JP4171141B2 - Aluminum alloy material with excellent yarn rust resistance - Google Patents

Aluminum alloy material with excellent yarn rust resistance Download PDF

Info

Publication number
JP4171141B2
JP4171141B2 JP21980599A JP21980599A JP4171141B2 JP 4171141 B2 JP4171141 B2 JP 4171141B2 JP 21980599 A JP21980599 A JP 21980599A JP 21980599 A JP21980599 A JP 21980599A JP 4171141 B2 JP4171141 B2 JP 4171141B2
Authority
JP
Japan
Prior art keywords
alloy material
aluminum alloy
oxide film
rust resistance
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21980599A
Other languages
Japanese (ja)
Other versions
JP2000345364A (en
Inventor
真理子 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP21980599A priority Critical patent/JP4171141B2/en
Publication of JP2000345364A publication Critical patent/JP2000345364A/en
Application granted granted Critical
Publication of JP4171141B2 publication Critical patent/JP4171141B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、化成処理後塗装されて用いられるアルミニウム合金材であって、耐糸さび (錆) 性に優れたAl-Mg-Si系アルミニウム合金材(以下、アルミニウムを単にAlと言う)に関するものである。
【0002】
【従来の技術】
自動車、船舶あるいは車両などの輸送機の外板や構造材あるいは部品用、また家電製品の構造材あるいは部品用、更には屋根材などの建築、構造物の部材用として、成形性に優れたAA乃至JIS5000 系や成形性や焼付硬化性に優れたAA乃至JIS 6000系 (以下、単に5000系乃至6000系と言う) のAl合金材が使用されている。この中でも、特に、自動車のドアやフェンダーあるいはボンネットなどのパネル材或いはホイール等の自動車用部材についても、前記材料特性やリサイクル性の点から、圧延板材、押出材、鋳鍛材などの、6000系Al合金材の使用が検討されている。
【0003】
6000系Al合金は、基本的にSi:0.2〜1.8% (質量% 、以下同じ) 、Mg:0.2〜1.6%を含有するAl-Mg-Si系Al合金である。そして、この6000系Al合金は、プレス成形加工時には成形加工性を低耐力により確保するとともに、プレス成形後の焼付塗装時に時効硬化して耐力が向上し、必要な強度を確保できる。また、スクラップをAl合金溶解原料として再利用する際に、比較的合金量が少なく、元の6000系Al合金鋳塊を得やすい。したがって、従来から輸送機用として使用されてきたMg量などの合金量が多い5000系のAl合金に比して有利である。
【0004】
このAl合金材の内、例えば板材を輸送機用のパネルなどとして採用するためには、Al合金板を部材形状にするための、深絞り、張出し、曲げ、伸びフランジなどのプレス成形加工が施される。この際、深絞りや張出し、或いは伸びフランジ成形においては、高い深絞り性 (限界絞り比 LDRや限界絞り高さLDH0) や高い形状凍結性を確保することが必要である。そして製品乃至部材形状の複雑化に伴い、プレス成形加工条件は益々厳しいものとなっている。
【0005】
このため、従来から、6000系Al合金板の成形性を向上させる手段として、6000系Al合金板の化学成分組成を制御することが行われている。その代表例が、Cuなどを添加して成形性を向上させることであり、特開平6-2064号、特開平6-136478号、特開平8-109428号、特開平9-209068号、特開平9-202933号公報等で多数提案されている。また、板以外の押出材や鋳鍛材などでも、Cuは強度や靱性を向上させる手段としても汎用されている。
【0006】
しかし、Cuを添加すると確かに成形性は向上するものの、一方で、塗装後耐蝕性である耐糸さび性が劣化する。例えば、Cuを0.3%以上含有すると、Cuを含有しないもの(Cu が0.05% 未満のもの) に比して、極端に耐糸さび性が劣化する。
【0007】
近年、特に板の分野では、輸送機用の6000系Al合金の中でも、特に、人工時効処理後の高耐力化を狙い、Si量を高くするとともに、Siの粒界への析出の抑制のため、連続熱処理炉にて溶体化処理後に焼入れ処理されるAl合金材が主流となっている。そして、このような高Si系の6000系Al合金材において、前記Cuを0.05〜3.0%含有した場合、塗装後の糸さび発生の感受性が、バッチ式の熱処理炉により溶体化処理および焼入れされる場合に比して、著しく高くなる。したがって、このようなCuを含む6000系Al合金材、特に高Si系の6000系Al合金材の耐糸さび性を向上させることが課題となっている。
【0008】
一方、このような高Si系の6000系Al合金板ならずとも、Al合金材は、鋼板に比して、元々塗装下地処理としてのリン酸塩処理性に劣り、塗装後の耐糸さび性も劣ってくる。そして、このリン酸亜鉛等のリン酸塩処理性が劣ると、Al合金材表面に、均一で適当量のリン酸亜鉛等の皮膜が確保されにくく、その後の塗膜の密着性や耐糸さび性が劣化する。
【0009】
また、リン酸塩処理の側からも、Al合金材のリン酸塩処理性にとって、不利な条件となっている。例えば、輸送機のなかでも、自動車の製造ラインにおいては、成形、組み立て後の車体は、通常、リン酸塩処理およびカチオン電着塗装処理などの塗装下地処理を施された後、焼付け硬化する中塗り、上塗りなどの塗装を施される。そして、この製造ラインにおける各工程条件は、これまで主として使用されている鋼材に適した条件となっている。このため、鋼材とともに複合材化乃至併用されることが多いAl合金材は、鋼材とともに、或いは鋼材と同じ工程で処理される。この場合、Al合金材は、鋼材に適した処理条件では、よりリン酸塩処理性が劣ることになる。
【0010】
これに対し、Al合金材のリン酸塩処理性を改善するための方法として、従来からリン酸塩処理浴の側を改善することが行われている。例えば、その代表例としては、リン酸塩処理浴に数十〜数百ppm 程度の高濃度のフリーフッ素(F) イオンを添加することが行われている。
【0011】
【発明が解決しようとする課題】
このフリーフッ素(F) イオンの添加によって、確かに、Al合金材のリン酸塩処理性は改善される。しかし、Al合金材表面へのリン酸塩皮膜の形成は、Al合金材表面からのAlイオンの溶出によって促進されるため、Al合金材のリン酸塩処理性が良くなるほど、Al合金材表面からのAlイオンの溶出量が多くなる。そして、このAlイオンの溶出量が多くなると、肝心の鋼材の方のリン酸塩処理性が阻害されるという新たな問題を生じる。
【0012】
勿論、リン酸塩処理浴より、蓄積したAlイオンを除去してやれば良いが、除去に伴うリン酸塩浴のロス分や、処理設備のコストが大きく、省エネや効率化が厳しく追求される自動車などの製造ラインにとって、これらのコストアップは不利となってしまう。
【0013】
そして、何より問題なのは、後述する本発明者らの知見によれば、このようにリン酸塩浴中のフリーフッ素イオンの濃度が高くなった場合、本発明で対象とするCuを含む6000系Al合金材乃至高Si系の6000系Al合金材の場合、耐糸さび性が極端に低下する現象が生じるという点である。
