening of crystal grains tends to occur. Further, intermediate annealing for which the holding time exceeds 48 hours is not economical. Considering the mass productivity, etc. of the above solution treatment,
Preferably, the coil is subjected to continuous solution hardening treatment. The holding time may be 0 (cooling at the same time as the predetermined temperature is reached), but is usually preferably 10 seconds or more. When continuously solution hardening the coil, from an economical point of view, the upper limit of the holding time at the solution temperature is 5 minutes. When this continuous solution quenching is used, a heating rate of 5° C./sec or higher is usually obtained, so crystal grains are refined and formability is improved. Solution treatment was originally intended to sufficiently dissolve alloying elements such as Mg and Si that contribute to strengthening into a solid solution. Therefore, in order to obtain the necessary strength, it is necessary to re-dissolve the alloying elements that contribute to strengthening in the amount necessary to obtain the strength. dissolve,
A so-called complete solution treatment is performed. However, especially when used for molding automobiles, depending on the part of the vehicle body, it may be necessary to emphasize moldability over strength. In this case, increase the Mg content and Si content,
It is also possible to perform so-called incomplete solution treatment, in which Mg and Si are redissolved in the amount necessary for strengthening during solution treatment. Specifically, the time or temperature during solution treatment may be shortened or lowered. In particular, when a continuous solution hardening device is used, it is possible to shorten the holding time, thereby increasing the line speed during continuous solution treatment, resulting in economical advantages. When incomplete solution treatment is performed, if the state of existence of Mg and Si before solution treatment changes, the amounts of Mg and Si that are re-dissolved will vary accordingly, and the mechanical properties will change. Therefore, before solution treatment
The key point is to keep the existing states of Mg and Si constant. In order to control the presence of Mg and Si before solution treatment, it is necessary to strictly control the heating conditions and hot rolling conditions before hot rolling, but if intermediate annealing is included in the manufacturing process, , more preferred. When subjected to intermediate annealing at the temperature described above, the existing states of Mg and Si determined by the thermal history before intermediate annealing are stabilized and constant, and as a result, the regeneration of Mg and Si due to incomplete solution treatment is The amount of solid solution is stabilized, making it easier to stabilize mechanical performance. Note that after the solution treatment, the aluminum alloy rolled plate is strain-corrected. After that, surface cleaning, chemical conversion treatment,
Performs molding, welding, painting, baking hardening, etc. Rapid heating during solution treatment and rapid cooling during quenching cause rapid thermal expansion and contraction of the rolled plate, which deforms the rolled plate and causes strain. Therefore, in order to remove this distortion, distortion correction is performed after solution treatment and quenching. This distortion correction may be performed by leveling, tension leveling, skin pass, or stretching, and in any of these methods, distortion is removed by applying a slight cold work. The degree of processing in the strain straightening process varies depending on the degree of strain after solution treatment and quenching, but usually by including the strain straightening process, the yield strength can be reduced to 1.
Kg/ mm2 or more increases, and formability is determined by Erichsen value.
Decreased by 0.2mm or more. The rolled plate whose forming performance has been degraded due to the strain straightening process is then subjected to a final heat treatment in which the sheet is heated to a temperature in the range of 60 to 360°C and held or immediately cooled. This heat treatment is carried out in the shaded area of FIG.
The temperature is increased at a heating rate within the area surrounded by a straight line or curved line connecting the The temperature is maintained for a period of time within the range enclosed by the heating temperature, and the temperature is further cooled at a cooling rate within the shaded area in FIG. 1 corresponding to the heating holding temperature. Here, the temperatures and heating/cooling rates at each point A to E in FIG. 1 are as follows. A: 60℃, 4×10 -3 ℃/sec B: 140℃, 4×10 -3 ℃/sec C: 360℃, 3×10℃/sec D: 230℃, 4×10 3 ℃/sec E : 60°C, 4×10 3 °C/sec The temperature and time at each point a to d in FIG. 2 are as follows. a: 200℃, 0sec b: 360℃, 0sec c: 130℃, 10 5 sec d: 60℃, 10 5 sec In this way, the range of heating rate, holding time, and cooling time is determined for the final heat treatment after straightening the strain. Explain why. Since the Al-Mg-Si alloy targeted by this invention is a heat-treatable alloy, there is a possibility that not only the processing strain will be removed during heating, holding, and cooling, but also age hardening will occur, in which case the strength will decrease. There is a risk that the strength after molding or the strength after T6 treatment may decrease due to over-aging. Therefore, it is necessary to eliminate processing distortion in the distortion straightening process while preventing these problems from occurring, and it is also necessary to consider other aspects such as maintaining flatness and economic efficiency. Each range was determined as follows. (Heating rate) In the area below the straight line AB in Figure 1, there is no problem with the material's performance, but if it is heated more slowly than this, it will take an extremely long time to raise the temperature, which will reduce productivity and reduce economic efficiency. It will no longer be. Therefore, the heating rate was set above the straight line AB. In the region below the curve BC in FIG. 1 where the heating rate is slow, age hardening occurs during heating and temperature rise, and although the strength increases, the formability decreases. So the curve BC
This is the upper area. Next, in the region above the straight line DC, heating is too rapid and distortion occurs during temperature rise, and the effect of distortion correction is lost. Therefore the straight line DC