【0014】
一方、Al合金材の素材側からのリン酸処理性の改善として、特開平6-287672号公報では、Cuを0.01〜5%添加した6000系などのAl合金板を、エッチングなどの処理により、表面にCuを0.1 〜10wt% 析出 (濃縮) させ、析出したCuをリン酸塩処理の際のカソード反応点として働かせて、リン酸塩処理性を改善することが開示されている。また、軽金属学会第93回秋期大会講演概要集(1997 年発行) にも、6000系Al合金にCuを0.30、0.69wt% 含有させて、酸洗などによりAl合金板表面にCuを0.98、3.98wt% 積極的に析出させて、リン酸塩処理性を改善することが開示されている。
【0015】
しかし、本発明者らの知見によれば、Al合金材の表面にCuを濃縮させた場合、確かに、Al合金材のリン酸塩処理性は改善されるものの、表面にCuを濃縮させた6000系Al合金板の耐糸さび性の方は、逆に、極端に低下してしまうという矛盾する現象が生じる。したがって、Al合金材の表面にCuを濃縮させる前記従来技術は、Cuを含む6000系Al合金材の耐糸さび性向上のためには、却って逆効果となってしまう。このため、塗装後の糸さび発生に対する感受性が著しく高い、Cuを含む6000系Al合金材の耐糸さび性を向上させる有効な技術は、今までに無かったのが実情である。
【0016】
本発明はこの様な事情に着目してなされたものであって、その目的は、耐糸さび性を改善したCuを含む6000系Al合金材を提供しようとするものである。
【0017】
【課題を解決するための手段】
この目的を達成するために、本発明Al合金材の要旨は、Si:0.2〜1.8% (質量% 、以下同じ) 、Mg:0.2〜1.6%、Cu:0.05 〜1.5%を含み、化成処理後塗装されて用いられるAl-Mg-Si系アルミニウム合金材であって、表面に厚さが100 Å (オングストローム) 以下のアルミニウムの酸化皮膜を有するとともに、アルミニウムの酸化皮膜最表層部から少なくとも80Åの深さの表面部分におけるCu含有量を、アルミニウム合金材自体のCu含有量以下とすることである。
【0018】
本発明者らは、Cuを含む6000系Al合金材表面について、Al酸化皮膜最表層部から80Å程度の深さの表面部分の、Al酸化皮膜やAl酸化皮膜下のAl合金材生地最表面部 (Al酸化皮膜との界面部) のCu含有量が、Al合金材の耐糸さび性に大きく影響していることを知見した。
【0019】
Al酸化皮膜の組成乃至性状を左右するAl合金材の製造工程として、Al合金材の洗浄工程がある。通常、プレス成形用などの6000系Al合金板を製造する際、冷間圧延などの塑性加工後の最終の溶体化および焼入処理の後に、酸あるいはアルカリ、更にはこれらを組み合わせた洗浄液による、Al合金材の洗浄 (エッチング) が行われている。この洗浄工程は、その前の工程である冷間圧延などの塑性加工や溶体化処理によりAl合金材表面に付着している油や汚れを除去する、あるいは前記自動車製造ラインにおけるリン酸亜鉛などの化成処理性を阻害するMgO を含有する酸化皮膜を除去する目的で行われるものである。
【0020】
しかし、この洗浄により、Al合金材表面の酸化皮膜乃至Al合金板生地が強エッチングされると、残留する酸化皮膜、或いはエッチング後の乾燥工程以降で再生成する酸化皮膜中およびAl酸化皮膜下のAl合金材生地最表面部には、Al合金材生地のCu量よりもCuが濃縮する現象が生じる。
【0021】
このCuの濃縮自体については、前記特開平6-287672号公報などで公知である。しかし、前記した通り、これら従来技術により、Al合金材の表面にCuを濃縮させた場合、Al合金材のリン酸塩処理性は改善されるものの、Al合金材の耐糸さび性は、逆に、極端に低下してしまう。そして、このAl合金材の耐糸さび性低下の現象は、特に、フリーフッ素イオン量が高いリン酸塩処理を施した場合、例えば、フリーフッ素イオン濃度が150ppm程度以上の場合に顕著となる。
【0022】
これは、Al合金材の表面に濃縮したCuが、リン酸塩処理の際のカソード反応点として働き、確かに、リン酸塩処理性は改善されるものの、Cuの濃縮によって、リン酸塩処理および塗装後も、Al合金材の表面に、Cuが必然的に残留し、この表面のCuが耐糸さび性を著しく劣化させるものと考えられる。したがって、本発明では、Al合金材表面の、特に酸化皮膜中のCu含有量を、Al合金材生地のCu含有量以下とし、前記従来技術とは逆に、少なくとも、酸化皮膜などのAl合金材の表面にCuを析出乃至濃縮させないようにすることを骨子とする。
【0023】
また、これらの従来技術がCuの析出乃至濃縮の対象とする部分は、本発明で言うAl酸化皮膜下のAl合金材生地最表面部であって、本発明で言うAl酸化皮膜ではない。これら従来技術では、酸洗などのエッチングにより、一旦表面の酸化皮膜を全て除去し、更にAl合金材生地表面もエッチングして、Al合金材生地表面にCuの析出乃至濃縮を行うからである。
【0024】
【発明の実施の形態】
(Al酸化皮膜の厚さ)
Al合金材表面のAl酸化皮膜の厚さはリン酸亜鉛などの化成処理性の点からは薄いほど好ましい。Al酸化皮膜の厚さが100 Åを越えた場合には、却って化成処理時にAl酸化皮膜が溶解 (エッチング) しにくくなり、リン酸亜鉛などの化成処理皮膜の付着性が悪くなる。化成処理皮膜の付着性が悪くなると、皮膜の付着量が低下し、塗装後耐蝕性としての耐糸さび性を低下させる。したがって、Al合金材表面のAl酸化皮膜の厚さは100 Å以下とする。
【0025】
なお、Al合金材表面のAl酸化皮膜の膜厚は、X線光電子分光法(XPS) により、比較的簡単に、かつ精度良く測定することができる。Al酸化皮膜の膜厚の測定方法としては、他に、ハンターホール法や静電容量法等があるが、Al酸化皮膜は薄膜であり、測定方法が違うと、測定値のバラツキが生じる場合があるので、本発明のAl合金材表面のAl酸化皮膜の膜厚は前記XPS により測定するものとする。
【0026】
XPS による具体的な測定方法は、Al酸化皮膜中のAl原子から放出され、XPS の検出器で観測される光電子数(NOX) 、下地のAl基材中Al原子から放出され、XPS の検出器で観測される光電子数(NAl) を用い、d=20 cosθ In(1.15 NOX/NAl+1)の算出式 (但し、θは光電子の検出角度) により、酸化皮膜の膜厚d(Å: オングストローム) を算出する。
【0027】
(表層部のCu量)
本発明で、Al合金材表面のCu量を規定するに際し、Al酸化皮膜最表層部から少なくとも80Åの深さ (厚み) の表面部分としたのは、前記洗浄等によるCuの濃縮が、Al酸化皮膜やAl酸化皮膜下のAl合金材生地最表面部 (Al酸化皮膜との界面部) で進むことを知見したからである。そして、これら、Cuの濃縮が進み、耐糸さび性に大きく影響している表面部分は、Al酸化皮膜の厚みによっても勿論異なるが、概ね、Al酸化皮膜最表層部から80Åの深さ範囲に含まれることを知見したからである。したがって、Cuの濃縮が問題となるAl酸化皮膜の最大厚さを、本発明では100 Åとしているので、本発明で規定する少なくとも80Åの深さとは、最大でも、このAl酸化皮膜の厚さ程度であれば良く、それ以上の、Al合金材生地最表面部を越えて、Al合金材の生地に至るような深さまでは不要である。
【0028】
本発明でいう、前記表面部分のCu含有量とは、エスカ(Electron Spectroscopy for Chemical Analysis) とも呼称されるX 線光電子分光法(XPS:X-ray Photoelectron Spectroscopy)分析により検出されるCuおよびCu量を言う。Al酸化皮膜のような薄膜中のCu量は、通常の材料の成分分析に使用されるカント分析 (発光分光分析) では不可能であり、本発明では、固体表面分析に汎用される、X 線光電子分光法を用いて、Al合金材の表層部のCu量を測定する。そして、より具体的には、このX 線光電子分光法により、Al酸化皮膜最表層部から深さ (厚み) 方向に対し80Åの深さまで、10Å毎の各ポイント (深さ位置) で検出されるCu量の平均を、この深さ部分のCu含有量(at%) とする。