This is the lower area. The area above the straight line DE is a heating rate that substantially exceeds the heating rate due to oil bath injection,
Although heating rates higher than this are effective, they are not practical and meaningless, so the region below the straight line DE was chosen. On the left side of the straight line EA, that is, when the heating temperature is low (less than 60℃), the processing strain due to strain correction cannot be completely removed regardless of the heating rate, so the straight line EA
The left side region of was excluded. From the above, the range of heating rate varies depending on the heating holding temperature, but points A, B, C, D, and E in Figure 1
It is necessary to place it within the shaded area surrounded by . (Holding temperature/time) Regarding the straight line ab in Figure 2, the holding temperature
At 200 to 360°C, processing strain can be removed even if cooling is started immediately after reaching that temperature range, that is, even if the holding time is 0 seconds. Therefore, the holding temperature is 200
In the temperature range of ~360°C, the lower limit of the holding time was set to 0 seconds, that is, the straight line ab. In addition, in the upper right region of curve bc, processing strain can be removed, but strength increases due to high temperature age hardening.
Moldability deteriorates. In addition, especially in high temperature ranges, overaging occurs, which reduces formability and makes it impossible to obtain the desired strength by baking or T6 treatment after forming. Therefore, it needs to be the lower left area of curve bc. Above the straight line CD, processing distortion can be removed and formability can be restored, but the holding time exceeds 24 hours, making it economically meaningless.
It was placed below the CD. In the area below and to the left of the curve da, the heat necessary to remove processing strain is not applied, and recovery of formability is not observed. Therefore, it needs to be the upper right area of the curve da. From the above, the heating holding time differs depending on the heating holding temperature, but ultimately it needs to be within the shaded area surrounded by points ABCD in FIG. 2. (Cooling rate) The cooling rate is the same as the heating rate in Figure 1.
Must be within the shaded area surrounded by ABCDE. In the region below straight line AB, there is no problem with the performance of the material, but slow cooling beyond this range is not economical because cooling takes a significantly long time. Therefore, it was set as the area above straight line AB. In the region below curve BC where the cooling rate is slow,
Aging precipitation occurs during cooling, reducing formability, and over-aging may cause baked-on coating or damage after forming.
It becomes impossible to obtain the specified strength with T6 treatment.
Therefore, it was set as the area above curve BC. If the cooling rate is above the straight line DC, the cooling rate will be too high, causing strain deformation in the material, and the effect of strain correction before the final heat treatment will be lost. Therefore, it was set as the area below the straight line DC. In the region above the straight line DE, the cooling rate substantially exceeds water cooling, which is practically meaningless, so the cooling rate was set below the straight line DE. To the left of straight line EA, machining strain cannot be removed regardless of the cooling rate. therefore straight line
This is the area to the right of the EA. Therefore, like the heating rate, the cooling rate also varies depending on the heating holding temperature, but the
The shaded area is surrounded by ABCDE. If the final heat treatment under the above conditions is performed after the strain straightening process, the processing strain introduced in the strain straightening process will be removed, and the formability, especially the stretchability, which has decreased due to the strain correction will be restored, and the solution treatment Good formability in T4 temper state obtained by quenching,
In particular, it can be returned to a state where it has overhanging properties. In addition, in this final heat treatment, appropriate conditions are set so that age hardening and overaging do not occur, so there is no deterioration in formability due to these, and there is no problem with post-forming baking painting or T6 treatment. The required strength can be obtained. Furthermore, since the conditions for the final heat treatment are determined so as not to cause new distortion due to rapid heating and cooling, the flatness improvement effect of the previous distortion correction process can be maintained. [Function] Typical properties of the aluminum alloy rolled sheet of the present invention in the artificially aged (T4) state after solution treatment are as follows. Mechanical properties: proof stress (σ 0.2 ) - 15Kg/mm 2 or more, tensile strength - (σ B ) about 30Kg/mm 2 or more, and elongation about 29% or more. Formability: Erichsen value - equivalent or higher than 6010 alloy, minimum bending (180°) - equivalent or higher than 6010 alloy, limiting drawing ratio (LDR) - equivalent to conventional aluminum alloy plate for forming processing, Lyuders mark - none. Bake hardenability: After adding 10% or less cold working assuming molding, 175℃ assuming paint baking.
When heat treated for 1 hour, the yield strength increases by more than 1Kg/mm 2 , up to about 2Kg/mm 2 . Equivalent to or better than 6010 alloy. Corrosion resistance: The corrosion resistance of the painted plate after the usual 3-coat coating for automobile bodies consisting of electrodeposited undercoat, intermediate coat, and topcoat is superior to 6010 alloy and equivalent to 5182 alloy. Weldability: Weldability is improved compared to conventional TIG or MIG welding, such as 6009 alloy thin plates. The rolled aluminum alloy sheet for forming according to the present invention having the above characteristics has a better balance of properties and is significantly more suitable as a body sheet material for automobile bodies than conventional rolled sheets. Hereinafter, the present invention will be explained in more detail with reference to Examples. [Example] Example 1 Molten aluminum alloy having the composition shown in Table 1 was
Casting speed 60mm/ for a slab with a cross section of 500×1000mm
Semi-continuous casting was performed at min.