【0029】
更に、本発明では、耐糸さび性をより向上させるために、前記アルミニウムの酸化皮膜最表層部から10Åまでの深さの表面部分における、前記X 線光電子分光法により検出される、Cu含有量を0at%とすることが好ましい (請求項2 に対応) 。これによって、耐糸さび性に影響している、酸化皮膜中乃至Al生地の最表面部 (酸化被膜とAl生地との界面部) に存在するCuが実質的に無くなり、Al合金材の耐糸さび性は更に向上する。
【0030】
なお、酸化皮膜中乃至Al生地の最表面部に存在するCuが耐糸さび性に影響していることは疑いがないものの、このCuの存在形態および特に耐糸さびに影響するCuの存在形態は、金属Cuであるのか、Cuの酸化物であるのか、必ずしも明確ではない。したがって、本発明では、種々存在すると推考されるCuの存在形態によらず、前記X 線光電子分光法による計測される、Al合金材の表層部のCu含有量を規定する。
【0031】
そして、一方、これと比較すべき、Al合金材の方のCu含有量は、本発明のAl合金材の主要成分量の測定などに用いる、通常のカント分析によるものではなく、Al合金材の表層部のCu量と同じく、前記X 線光電子分光法により測定されるCu含有量(at%) とする。そして、その規準測定位置は、Al酸化皮膜最表層部から300 Åの深さのAl合金材の生地部分とする。この規準測定位置は、300 Å以上の深さであれば、Al合金材の生地部分となり、いずれの深さでも良いが、測定位置による多少のばらつきを考慮して、本発明では前記300 Åとする。Al合金材の方のCu含有量の測定もX 線光電子分光法によるものとしたのは、Al合金材の表層部のCu量とAl合金材の生地のCu量との比較(Cu 量の濃縮度) を正確に行うために、両者の測定のベースを同じとするためである。また、本発明のようなÅ単位の極薄膜でもある、酸化皮膜や、これにつながるAl生地のCu量を求めるためには、通常のAl合金成分量を求める前記カント分析(wt%または質量%)では、測定が困難であることにもよる。
【0032】
本発明において、Al合金材自体のCu含有量は、前記した通り、0.05〜1.5%であり、このCu含有量に対応して、前記溶体化および焼入処理材の洗浄後、或いはリン酸塩処理などの化成処理前のAl合金材における、Al酸化皮膜最表層部から80Åの深さの表面部分のCu含有量を、前記Al合金材のCu含有量以下とする。
【0033】
Al酸化皮膜最表層部から80Åの深さの表面部分のCu含有量が、Al合金材の前記Cu含有量を越えて、濃縮して存在した場合、前記した通り、Al合金材の塗装後の糸さび発生の感受性が著しく高くなり、耐糸さびが著しく低下する。中でも、特に、人工時効処理後の高耐力化を狙い、Si量を1.0%程度と高くするとともに、Siの粒界への析出の抑制のため、連続熱処理炉にて溶体化処理および焼入れされる高Si系の6000系Al合金材において、Cuを0.05〜1.5%含有した場合、塗装後の糸さび発生の感受性が著しく高くなる。
【0034】
Al合金材表面のCu含有量は、最終の溶体化および焼入処理の後の、酸あるいはアルカリ、更にはこれらを組み合わせた洗浄液による、Al合金材の洗浄 (エッチング) 工程により大きく影響を受ける。言い換えると、この洗浄力乃至エッチング量を制御することにより、Cu含有量を制御することが可能である。
【0035】
前記特開平6-287672号公報等の、強エッチングを行い、Al酸化皮膜およびAl合金材の溶解量を大きくした場合、著しくCuは濃縮しやすくなる。前記特開平6-287672号公報等でも、Al合金板のCu量が0.01〜5wt%であるのに対し、強エッチングにより、表面のCu量は0.1 〜10wt% と数倍〜数十倍に濃縮析出している。この点は、本発明で規定する、Al酸化皮膜最表層部から80Åの深さの表面部分のCu含有量も同様である。
【0036】
したがって、本発明においては、硝酸、硫酸等の酸、カセイソーダ等のアルカリ溶液、あるいは市販の洗剤等を適宜組み合わせた洗浄条件 (洗浄液の濃度、温度、洗浄時間等) を、極力、酸化物皮膜やAl合金材をエッチングしない条件を選択する必要がある。なお、酸化物皮膜やAl合金材をエッチングしないために、Al合金材表面に圧延油などによる汚れの問題がなければ、無洗浄とすることも、勿論、選択肢の一つとなる。但し、Al合金材表面へのCuの濃縮量は、洗浄条件だけでは一義的に決まらない部分もあるので、Al合金材表面へのCuの濃縮の規制のためには、元のCu含有量や他の製造条件にも注意する必要がある。
【0037】
次に、本発明Al合金材に適用するAl合金を説明する。本発明Al合金材には、自動車、船舶などの輸送機材や構造材あるいは部品用などの、具体的な用途毎の特性を満足するために、AA乃至JIS 6000系のAl合金が適宜使用される。なお、Al合金材としては、圧延による板材のみではなく、押出による形材、或いは鍛造による鍛造材が適宜選択され、要はAl合金材の形状や製造方法は限定されない。
【0038】
Al-Mg-Si系の6000系Al合金は、特に自動車のパネル材やフレーム材として、基本的に、耐力が120N/mm2以上でプレス成形性や曲げ加工性に優れることや、成形後の塗装焼付後に150N/mm2以上、好ましくは200N/mm2以上の耐力となる人工時効硬化性、あるいは、合金元素量が少なく、スクラップが元の合金用の溶解原料として使用できるリサイクル性などの特性に優れている。
【0039】
以下、6000系Al合金における、好ましい化学成分組成について説明する。前記自動車のパネル材やフレーム材としての諸要求特性を満足するために、化学成分組成の好ましい範囲は、6000系Al合金の成分規格 (AA 6101 、6111、6003、6151、6061、6N01、6063など) に相当するものとして、基本的にSi:0.2〜1.8%、Mg:0.2〜1.6%、Cu:0.3〜1.5%を含有し、その他、好ましくは、Zn:0.005〜1.0%、Ti:0.001〜0.1%の一種または二種以上、B:1 〜300ppm、Be:0.1〜100ppmの一種または二種、Mn:1.0% 以下、Cr:0.3% 以下、Zr:0.15%以下、V:0.15% 以下の一種または二種以上を、選択的に合計で0.01〜1.5%含み、残部Alおよび不可避的不純物からなるAl合金とする。
【0040】
しかし、本発明では成形性の向上のために、Cuの含有を必須とするため、このCuの含有量は必ずしも各々のAA乃至JIS の成分規格内とはならない場合がある。また、基本となる成分のSi、Mg以外の元素は、AA乃至JIS の各成分規格通りにならずとも、前記基本的な特性を有してさえいれば、更なる特性の向上や他の特性を付加するための、適宜成分組成の変更は許容される。この点、用途および要求特性に応じて、Fe、Ni、V 、Mn、Cr、Zr、Sc、Agなどの他の元素を適宜含むことは許容される。更に、酸素や水素等の不純物は、Al合金材の諸特性を劣化させない程度の含有は許容される。
【0041】
次に、本発明Al合金材の各元素の含有量の好ましい範囲について説明する。
【0042】
Si:0.2〜1.8%。SiはMgとともに、人工時効処理により、Mg2 Siとして析出して、使用時の高強度 (耐力) を付与するために必須の元素であるが、0.2%未満、より厳密には0.8 % 未満の含有では人工時効で十分な強度が得られない。一方、1.8%を越えて、より厳密には1.3 % を越えて含有されると、鋳造時および焼き入れ時に粗大な粒子として析出して、伸びが低くなるなど、成形性を阻害する。したがって、Siの含有量は0.2 〜1.8%、また、特に、Siの粒界への析出の抑制のために、連続熱処理炉にて溶体化および焼入れ処理することを前提に、人工時効処理後の高耐力化を狙うためには、好ましくは0.8 〜1.3%の範囲とする。
【0043】