【表】 続いて、表2の均質化処理を行なつた後、板厚
4mmに熱間圧延し、板厚1mmに冷間圧延し、最後
に表2に示す最終熱処理を行なつた。
[Table] Subsequently, after performing the homogenization treatment shown in Table 2, hot rolling was performed to a plate thickness of 4 mm, cold rolling to a plate thickness of 1 mm, and finally the final heat treatment shown in Table 2 was performed.

【表】 であつた。
表2に示す最終熱処理後さらに7日間室温に放
置した後の機械的性質及び成形加工性を表3に示
す。 なお、耐力、引張強さはKg/mm2、伸びは%、エ
リクセン値および最小曲げはmmで表示されてい
る。 またその常温時効後の板に対し、成形加工後の
塗装焼付工程による強度の変化を調べるため、成
形加工に対応する5%冷間加工もしくは10%冷間
加工を施し、さらに塗装焼付に相当する175℃×
1時間の加熱処理を、冷間加工を行なわなかつた
もの(0%冷間加工材)、および5%冷間加工材、
10%冷間加工材について行ない、各段階での強度
を調べた。その結果を表4に示す。
[Table] It was.
Table 3 shows the mechanical properties and moldability after the final heat treatment shown in Table 2 and after further standing at room temperature for 7 days. Note that proof stress and tensile strength are expressed in Kg/mm 2 , elongation is expressed in %, and Erichsen value and minimum bending are expressed in mm. In addition, in order to examine the change in strength due to the paint baking process after forming, the plate after room temperature aging was subjected to 5% cold working or 10% cold working, which corresponds to forming process, and then to the plate, which corresponds to the paint baking process. 175℃×
One hour of heat treatment without cold working (0% cold worked material), and 5% cold worked material,
This was carried out on 10% cold-worked materials, and the strength at each stage was investigated. The results are shown in Table 4.

【表】【table】

【表】 表3から明らかなように、本発明合金1〜3は
いずれも張り出し性、曲げ性が優れ、かつリユー
ダースマークの発生もなく、成形加工性が優れて
いることが判る。また表4から、本発明合金では
成形加工後の塗装焼付工程で強度が向上し、最終
的に33Kg/mm2以上の高い引張強度を有する焼付塗
装成形品が得られることが明らかである。 またフイツシユボーン割れ試験片をTIG溶接
し、割れ率を調べた。 なお、TIG溶接条件は:TIG自動溶接(肉盛な
し);電流60A;送行25cm/min;電極タングス
テン2.4mmφ;Ar気流;アーク長3mmであつた。 フイツシユボーン試験片の寸法を第3図に示
す。
[Table] As is clear from Table 3, all of the alloys 1 to 3 of the present invention have excellent stretchability and bendability, and there is no occurrence of Lyuders' marks, indicating that they have excellent moldability. Furthermore, from Table 4, it is clear that the strength of the alloy of the present invention is improved in the paint baking process after forming, and a baked painted molded product having a high tensile strength of 33 Kg/mm 2 or more is finally obtained. In addition, a fishbone crack test piece was TIG welded and the cracking rate was investigated. The TIG welding conditions were: TIG automatic welding (no overlay); current 60A; feed rate 25cm/min; tungsten electrode 2.4mmφ; Ar airflow; arc length 3mm. The dimensions of the fishbone test piece are shown in Figure 3.

【表】【table】

【表】 ここで割れ率は次式で表わしたものである。 割れ率=割れの入つたビード長さ/全溶接ビード長×
100 発明合金は、溶接性にすぐれていることがわか
る。 以上の結果をまとめると次の事が分かる。 低Si、高Mgの組成を有する比較例5は強度は
あるが、成形性が劣り、溶接性もやゝ悪い。高
Cuの比較例の合金4,5は溶接性が悪い。 従来例の7〜10は代表的成形加工用材料であ
る。 本発明の材料は総合特性においてこれらよりす
ぐれている。すなわち、本発明の材料は2036(No.
8)に対しては、加工性、伸び、焼付硬化性、溶
接性の点で、Al−Mg−Zn−Cu(No.10)に対して
は、焼付硬化性、溶接性の点で、6010(No.9)に
対しては、伸び、溶接性の点で、すぐれている。 実施例 2 表1合金中合金1,2,3において、実施例1
と同様の方法(但し、溶体化処理については後
述)で板厚4mmの熱間圧延板を得た。さらに板厚
3mmまで冷間圧延し、この板厚で350℃×2Hr中
間焼鈍を行ない平均30℃/Hrで冷却し、引きつ
づいて板厚1mmまで冷間冷延してコイルに巻取つ
た。なお、合金3については比較のために中間焼
鈍を省略した他は同一方法により冷延コイルを製
造した。 これらのコイルを、連続溶体化焼入炉を用いて
加熱し、昇温速度30℃/sec、560℃で表5に示す
時間保持し、焼入速度30℃/secで焼入れた。 室温で2週間の時効を行ない(T4状態)、その
後実施例1と同様の試験を行なつた。 100φの球頭張出し試験を行ない、外観を観察
し、次の判定基準により成形加工性を判定した。
その、結果を表6に示す。 ○:フローライン全くない △:フローラインが認められる(外観のきびし
い用途には使えない) ×:フローラインが強い 結果を表6に示す。
[Table] Here, the cracking rate is expressed by the following formula. Cracking rate = bead length with cracks/total weld bead length x
100 It can be seen that the invention alloy has excellent weldability. Summarizing the above results, we find the following. Comparative Example 5, which has a composition of low Si and high Mg, has strength, but has poor formability and poor weldability. high
Comparative Cu alloys 4 and 5 have poor weldability. Conventional examples 7 to 10 are representative materials for molding. The materials of the invention are superior to these in terms of overall properties. That is, the material of the present invention is 2036 (No.
8) in terms of workability, elongation, bake hardenability, and weldability, and Al-Mg-Zn-Cu (No. 10) in terms of bake hardenability and weldability. (No. 9), it is superior in terms of elongation and weldability. Example 2 In alloys 1, 2, and 3 in Table 1, Example 1
A hot rolled plate with a thickness of 4 mm was obtained in the same manner as (however, the solution treatment will be described later). It was further cold rolled to a thickness of 3 mm, intermediate annealed at 350°C for 2 hours at this thickness, cooled at an average rate of 30°C/Hr, and then cold rolled to a thickness of 1 mm and wound into a coil. For Alloy 3, a cold rolled coil was manufactured by the same method except that intermediate annealing was omitted for comparison. These coils were heated using a continuous solution quenching furnace, held at a temperature increase rate of 30°C/sec, 560°C for the time shown in Table 5, and quenched at a quenching rate of 30°C/sec. Aging was performed for two weeks at room temperature (T4 state), and then the same test as in Example 1 was performed. A 100φ ball head extension test was conducted, the appearance was observed, and the moldability was judged based on the following criteria.
The results are shown in Table 6. ○: No flow lines at all △: Flow lines observed (cannot be used for applications with severe appearance) ×: Strong flow lines The results are shown in Table 6.

【表】 T4状態の合金板に、塗料の焼付に相当する175
℃×1Hrの時効処理(ストレツチなし)を施こし
た。
[Table] 175, which corresponds to paint baking, on an alloy plate in T4 condition
Aging treatment (no stretching) was performed at ℃×1 hour.

【表】 本実施例の合金3の上記結果(表6)より、生
産性の高い連続焼鈍炉を用いた製造においても、
すぐれた性能を有し、しかも、中間焼鈍を製造プ
ロセス中に入れることにより、フローラインが改
良され、自動車等の外観の要求の厳しい用途に一
層好適であることが明らかとなつた。 合金1,2に適用されたプロセスは、比較的短
時間の溶体化処理により、強化に必要な量のMg
及びSiを再固溶せしめたが、残余のMg及びSiは
析出物として残存させた例であり、生産性が極め
て高いプロセスである。この合金では、実施例1
に示す、完全溶体化処理の場合とくらべると、強
度は、やや劣るが、自動車用鋼板に代替するのに
必要な強度とくに12Kg/mm2以上の耐力のレベルを
十分に越える耐力は得られている。しかも成形性
(フローライン)がすぐれている。 しかも本発明の材料は焼付硬化性があるから、
一層の強化が可能である。 このように、不完全溶体化処理を有効に利用す
ることにより、強度を成形性、さらに、溶接性、
耐食性にすぐれた、材料が得ることが可能とな
る。 実施例 3 実施例1における本発明合金1,2,3、比較
例合金4,5,6、及び、従来例合金7,8,
9,10に該当する圧延板(厚さ1mm)を、70mm×
150mmに切断した。 実験1:未塗装板耐食性試験 圧延板の表面を、10%NaOH水溶液(50℃)
で1分間脱脂後、蒸留水で洗浄し、さらに15%
HNO3水溶液を用いてスマツトを除去し、そして
洗滌した。このように処理した圧延板について
JISZ2371による塩水噴霧試験を行なつた。噴霧
時間は1000時間である。耐食性の評価は次の基準
による目視観察によつた。 ◎:全くピツトなし ○:ピツト数個 △:かなりのピツト ×:全面にピツト
[Table] From the above results (Table 6) for Alloy 3 of this example, even in manufacturing using a continuous annealing furnace with high productivity,
It has been found to have excellent performance and, by incorporating an intermediate annealing into the manufacturing process, improves the flow line and is more suitable for applications with demanding appearance requirements such as automobiles. The process applied to Alloys 1 and 2 uses a relatively short solution treatment to increase the amount of Mg required for strengthening.
This is an example in which Mg and Si are redissolved in solid solution, but the remaining Mg and Si remain as precipitates, and this is a process with extremely high productivity. In this alloy, Example 1
Although the strength is slightly inferior to that of the complete solution annealing treatment shown in Fig. 1, it is possible to obtain a yield strength that sufficiently exceeds the strength required to replace automotive steel sheets, especially the yield strength level of 12 kg/mm 2 or more. There is. Moreover, it has excellent moldability (flow line). Moreover, since the material of the present invention has bake hardenability,
Further reinforcement is possible. In this way, by effectively utilizing incomplete solution treatment, we can improve strength, formability, and weldability.
It becomes possible to obtain materials with excellent corrosion resistance. Example 3 Present invention alloys 1, 2, and 3, comparative example alloys 4, 5, and 6, and conventional example alloys 7, 8, and
A rolled plate (thickness 1mm) corresponding to 9 and 10 is 70mm×
Cut to 150mm. Experiment 1: Corrosion resistance test of unpainted plate The surface of the rolled plate was coated with a 10% NaOH aqueous solution (50℃)
After degreasing for 1 minute with
The smuts were removed and washed using aqueous HNO 3 solution. About the rolled plate treated in this way
A salt spray test was conducted according to JISZ2371. Spraying time is 1000 hours. Evaluation of corrosion resistance was based on visual observation based on the following criteria. ◎: No pits at all ○: Several pits △: Considerable pits ×: Pitts all over