Mg:0.2〜1.6%。Mgは人工時効時 (成形、塗装後の焼き付け硬化処理など) により、SiとともにMg2 Siとして析出して、また、Cu含有組成では更にCu、Alと化合物相を形成して、使用時の高強度 (耐力) 乃至焼き付け硬化性を付与するために必須の元素である。Mgの0.2%未満の含有では加工硬化量が低下して、プレス成形や曲げ加工を受けた際の剪断変形に耐えられず、割れを生じる可能性がある。また、人工時効でも十分な強度が得られない。一方、1.6%を越えて、より厳密には0.7%を越えて含有されると、強度 (耐力) が高くなりすぎ 成形性を阻害する。したがって、Mgの含有量は0.2 〜1.6%、好ましくは0.2 〜0.7%の範囲とする。
【0044】
Cu:0.05 〜1.5%。Cuは焼き付け加熱時にMg、Alと化合物相を形成して析出し、焼き付け硬化性を付与するとともに、T4調質時の固溶状態において、成形性を向上させる。Cuの含有量が0.05% 未満では、これらの効果が無く、1.5%を越えると効果が飽和する。しかも、Cuの含有量が1.5%を越えると、Al合金材をエッチング処理した際に、Al合金材表面にCuが多量に析出 (濃縮) し、却って、Al合金材の耐糸さび性を劣化させる。したがって、Cuの含有量は0.05〜1.5%とする。
【0045】
次に、Zn、Ti、B 、Be、Mn、Cr、Zr、V は、各々目的に応じて、選択的に含有される元素である。
【0046】
Zn:0.005 〜1.0%。Znは人工時効時において、MgZn2 を微細かつ高密度に析出させ高い強度を実現させる。しかし、Znの0.005%未満の含有では人工時効で十分な強度が得られず、一方、1.0%を越えて含有されると、耐蝕性が顕著に低下する。したがって、Znの含有量は0.005 〜1.0%の範囲とすることが好ましい。
【0047】
Ti:0.0001 〜0.1%。Tiは鋳塊の結晶粒を微細化し、プレス成形性を向上させるために添加する元素である。しかし、Tiの0.001%未満の含有では、この効果が得られず、一方、Tiを0.1%を越えて含有すると、粗大な晶出物を形成し、成形性を低下させる。したがって、Tiの含有量は0.0001〜0.1%の範囲とすることが好ましい。
【0048】
B:1 〜300ppm。B はTiと同様、鋳塊の結晶粒を微細化し、プレス成形性を向上させるために添加する元素である。しかし、B の1ppm未満の含有では、この効果が得られず、一方、300ppmを越えて含有されると、やはり粗大な晶出物を形成し、成形性を低下させる。したがって、B の含有量は1 〜300ppmの範囲とすることが好ましい。
【0049】
Mn:1.0% 以下、Cr:0.3% 以下、Zr:0.15%以下、V:0.15% 以下。これらの元素は均質化熱処理時およびその後の熱間圧延時に、Al20Cu2Mn3、Al12Mg2Cr 、Al3Zr 、Al2Mg3Zn3 などの分散粒子を生成する。これらの分散粒子は再結晶後の粒界移動を妨げる効果があるため、微細な結晶粒を得ることができる。しかし過剰な含有は溶解、鋳造時に粗大な金属間化合物を生成しやすく、成形時の破壊の起点となり、成形性を低下させる原因となる。また、Zrの過剰な含有はミクロ組織を針長状にしやすく、特定方向の破壊靱性および疲労特性更には成形性を劣化させる。このため、これらの元素の含有量は各々、Mn:1.0% 以下、Cr:0.3% 以下、Zr:0.15%以下、V:0.15% 以下とする。
【0050】
Fe: 不純物として含まれるFeは、Al7Cu2Fe、Al12(Fe,Mn)3Cu2 、(Fe,Mn)Al6などの晶出物を生成する。これらの晶出物は、破壊靱性および疲労特性更には成形性を劣化させる。特に、Feの含有量が0.5%を越えると顕著にこれらの特性が劣化するため、Feの含有量は0.5%以下とすることが好ましい。なお、鋳造中に生じる晶出物は、前記Fe系以外に、Al2Cu2Mg、Al2Cu2、Mg2Si などの可溶のものがあり、これらは溶体化処理および焼入で、Alマトリックス中に十分に再固溶させることが好ましい。その他、Niは0.05% 以下とすることが好ましい。
【0051】
本発明におけるAl合金材自体は常法により製造が可能である。例えば、6000系Al合金成分規格範囲内に溶解調整されたAl合金溶湯を、連続鋳造圧延法、半連続鋳造法(DC鋳造法)等の通常の溶解鋳造法を適宜選択して鋳造する。次いで、このAl合金鋳塊に均質化熱処理を施した後、熱間圧延および冷間圧延 (必要により中間焼鈍) 、または押出、或いは鍛造などの塑性加工方法により、板材、型材、線棒材、鍛造材など、所望のAl合金材の形状に塑性加工される。そして、塑性加工された圧延材あるいは押出材は、圧延あるいは押出や鍛造ままか、必要によりT6処理 (溶体化処理後焼入れ) 或いは時効処理、過時効処理などの調質処理が行われ、前記した所望の機械的性質とされる。
【0052】
但し、6000系Al合金板材のプレス成形性をより向上させるとともに、プレス成形後の焼付塗装時の時効硬化能をより向上させるためには、前記した通り、Si量を0.8 〜1.3%として、Si量を高めることが好ましい。しかし、Si量を高めた場合には、前記調質処理の際、粒界へのSi析出による成形性の低下の問題が大きくなる。このため、これを防止するためには、短時間で板を加熱および急速に冷却することが必要で、この点、特に最終的な溶体化処理および水焼入れ処理をバッチ式ではなく、コイルから板を連続的に通板して熱処理することのできる連続熱処理炉にて行うことが好ましい。
【0053】
更に、Al酸化皮膜最表層部から80Åの深さの表面部分のCu含有量を制御したAl合金材の、保管等によるAl酸化皮膜の経時変化 (酸化による膜厚の増加) や組成変化(Mg 量の増加) を抑制することが、リン酸塩処理性の点から好ましい。そのための実施態様として、表面に、更に亜鉛めっきを施すことが好ましい。亜鉛めっき( 純亜鉛や亜鉛合金めっきを含む) を施せば、リン酸塩処理などの化成処理性をより優れたものとすることができる。但し、この亜鉛めっきを施す場合には、リン酸塩処理などの化成処理後、亜鉛めっき層が残留すると、却って耐糸さび性などの塗装後の耐蝕性を劣化させる。したがって、リン酸塩処理などの化成処理後に、Al合金材の表面に亜鉛めっき層が残留しない量乃至厚さだけ亜鉛めっきを施すことが好ましい。
【0054】
また、Al合金材表面に防錆油や潤滑油など塗布することも、プレス成形などの成形性向上のためにも好ましい。言い換えると、単に無処理のAl合金材だけではなく、このような新たな特性向上のための表面処理が本発明では許容される。そして、以上のAl合金材製造上の対策を行うことにより、このAl合金材を使用する側における長期の保管も可能になる利点もある。
【0055】
なお、Al合金材表面へのCuの濃縮により、耐糸さび性が劣化する問題は、リン酸塩処理だけではなく、他の燐酸- クロム酸塩処理、クロム酸塩処理やジルコニウムやチタンを含む非クロム酸塩処理、或いはAlの水和酸化物系皮膜を設ける処理等の、塗装下地としての化成処理が施された上で塗装される場合でも同様に生じる。したがって、本発明で言う化成処理とは、塗装下地処理として汎用されているこれら化成処理も含む。
【0056】
【実施例】
次に、本発明の実施例を説明する。表1 に示す組成のAl合金の鋳塊をDC鋳造法により溶製後、470 ℃×8 時間の範囲で均質化熱処理を施し、厚さ3.5mm まで熱間圧延した。次に厚さ1.0mm まで冷間圧延し、連続熱処理炉において、560 ℃で数秒溶体化処理した後、水冷による急冷を行ってAl合金板を作成した。
【0057】
更に、表1 に示す組成のAl合金鋳塊をDC鋳造法により150mmvφビレットを溶製後、470 ℃×8 時間の範囲で均質化熱処理を施し、押出温度500 ℃、押出速度10m/分で厚さ2mm 、幅100mm の平板材を押出した。この際、押出直後に、プラテン内で押出材の周囲と長手方向に水スプレーを延在させ、強制的に水冷した。そして、バッチ式熱処理炉において、560 ℃で数十分溶体化処理した後、水冷による急冷を行ってAl合金形材を作成した。
【0058】
そして、これら溶体化処理および焼入れ後の、種々のAl板乃至形材の、洗浄条件を変えることにより (洗浄を行わないことも含め) 、Al合金材表面のAl酸化皮膜の厚さと、Al酸化皮膜の最表層部から80Åの深さの表面部分におけるCu含有量を変えた供試材とした。
【0059】
表2 に示す洗浄条件は、洗浄を全く行わなかった「洗浄無し」と、30℃の中性洗剤によるエッチングを殆ど伴なわない洗浄を行った「弱洗浄」と、50℃の5wt%水酸化ナトリウム水溶液と80℃の10wt% 硫酸水溶液との2 段階のエッチングを伴う洗浄を行った「強洗浄」の3 種類とした。
【0060】
なお、表2 に示す発明例の内、No.5、6 は、洗浄後大気雰囲気下で1 カ月間放置し、比較例10、12は、洗浄後大気雰囲気下で3 カ月間放置した後のものを供試材とした。
【0061】
これら供試材表面のAl酸化皮膜の膜厚を前記XPS により測定した。また、Al酸化皮膜最表層部から80Åの深さの表面部分のCu含有量は、前記XPS により、深さ方向に10Å毎の各ポイントで検出されるCu量(at%) を測定し、これの平均値とした。更にAl合金材の生地のCu含有量は、前記XPS により、Al酸化皮膜最表層部から300 Åの深さ部分のCu量(at%) を測定した。これらの結果を表2 に示す。また、表2 の内、発明例No.1 (洗浄無し) 、比較例No.9 (弱洗浄) 、比較例No.11(強洗浄) の場合の、Al酸化皮膜最表層部からAl合金材の深さ( 厚み) 方向へのCuの濃度分布を図1 に示す。
【0062】
因みに、表2 の発明例の内、溶体化処理後に水量を大として水冷で焼入れ処理したAl板および前記押出後直ちに水量を大として水冷した形材は、いずれも、後述する塗装焼付後に200N/mm2以上の耐力を有していた。
【0063】
次に、これら供試材をそのまま( 発明例No.2のみはジンケート処理により亜鉛めっきを1g/m2 表面に付着させ、1 ケ月放置後) 、リン酸チタンのコロイド分散液による処理を行い、次いでフリーフッ素を150ppmの低濃度含むリン酸亜鉛浴に浸漬してリン酸亜鉛処理を行い、各々の供試材へのリン酸亜鉛の被覆率を測定した。リン酸亜鉛の被覆率の測定は、1000倍のSEM 観察により、各々の供試材表面の単位面積 (0.04mm2)当たりの、リン酸亜鉛が被覆された供試材表面面積率を求めて行った。
【0064】
そして、更にこのリン酸亜鉛皮膜を設けた供試材に、カチオン電着塗装およびスプレー塗装により2 コート2 ベークの塗装皮膜を設け、これら塗膜を設けた供試材に対し、耐糸さび性評価試験を行った。これらの結果を表3 に示す。なお、2 コート2 ベークの塗装皮膜は、中塗り塗装として、30μm 厚さのポリエステルメラミン系塗装皮膜を設けて、140 ℃×20分の焼き付けを行い、更に上塗り塗装として、30μm 厚さのポリエステルメラミン系塗装皮膜を設けて、180 ℃×20分の焼き付けを行った。
【0065】
耐糸さび性評価試験は、塗装試験片に一片が7cm のクロスカットを施した後、35℃の3%HCl 水溶液に2 分間浸漬した後、40℃、85RHの恒温恒湿の雰囲気に1500時間放置し、その後発生した糸さびの最大長さL(クロスカットより垂直方向の距離) を測定した。耐糸さび性評価は、表1 の比較例No.12 のAl合金塗装試験片に発生した糸さびの最大長さL を1 とし、これとの比較で、◎:L≦0.1 、○:0.1<L ≦0.5 、△:0.5<L <1 、×:L≧1 と評価した。なお、この耐糸さび性評価試験は、例えば5%NaCl溶液などに浸漬して同様の条件で試験を行うような他の耐糸さび性評価試験に比して、HCl 水溶液に浸漬しているなどの点で、より厳しい試験条件となっている。
【0066】
表2 から明らかな通り、Al酸化皮膜の厚さが100 Å以下で、かつAl酸化皮膜最表層部から80Å程度の深さの表面部分のCu含有量が、300 Åの深さ部分のAl合金材のCu含有量以下である発明例No.1〜8 は、この要件から外れる比較例No.9〜12に比して、リン酸亜鉛の被覆率は却って少ないものの、耐糸さび性が向上している。これは、比較例が、Cuの表面濃縮により、リン酸亜鉛の被覆率は向上しているものの、逆にCuの表面濃縮により、塗装Al合金材の耐糸さび性が低下していることを裏付けている。
【0067】
そして、Al酸化皮膜最表層部からAl合金材の深さ( 厚み) 方向へのCuの濃度分布を示す図1 から明らかな通り、比較例におけるCuの表面濃縮は、発明例No.1 (Alの酸化皮膜最表層部から80Åまでの深さにおけるCu含有量がAl合金材のCu含有量以下) に比して、比較例No.9 (弱洗浄) 、比較例No.11(強洗浄) の場合に顕著である。また、弱洗浄にも拘わらず、Al酸化皮膜最表層部から80Å程度の深さの表面部分のCu含有量が、Al合金材のCu含有量より僅かに高くなっている比較例No.9においても、耐糸さび性は発明例より劣っており、本発明のAl合金材表面におけるCu量の規定の臨界的意義が分かる。
【0068】
更に、図1 における発明例No.1の、Alの酸化皮膜最表層部から10Åまでの深さにおけるCu含有量の、より詳細な濃度分布を図2 に示す。図2 から明らかな通り、Alの酸化皮膜最表層部から10Åまでの深さにおけるCu含有量を0at%とした発明例No.1は、表1 に示す発明例の中でも、リン酸亜鉛被覆率や耐糸さび性に優れている。この耐糸さび性を、より具体的に糸さび長さL で示すと、耐糸さび性が特に優れる (◎印) の発明例No.1〜4 、7 、8 の糸さび長さL は0.1 以下であったが、その中でも発明例No.1の糸さび長さL は0.06程度であり、発明例No.2〜4 、7 、8 のL が0.08〜0.1 (Lは比較例No.12 の糸さび長さに対する比で表す) であるのに対して、糸さび長さが短くなっている。この例からも、酸化皮膜中乃至Al生地の最表面部 (酸化被膜とAl生地との界面部) に存在するCuが耐糸さび性に影響し、この部分に存在するCuを抑制するほど、リン酸亜鉛被覆率や耐糸さび性に優れることが分かる。
【0069】
なお、発明例の内でも、大気雰囲気下で3 カ月間放置したNo.5、6 は比較的Al酸化皮膜の厚さが厚くなっており、リン酸亜鉛の被覆率が他の発明例よりも低くなっており、耐糸さび性も他の発明例よりも低い。これは、前記Al酸化皮膜の厚さが厚くなるとともに、水分雰囲気下でAl酸化皮膜中の水酸化物等が増加し、Al酸化皮膜が変性しているのが一因となっていると推考される。そして、大気雰囲気下で、より長く3 カ月間放置した比較例No.10 、12において、これらの傾向はより顕著になっている。
【0070】
これらの結果から、本発明におけるAl酸化皮膜の厚さと、Al酸化皮膜最表層部から80Å程度の深さの表面部分のCu含有量の規定の臨界的意義が裏付けられる。
【0071】
【表1】

Figure 0004171141
【0072】
【表2】
Figure 0004171141
【0073】
【発明の効果】
本発明によれば、優れた耐糸さび性を有する6000系Al合金板を提供することができる。したがって、Al合金板の自動車、車両、船舶などの輸送機材用への用途の拡大を図ることができる点で、多大な工業的な価値を有するものである。
【図面の簡単な説明】
【図1】 Al酸化皮膜最表層部から深さ方向へのCuの濃度分布を示す説明図である。
【図2】 Al酸化皮膜最表層部から深さ方向へのCuの濃度分布を示す説明図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an Al-Mg-Si-based aluminum alloy material (hereinafter, aluminum is simply referred to as Al) that is used after being subjected to chemical conversion treatment and is used after coating. It is.
[0002]
[Prior art]