【表】 実験2:塗装後のブリスター、糸サビ腐食性 上記切断圧延板を、アルカリ脱脂し、水洗後リ
ン酸亜鉛処理した。水洗後乾燥し、エポキシ塗料
のカチオン電着を厚さ20μmに行ない、その後160
℃で30分間焼付を行なつた。 この電着塗装に中塗として、メラミンアルキド
塗料を、膜厚30μm被覆し、140℃で25分間焼付
し、次に、上塗りとしてメラミンアルキド塗料を
膜厚35μm被覆し、そして145℃で25分間焼付し
た。ついで、各試験片について、表面にクロスカ
ツトを入れ、塩水噴霧試験をJIS2371に準拠して、
48時間行なつた。次に温度45℃湿度95%で湿潤試
験を30日間行ない、表面のブリスター、糸状腐食
(又は糸サビ)を下記基準で評価した結果を示す
(表10)。
[Table] Experiment 2: Corrosion of blisters and thread rust after painting The above-mentioned cut and rolled plate was degreased with alkali, washed with water, and then treated with zinc phosphate. After washing with water and drying, cationic electrodeposition of epoxy paint was applied to a thickness of 20μm, and then 160μm thick.
Baking was carried out at ℃ for 30 minutes. This electrodeposition coating was coated with melamine alkyd paint to a thickness of 30 μm as an intermediate coat and baked at 140°C for 25 minutes.Next, a melamine alkyd paint was coated to a thickness of 35 μm as a top coat and baked at 145°C for 25 minutes. . Next, a cross cut was made on the surface of each test piece, and a salt spray test was conducted in accordance with JIS2371.
It lasted 48 hours. Next, a humidity test was conducted at a temperature of 45°C and a humidity of 95% for 30 days, and the results of evaluating surface blisters and filamentous corrosion (or thread rust) using the following criteria are shown (Table 10).

【表】【table】

【表】【table】

【表】 実施例 4 本発明合金1を実施例2と同様に、中間焼鈍及
び連続溶体化焼入を含むプロセスで処理した。な
お中間焼鈍条件は、昇温速度30℃/sec、焼入速
度30℃/sec、焼鈍温度560℃、保持時間なしであ
つた。また焼入後2週間の室温での時効(T4)
を行なつた。 溶体化処理されたコイルにテンシヨンレベリン
グにより歪の矯正を施し、板の平坦度を矯正し
た。その後、表11に示す条件で最終焼鈍を行なつ
た。
[Table] Example 4 Inventive alloy 1 was treated in the same manner as in Example 2, including intermediate annealing and continuous solution quenching. The intermediate annealing conditions were a temperature increase rate of 30°C/sec, a quenching rate of 30°C/sec, an annealing temperature of 560°C, and no holding time. Also, aging at room temperature for 2 weeks after quenching (T4)
I did this. The strain on the solution-treated coil was corrected by tension leveling, and the flatness of the plate was corrected. Thereafter, final annealing was performed under the conditions shown in Table 11.

【表】 レベリング前後、最終焼鈍後の機械的性質、エ
リクセン値および最終焼鈍後の板の変形を表12に
示す。
[Table] Table 12 shows the mechanical properties, Erichsen values, and deformation of the plate before and after leveling and after final annealing.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

以上の実施例からも明らかなようにこの発明の
成形加工用アルミニウム合金圧延板は、張り出し
性や曲げ性が優れかつリユーダースマークの発生
がない等、成形加工性が優れており、しかも強度
も充分であつて、特に成形加工後に焼付塗装を行
なう場合に塗装焼付工程で強度が上昇して最終的
に著しく高強度の焼付塗装成形品を得ることがで
き、したがつて特に自動車車体ボデイシートの如
く、溶接及び焼付塗装が施されて使用される高強
度成形品の用途に最適なものである。 さらに、塗装後の耐食性及びTIG,MIG溶接
性がすぐれている。この発明のアルミニウム合金
圧延板は、主要元素としては通常の圧延板、押出
材、鋳物等に最も広く用いられているSi,Mgを
含んでいるだけであるため、他の合金のスクラツ
プの使用が容易であり、また逆にこの発明の圧延
板のスクラツプを他の合金、他の用途に使用する
ことも容易であつて、スクラツプ処理性が良好で
あり、経済的にも有利である。 なおこの発明のアルミニウム合金圧延板は、前
述のように自動車車体のボデイシートに最適なも
のであるが、強度が要求される成形加工品のその
他の用途、例えばホイールやオイルタンク、エア
クリーナー等の自動車部品、あるいは各種キヤツ
プやブラインド、アルミ缶、家庭用器物、計器カ
バー、電気機器のシヤーシー等に用いても優れた
性能を発揮し得ることは勿論である。
As is clear from the above examples, the aluminum alloy rolled sheet for forming of the present invention has excellent formability, such as excellent stretchability and bendability, and no generation of reuders marks, and also has high strength. In particular, when baking paint is applied after forming, the strength increases during the baking process and a baking-painted molded product with extremely high strength can be obtained. As such, it is ideal for use in high-strength molded products that are welded and baked. Furthermore, it has excellent corrosion resistance after painting and TIG/MIG weldability. The aluminum alloy rolled sheet of this invention only contains Si and Mg, which are most widely used in ordinary rolled sheets, extruded materials, castings, etc., as main elements, so it is not possible to use scraps of other alloys. It is easy to use, and conversely, it is also easy to use the scrap of the rolled plate of the present invention for other alloys and other uses, and it has good scrap processing properties and is economically advantageous. The aluminum alloy rolled sheet of the present invention is ideal for body sheets of automobile bodies as mentioned above, but it can also be used for other applications where strength is required, such as wheels, oil tanks, air cleaners, etc. Of course, it can also exhibit excellent performance when used in automobile parts, various caps and blinds, aluminum cans, household appliances, instrument covers, chassis for electrical equipment, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は歪矯正後の最終熱処理における加熱温
度・速度と冷却温度・速度の範囲を示す図、第2
図は保持温度・時間の範囲を示す図、第3図はフ
イシユボーン試験片の図面(数字の単位はmm)で
ある。
Figure 1 is a diagram showing the range of heating temperature/rate and cooling temperature/rate in the final heat treatment after straightening distortion.
The figure shows the range of holding temperature and time, and Figure 3 is a diagram of the body bone test piece (numbers are in mm).

Claims (1)

【特許請求の範囲】 1 Si1.2%を越え1.8%以下、Mg0.6%を越え1.1
%以下、及びFe0.05%〜0.5%を含有し、残部が
実質的に不可避不純物(但し、Cuは0.1%未満)
とAlから成る組成を有し、成形加工性、耐食性
及び溶接性のすぐれたAl−Si−Mg系成形加工用
アルミニウム合金圧延板。 2 Si1.2%を越え1.8%以下、Mg0.6%を越え1.1
%以下、Fe0.05%〜0.5%、及びMn0.6%以下、
Cr0.3%以下、Zr0.3%以下の三成分からなる群の
うち1種又は2種以上を含有し、残部が実質的に
不可避不純物(但し、Cuは0.1%未満)とAlから
成る組成を有し、成形加工性、耐食性及び溶接性
のすぐれたAl−Si−Mg系成形加工用アルミニウ
ム合金圧延板。 3 Si1.2%を越え1.8%以下、Mg0.6%を越え1.1
%以下、及びFe0.05%〜0.5%を含有し、必要に
応じMn0.6%以下、Cr0.3%以下、及びZr0.3%以
下の三成分からなる群のうち1種又は2種以上を
さらに含有し、残部が実質的に不可避不純物(但
し、Cuは0.1%未満)とAlから成る組成を有する
合金溶湯を半連続鋳造もしくは連続鋳造により鋳
造し、得られた鋳塊を圧延して得た圧延板を450
℃〜590℃の温度範囲で溶体化処理し、5℃/sec
以上の冷却速度で焼入れすることを特徴とする成
形加工性、耐食性及び溶接性のすぐれたAl−Si
−Mg系成形加工用アルミニウム合金圧延板の製
造方法。 4 半連続鋳造鋳塊を450℃〜590℃の温度範囲内
にて1〜48時間加熱して、圧延加熱を兼ねる均質
化処理を行い、その後熱間圧延を行うことを特徴
とする特許請求の範囲第3項記載の方法。 5 連続鋳造により前記合金のコイル状鋳塊を
得、これを300℃〜590℃の温度範囲内にて1〜48
時間加熱して均質化し、次に冷間圧延を行うこと
を特徴とする特許請求の範囲第3項記載の方法。 6 熱間圧延直後又は冷間圧延の中間において保
持温度範囲260℃〜450℃で保持時間48時間以下の
中間焼鈍を行い、その後の冷間圧延後に前記溶体
化処理を行うことを特徴とする特許請求の範囲第
3項から第5項までの何れか1項に記載の方法。 7 前記溶体化処理を、コイルによる連続溶体化
焼入れ装置内にて、前記溶体化処理温度範囲にコ
イルの温度が到達したら直ちに冷却するかあるい
はコイルを前記溶体化処理温度範囲内にて5分以
下保持して行うことを特徴とする特許請求の範囲
第3項から第6項までの何れか1項に記載の方
法。 8 Si1.2%を越え1.8%以下、Mg0.6%を越え1.1
%以下、及びFe0.05%〜0.5%を含有し、必要に
応じMn0.6%以下、Cr0.3%以下、及びZr0.3%以
下の三成分からなる群のうち1種又は2種以上を
さらに含有し、残部が実質的に不可避不純物(但
し、Cuは0.1%未満)とAlから成る組成を有する
合金溶湯を半連続鋳造もしくは連続鋳造により鋳
造し、得られた鋳塊を圧延して得た圧延板を450
℃〜590℃の温度範囲で溶体化処理し、5℃/sec
以上の冷却速度で焼入れし、その後、歪矯正を施
した後、60℃〜360℃の範囲の温度まで、第1図
に示される斜線の領域内の加熱速度で加熱して、
その後第2図に示される斜線領域内の温度保持
し、しかる後第1図に示される斜線領域内の冷却
速度で冷却することを特徴とする成形加工性、耐
食性及び溶接性のすぐれたAl−Si−Mg系成形加
工用アルミニウム合金圧延板の製造方法。 9 半連続鋳造鋳塊を450℃〜590℃の温度範囲内
にて1〜48時間加熱して、圧延加熱を兼ねる均質
化処理を行い、その後熱間圧延を行うことを特徴
とする特許請求の範囲第8項記載の方法。 10 連続鋳造により前記合金のコイル状鋳塊を
得、これを300℃〜590℃の温度範囲内にて1〜48
時間加熱して均質化し、次に熱間圧延を行うこと
を特徴とする特許請求の範囲第8項記載の方法。 11 熱間圧延直後又は冷間圧延の中間におい
て、保持温度範囲260℃〜450℃で保持時間48時間
以下の中間焼鈍を行い、その後の冷間圧延後に前
記溶体化処理を行うことを特徴とする特許請求の
範囲第8項から第10項までの何れか1項に記載
の方法。 12 前記溶体化処理を、コイルによる連続溶体
化焼入れ装置内にて、前記溶体化処理温度範囲に
コイルの温度が到達したら直ちに冷却するかある
いはコイルを前記溶体化処理温度範囲内にて5分
以下保持して行うことを特徴とする特許請求の範
囲第8項から第11項までの何れか1項に記載の
方法。
[Claims] 1. Si over 1.2% and 1.8% or less, Mg over 0.6% and 1.1
% or less, and 0.05% to 0.5% Fe, with the remainder being essentially unavoidable impurities (however, Cu is less than 0.1%)
An Al-Si-Mg aluminum alloy rolled sheet for forming process, which has a composition consisting of and Al, and has excellent formability, corrosion resistance, and weldability. 2 Si over 1.2% and 1.8% or less, Mg over 0.6% and 1.1
% or less, Fe0.05% to 0.5%, and Mn0.6% or less,
A composition containing one or more of the three components consisting of Cr 0.3% or less and Zr 0.3% or less, with the remainder essentially consisting of unavoidable impurities (however, Cu is less than 0.1%) and Al. An Al-Si-Mg aluminum alloy rolled sheet for forming process, which has excellent formability, corrosion resistance, and weldability. 3 Si over 1.2% and 1.8% or less, Mg over 0.6% and 1.1
% or less, and Fe0.05% to 0.5%, and if necessary, one or more of the three components of Mn0.6% or less, Cr0.3% or less, and Zr0.3% or less. A molten alloy having a composition in which the remainder substantially consists of unavoidable impurities (however, Cu is less than 0.1%) and Al is cast by semi-continuous casting or continuous casting, and the obtained ingot is rolled. The obtained rolled plate is 450
Solution treatment in the temperature range from ℃ to 590℃, 5℃/sec
Al-Si with excellent formability, corrosion resistance and weldability, characterized by being quenched at a cooling rate of
- A method for manufacturing an aluminum alloy rolled plate for Mg-based forming processing. 4. A semi-continuously cast ingot is heated within a temperature range of 450°C to 590°C for 1 to 48 hours to perform homogenization treatment that also serves as rolling heating, and then hot rolling is performed. The method described in Scope No. 3. 5 Obtain a coiled ingot of the above alloy by continuous casting, and heat it at a temperature of 1 to 48°C within a temperature range of 300°C to 590°C.