AA with excellent moldability for outer panels and structural materials and parts of transport equipment such as automobiles, ships and vehicles, for structural materials and parts of household electrical appliances, and for building and structural materials such as roofing materials. AA to JIS 6000 series (hereinafter simply referred to as 5000 series to 6000 series) Al alloy materials excellent in formability and bake hardenability are used. Among these, in particular, for automotive members such as automobile doors, fenders, bonnets, and other panel materials or wheels, from the viewpoint of the material properties and recyclability, 6000 series such as rolled plate materials, extruded materials, cast forged materials, etc. The use of Al alloy materials is being studied.
[0003]
The 6000 series Al alloy is basically an Al—Mg—Si series Al alloy containing Si: 0.2 to 1.8% (mass%, the same applies hereinafter) and Mg: 0.2 to 1.6%. And this 6000 series Al alloy secures forming workability with low proof stress at the time of press forming processing, and age hardening at the time of baking coating after press forming to improve proof strength and secure necessary strength. Moreover, when scrap is reused as an Al alloy melting raw material, the amount of alloy is relatively small, and the original 6000 series Al alloy ingot is easily obtained. Therefore, it is more advantageous than the 5000 series Al alloy having a large amount of alloy such as Mg, which has been conventionally used for transportation equipment.
[0004]
Of these Al alloy materials, for example, in order to use a plate material as a panel for a transport aircraft, press forming processing such as deep drawing, overhanging, bending, stretch flange, etc. is performed to make the Al alloy plate into a member shape. Is done. At this time, in deep drawing, overhanging, or stretch flange molding, high deep drawability (limit drawing ratio LDR and limit drawing height LDH 0 ) And a high shape freezing property. As the shape of the product or member becomes complicated, the press forming conditions are becoming more severe.
[0005]
For this reason, conventionally, as a means for improving the formability of the 6000 series Al alloy plate, the chemical component composition of the 6000 series Al alloy plate has been controlled. A typical example is to improve the formability by adding Cu or the like. JP-A-6-2064, JP-A-6-136478, JP-A-8-109428, JP-A-9-209068, JP-A-9-209068 Many proposals have been made in the 9-202933 publication. Further, Cu is widely used as a means for improving strength and toughness in extruded materials other than plates and cast forged materials.
[0006]
However, when Cu is added, the moldability is surely improved, but on the other hand, the corrosion resistance after coating is deteriorated. For example, when Cu is contained in an amount of 0.3% or more, the rust resistance is extremely deteriorated as compared with those not containing Cu (Cu is less than 0.05%).
[0007]
In recent years, especially in the field of plates, among 6000 series Al alloys for transport aircraft, aiming at high yield strength after artificial aging treatment, to increase the amount of Si and to suppress precipitation of Si at grain boundaries Al alloy materials that are quenched after solution treatment in a continuous heat treatment furnace are the mainstream. And, in such a high Si-based 6000 series Al alloy material, when 0.05 to 3.0% of the Cu is contained, the susceptibility to yarn rust generation after coating is solution-treated and quenched by a batch-type heat treatment furnace. As compared with the case, it becomes remarkably high. Therefore, there is a problem of improving the thread rust resistance of such a Cu-containing 6000 series Al alloy material, in particular, a high Si type 6000 series Al alloy material.