4. A method according to claim 3, characterized in that homogenization is carried out by heating for a period of time, and then cold rolling is carried out. 6 A patent characterized in that intermediate annealing is performed at a holding temperature range of 260°C to 450°C for a holding time of 48 hours or less immediately after hot rolling or in the middle of cold rolling, and the solution treatment is performed after the subsequent cold rolling. The method according to any one of claims 3 to 5. 7. The solution treatment is carried out in a continuous solution heat treatment device using a coil, and the coil is cooled as soon as the temperature of the coil reaches the solution treatment temperature range, or the coil is heated within the solution treatment temperature range for 5 minutes or less. The method according to any one of claims 3 to 6, characterized in that the method is carried out by holding. 8 Si over 1.2% and 1.8% or less, Mg over 0.6% and 1.1
% or less, and Fe0.05% to 0.5%, and if necessary, one or more of the three components of Mn0.6% or less, Cr0.3% or less, and Zr0.3% or less. A molten alloy having a composition in which the remainder substantially consists of unavoidable impurities (however, Cu is less than 0.1%) and Al is cast by semi-continuous casting or continuous casting, and the obtained ingot is rolled. The obtained rolled plate is 450
Solution treatment in the temperature range from ℃ to 590℃, 5℃/sec
After quenching at the above cooling rate, and then performing strain correction, heating to a temperature in the range of 60°C to 360°C at a heating rate within the shaded area shown in Figure 1,
After that, the temperature is maintained within the shaded area shown in FIG. 2, and then cooled at the cooling rate within the shaded area shown in FIG. A method for producing a Si-Mg-based aluminum alloy rolled plate for forming processing. 9 A patent claim characterized in that a semi-continuously cast ingot is heated within a temperature range of 450°C to 590°C for 1 to 48 hours to perform homogenization treatment that also serves as rolling heating, and then hot rolling is performed. The method described in Scope Item 8. 10 Obtain a coiled ingot of the above alloy by continuous casting, and heat it at a temperature of 1 to 48°C within a temperature range of 300°C to 590°C.
9. The method according to claim 8, characterized in that homogenization is performed by heating for a period of time, and then hot rolling is performed. 11 Immediately after hot rolling or in the middle of cold rolling, intermediate annealing is performed at a holding temperature range of 260°C to 450°C for a holding time of 48 hours or less, and the solution treatment is performed after the subsequent cold rolling. The method according to any one of claims 8 to 10. 12 The solution treatment is carried out in a continuous solution treatment hardening device using a coil, and the coil is cooled as soon as the temperature of the coil reaches the solution treatment temperature range, or the coil is heated within the solution treatment temperature range for 5 minutes or less. 12. The method according to any one of claims 8 to 11, characterized in that the method is carried out by holding.
JP16390087A 1987-07-02 1987-07-02 Aluminum alloy rolled plate for forming and its production Granted JPS6411937A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP16390087A JPS6411937A (en) 1987-07-02 1987-07-02 Aluminum alloy rolled plate for forming and its production
US07/213,737 US4897124A (en) 1987-07-02 1988-06-30 Aluminum-alloy rolled sheet for forming and production method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16390087A JPS6411937A (en) 1987-07-02 1987-07-02 Aluminum alloy rolled plate for forming and its production

Publications (2)