[0008]
On the other hand, even if it is not such a high Si-based 6000 series Al alloy plate, Al alloy material is originally inferior to phosphate treatment as a coating base treatment, and rust resistance after coating. Is also inferior. And if this phosphate treatment property such as zinc phosphate is inferior, it is difficult to secure a uniform and appropriate amount of zinc phosphate coating on the surface of the Al alloy material. Deteriorates.
[0009]
Further, from the phosphating side, it is a disadvantageous condition for the phosphatability of the Al alloy material. For example, in the transport line of automobiles, in the automobile production line, the molded and assembled vehicle body is usually subjected to a paint base treatment such as phosphate treatment and cationic electrodeposition coating treatment, and then is baked and cured. It is painted such as painting and top coating. And each process condition in this manufacturing line is a condition suitable for the steel materials mainly used until now. For this reason, an Al alloy material that is often made into a composite material or used together with a steel material is processed together with the steel material or in the same process as the steel material. In this case, the Al alloy material is inferior in phosphate treatment property under the processing conditions suitable for the steel material.
[0010]
On the other hand, as a method for improving the phosphatability of the Al alloy material, the phosphating bath side has conventionally been improved. For example, as a typical example, a high concentration of free fluorine (F) ions of about several tens to several hundred ppm is added to a phosphating bath.
[0011]
[Problems to be solved by the invention]
The addition of this free fluorine (F) ion surely improves the phosphatability of the Al alloy material. However, since the formation of a phosphate film on the surface of the Al alloy material is promoted by the elution of Al ions from the surface of the Al alloy material, the better the phosphate treatment of the Al alloy material, the better the surface of the Al alloy material. The amount of elution of Al ions increases. And when the amount of elution of Al ions increases, a new problem arises in that the phosphate processing ability of the steel material is impeded.
[0012]
Of course, the accumulated Al ions can be removed from the phosphate treatment bath, but the loss of the phosphate bath associated with the removal, the cost of the treatment equipment is large, and automobiles where energy conservation and efficiency are strictly pursued. These cost increases are disadvantageous for the production line.
[0013]
And, what is more problematic is that according to the knowledge of the inventors described later, when the concentration of free fluorine ions in the phosphate bath is increased in this way, the 6000 series Al containing Cu targeted in the present invention. In the case of an alloy material or a high Si type 6000 series Al alloy material, the phenomenon that the thread rust resistance is extremely lowered occurs.
[0014]
On the other hand, as an improvement of the phosphoric acid treatment property from the material side of the Al alloy material, in JP-A-6-287672, an Al alloy plate such as 6000 series to which 0.01 to 5% of Cu is added is treated by etching or the like. It is disclosed that 0.1 to 10 wt% of Cu is deposited (concentrated) on the surface, and the precipitated Cu is used as a cathode reaction point in the phosphating process to improve the phosphatability. In addition, a summary of the 93rd Autumn Meeting of the Japan Institute of Light Metals (published in 1997) also included Cu in the 6000 series Al alloy at 0.30, 0.69 wt%, and the surface of the Al alloy plate was 0.98, 3.98 by pickling. It is disclosed that wt% is actively precipitated to improve the phosphatability.
[0015]
However, according to the knowledge of the present inventors, when Cu was concentrated on the surface of the Al alloy material, the phosphate treatment property of the Al alloy material was improved, but Cu was concentrated on the surface. On the contrary, the rust resistance of the 6000 series Al alloy plate is extremely contradictory. Therefore, the conventional technique for concentrating Cu on the surface of the Al alloy material has an adverse effect on improving the thread rust resistance of the 6000 series Al alloy material containing Cu. For this reason, the actual situation is that there has been no effective technique for improving the thread rust resistance of a 6000 series Al alloy material containing Cu, which is extremely sensitive to the occurrence of thread rust after coating.
[0016]
The present invention has been made paying attention to such circumstances, and an object of the present invention is to provide a 6000 series Al alloy material containing Cu with improved yarn rust resistance.
[0017]
[Means for Solving the Problems]
In order to achieve this object, the gist of the Al alloy material of the present invention includes Si: 0.2 to 1.8% (mass%, the same shall apply hereinafter), Mg: 0.2 to 1.6%, Cu: 0.05 to 1.5%, and after chemical conversion treatment This is an Al-Mg-Si aluminum alloy material that is painted and used, and has an aluminum oxide film with a thickness of 100 angstroms (angstrom) or less on the surface and a depth of at least 80 mm from the outermost layer of the aluminum oxide film. It is to make Cu content in the surface part below into Cu content of aluminum alloy material itself.
[0018]
The present inventors, on the surface of the 6000 series Al alloy material containing Cu, the surface portion of the Al oxide film or the Al alloy material fabric under the Al oxide film at a depth of about 80 mm from the outermost layer portion of the Al oxide film. It was found that the Cu content in the (interfacial part with the Al oxide film) greatly affects the yarn rust resistance of the Al alloy material.
[0019]
As an Al alloy material manufacturing process that affects the composition or properties of an Al oxide film, there is an Al alloy material cleaning process. Usually, when producing a 6000 series Al alloy plate for press forming, etc., after the final solution treatment and quenching treatment after plastic working such as cold rolling, with an acid or alkali, and further with a cleaning liquid combining these, Al alloy material is being cleaned (etched). This washing process removes oil and dirt adhering to the surface of the Al alloy material by plastic working such as cold rolling and solution treatment such as the previous process, or zinc phosphate in the automobile production line, etc. This is performed for the purpose of removing an oxide film containing MgO that inhibits chemical conversion treatment.
[0020]
However, by this cleaning, when the oxide film or Al alloy sheet fabric on the surface of the Al alloy material is strongly etched, it remains in the oxide film that remains, or in the oxide film that regenerates after the drying process after etching and under the Al oxide film. A phenomenon that Cu concentrates more than the amount of Cu in the Al alloy material dough occurs on the outermost surface portion of the Al alloy material dough.
[0021]
Concentration of Cu itself is known in Japanese Patent Laid-Open No. 6-287672. However, as described above, when Cu is concentrated on the surface of the Al alloy material according to these conventional techniques, the phosphatability of the Al alloy material is improved, but the yarn rust resistance of the Al alloy material is reversed. Moreover, it will be extremely lowered. The phenomenon of lowering the yarn rust resistance of the Al alloy material is particularly noticeable when a phosphate treatment with a high amount of free fluorine ions is performed, for example, when the free fluorine ion concentration is about 150 ppm or more.
[0022]
This is because Cu concentrated on the surface of the Al alloy material acts as a cathode reaction point during phosphating, and although phosphatability is improved, phosphating is achieved by concentrating Cu. Even after coating, Cu inevitably remains on the surface of the Al alloy material, and Cu on this surface is considered to significantly deteriorate the yarn rust resistance. Therefore, in the present invention, the Cu content on the surface of the Al alloy material, particularly in the oxide film, is set to be equal to or less than the Cu content of the Al alloy material dough, and contrary to the prior art, at least an Al alloy material such as an oxide film The main point is to prevent Cu from precipitating or concentrating on the surface.
[0023]
Moreover, the part which these prior arts are subject to Cu deposition or concentration is the outermost surface portion of the Al alloy material fabric under the Al oxide film referred to in the present invention, and is not the Al oxide film referred to in the present invention. This is because, in these prior arts, all of the oxide film on the surface is once removed by etching such as pickling, and the surface of the Al alloy material is further etched to deposit or concentrate Cu on the surface of the Al alloy material.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
(Al oxide film thickness)
The thickness of the Al oxide film on the surface of the Al alloy material is preferably as thin as possible from the point of chemical conversion treatment such as zinc phosphate. When the thickness of the Al oxide film exceeds 100 mm, the Al oxide film is hardly dissolved (etched) during the chemical conversion treatment, and the adhesion of the chemical conversion treatment film such as zinc phosphate is deteriorated. If the adhesion of the chemical conversion coating is deteriorated, the amount of the coating is reduced and the rust resistance as a corrosion resistance after coating is reduced. Therefore, the thickness of the Al oxide film on the surface of the Al alloy material should be 100 mm or less.
[0025]
The film thickness of the Al oxide film on the surface of the Al alloy material can be measured relatively easily and with high accuracy by X-ray photoelectron spectroscopy (XPS). There are other methods for measuring the thickness of the Al oxide film, such as the Hunter Hall method and the capacitance method, but the Al oxide film is a thin film, and if the measurement method is different, variations in measured values may occur. Therefore, the film thickness of the Al oxide film on the surface of the Al alloy material of the present invention is measured by the XPS.
[0026]
The specific measurement method using XPS is the number of photoelectrons emitted from Al atoms in the Al oxide film and observed by the XPS detector (N OX ), The number of photoelectrons emitted from the Al atoms in the underlying Al substrate and observed by the XPS detector (N Al ), D = 20 cosθ In (1.15 N OX / N Al +1) (where θ is the photoelectron detection angle), the thickness d (Å: angstrom) of the oxide film is calculated.
[0027]
(Cu content of surface layer)
In the present invention, when defining the amount of Cu on the surface of the Al alloy material, the surface portion having a depth (thickness) of at least 80 mm from the outermost layer portion of the Al oxide film is that the concentration of Cu by the cleaning or the like is an Al oxidation This is because it has been found that it proceeds at the outermost surface portion of the Al alloy material under the coating or Al oxide coating (interface portion with the Al oxide coating). And, the surface part that has a great influence on the thread rust resistance due to the progress of concentration of Cu, of course, varies depending on the thickness of the Al oxide film, but is generally in the depth range of 80 mm from the outermost layer part of the Al oxide film. This is because they have been found to be included. Therefore, since the maximum thickness of the Al oxide film in which Cu concentration is a problem is 100 mm in the present invention, the depth of at least 80 mm specified in the present invention is at most about the thickness of this Al oxide film. It is not necessary at such a depth that it exceeds the outermost surface portion of the Al alloy material and reaches the Al alloy material.
[0028]
In the present invention, the Cu content in the surface portion refers to the amount of Cu and Cu detected by X-ray photoelectron spectroscopy (XPS) analysis, also referred to as ESCA (Electron Spectroscopy for Chemical Analysis). Say. The amount of Cu in a thin film such as an Al oxide film cannot be obtained by Kant analysis (emission spectroscopic analysis), which is commonly used for component analysis of materials. In the present invention, X-rays are widely used for solid surface analysis. The amount of Cu in the surface layer portion of the Al alloy material is measured using photoelectron spectroscopy. More specifically, by this X-ray photoelectron spectroscopy, detection is made at each point (depth position) every 10 mm from the outermost layer of the Al oxide film to a depth of 80 mm in the depth (thickness) direction. The average Cu content is defined as the Cu content (at%) at this depth.
[0029]
Furthermore, in the present invention, in order to further improve the thread rust resistance, the Cu content detected by the X-ray photoelectron spectroscopy in the surface portion at a depth of 10 mm from the outermost layer portion of the aluminum oxide film. Is preferably 0 at% (corresponding to claim 2). This substantially eliminates Cu present in the oxide film or on the outermost surface of the Al fabric (interfacial portion between the oxide film and the Al fabric), which affects the rust resistance of the yarn. Rust properties are further improved.
[0030]
Although there is no doubt that Cu present in the oxide film or on the outermost surface of the Al fabric has an influence on the yarn rust resistance, this Cu existence form and particularly the Cu existence form affecting the yarn rust resistance. It is not always clear whether the metal is Cu or an oxide of Cu. Therefore, in the present invention, the Cu content of the surface layer portion of the Al alloy material, which is measured by the X-ray photoelectron spectroscopy, is defined regardless of the existence form of Cu presumed to exist in various ways.
[0031]
And on the other hand, the Cu content of the Al alloy material to be compared with this is not based on the normal Kant analysis used for the measurement of the main component amount of the Al alloy material of the present invention, but of the Al alloy material. The Cu content (at%) measured by the X-ray photoelectron spectroscopy is the same as the Cu content in the surface layer portion. The reference measurement position is the Al alloy material fabric portion at a depth of 300 mm from the outermost layer portion of the Al oxide film. If the reference measurement position is a depth of 300 mm or more, it becomes a material portion of the Al alloy material, and any depth is acceptable, but in the present invention, considering the slight variation depending on the measurement position, To do. The Cu content of the Al alloy material was also measured by X-ray photoelectron spectroscopy because the Cu content of the surface layer of the Al alloy material and the Cu content of the Al alloy material were compared (concentration of Cu content). This is because both measurement bases are the same in order to accurately measure the degree. In addition, in order to determine the Cu amount of the oxide film and the Al fabric that leads to the oxide film, which is also an ultrathin film as in the present invention, the above Kant analysis (wt% or mass%) for determining the amount of the usual Al alloy component ) Depends on the difficulty of measurement.
[0032]
In the present invention, the Cu content of the Al alloy material itself is 0.05 to 1.5% as described above, and after the solution treatment and the quenching treatment material are washed, or according to this Cu content, or the phosphate In the Al alloy material before chemical conversion treatment such as treatment, the Cu content in the surface portion at a depth of 80 mm from the Al oxide film outermost layer portion is made equal to or less than the Cu content of the Al alloy material.
[0033]
When the Cu content in the surface part at a depth of 80 mm from the outermost layer part of the Al oxide film exceeds the Cu content of the Al alloy material and is present in a concentrated state, as described above, after the coating of the Al alloy material The susceptibility to the occurrence of thread rust is significantly increased, and the resistance to thread rust is significantly reduced. In particular, aiming at high yield strength after artificial aging treatment, the Si content is increased to about 1.0%, and solution treatment and quenching are performed in a continuous heat treatment furnace to suppress precipitation of Si at grain boundaries. In a high Si type 6000 series Al alloy material, when 0.05 to 1.5% of Cu is contained, the susceptibility to the occurrence of thread rust after coating is remarkably increased.
[0034]
The Cu content on the surface of the Al alloy material is greatly affected by the cleaning (etching) process of the Al alloy material with a cleaning solution that combines acid or alkali and further a combination after the final solution treatment and quenching treatment. In other words, the Cu content can be controlled by controlling the cleaning power or the etching amount.
[0035]
When strong etching is performed and the amount of dissolution of the Al oxide film and the Al alloy material is increased as described in JP-A-6-287672, Cu is remarkably easily concentrated. In the Japanese Patent Laid-Open No. 6-287672, etc., the