Publication Number Publication Date
JPS6411937A JPS6411937A (en) 1989-01-17
JPH0480109B2 true JPH0480109B2 (en) 1992-12-17

Family

ID=15782953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16390087A Granted JPS6411937A (en) 1987-07-02 1987-07-02 Aluminum alloy rolled plate for forming and its production

Country Status (1)

Country Link
JP (1) JPS6411937A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04314840A (en) * 1991-04-12 1992-11-06 Furukawa Alum Co Ltd Aluminum alloy sheet excellent in formability and corrosion resistance
JP2823797B2 (en) * 1994-02-16 1998-11-11 住友軽金属工業株式会社 Manufacturing method of aluminum alloy sheet for forming
JP4186240B2 (en) * 1997-10-03 2008-11-26 株式会社神戸製鋼所 Al-Mg-Si aluminum alloy sheet for forming
JP2957163B1 (en) 1998-05-28 1999-10-04 株式会社三五 Exhaust system parts and manufacturing method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55152160A (en) * 1979-05-02 1980-11-27 Alusuisse Production and use of aluminum strip or sheet
JPS61201749A (en) * 1985-03-05 1986-09-06 Sukai Alum Kk Rolled aluminum alloy sheet for forming and its manufacture
JPS61201748A (en) * 1985-03-05 1986-09-06 Sukai Alum Kk Rolled aluminum alloy sheet for forming and its manufacture
US4614552A (en) * 1983-10-06 1986-09-30 Alcan International Limited Aluminum alloy sheet product
JPS61272342A (en) * 1985-05-27 1986-12-02 Kobe Steel Ltd Aluminum alloy sheet excelling in formability and baking hardening and its production
JPS6289852A (en) * 1985-09-24 1987-04-24 Kobe Steel Ltd Manufacture of aluminum alloy plate having superior burning hardenability
JPS62278245A (en) * 1986-02-21 1987-12-03 Sky Alum Co Ltd Aluminum-alloy rolled plate for forming and its production
JPS62278256A (en) * 1986-05-26 1987-12-03 Sky Alum Co Ltd Manufacture of aluminum-alloy rolled sheet

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55152160A (en) * 1979-05-02 1980-11-27 Alusuisse Production and use of aluminum strip or sheet
US4614552A (en) * 1983-10-06 1986-09-30 Alcan International Limited Aluminum alloy sheet product
JPS61201749A (en) * 1985-03-05 1986-09-06 Sukai Alum Kk Rolled aluminum alloy sheet for forming and its manufacture
JPS61201748A (en) * 1985-03-05 1986-09-06 Sukai Alum Kk Rolled aluminum alloy sheet for forming and its manufacture
JPS61272342A (en) * 1985-05-27 1986-12-02 Kobe Steel Ltd Aluminum alloy sheet excelling in formability and baking hardening and its production
JPS6289852A (en) * 1985-09-24 1987-04-24 Kobe Steel Ltd Manufacture of aluminum alloy plate having superior burning hardenability
JPS62278245A (en) * 1986-02-21 1987-12-03 Sky Alum Co Ltd Aluminum-alloy rolled plate for forming and its production
JPS62278256A (en) * 1986-05-26 1987-12-03 Sky Alum Co Ltd Manufacture of aluminum-alloy rolled sheet

Also Published As

Publication number Publication date
JPS6411937A (en) 1989-01-17

Similar Documents

Publication Publication Date Title
US4897124A (en) Aluminum-alloy rolled sheet for forming and production method therefor
CA1092007A (en) Aluminum structural members for vehicles
JPS58224141A (en) Cold roller aluminum alloy plate for forming and its manufacture
JP2000313933A (en) Al ALLOY MATERIAL FOR WELDED STRUCTURE AND WELDED JOINT USING SAME
JPH0747807B2 (en) Method for producing rolled aluminum alloy plate for forming
JPH08199278A (en) Aluminum alloy sheet excellent in press formability and baking finish hardenability and its production
JP2000129382A (en) Aluminum alloy clad plate for forming, excellent in filiform corrosion resistance
JP3403333B2 (en) Aluminum plate material for automobile and its manufacturing method
JPH08225874A (en) Aluminum alloy extruded material for automobile structural member and its production
JP2003105471A (en) Aluminum alloy sheet, and production method therefor
JP2023536096A (en) Novel 6xxx aluminum alloy and method of making same
JPH02122055A (en) Manufacture of rolled aluminum alloy sheet for forming
JP4171141B2 (en) Aluminum alloy material with excellent yarn rust resistance
JP2004010982A (en) Aluminum alloy sheet having excellent bending workability and press formability
JP2996251B2 (en) Rolled aluminum alloy sheet for forming and method of manufacturing the same
JP2003105472A (en) Aluminum alloy sheet, and production method therefor
JP3754624B2 (en) Method for producing automotive aluminum alloy panel material excellent in room temperature aging suppression and low temperature age hardening ability, and automotive aluminum alloy panel material
JPH0480109B2 (en)
CN108884524B (en) Aluminum alloy sheet and method for producing aluminum alloy sheet
JPH0547615B2 (en)
JPH0617552B2 (en) Method for producing rolled aluminum alloy plate for forming
JPH0478710B2 (en)
JP2711957B2 (en) Aluminum alloy material for upset butt welding
JPH0247234A (en) High strength aluminum alloy for forming having suppressed age hardenability at room temperature and its manufacture
JPH04259358A (en) Manufacture of aluminum alloy sheet for forming

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees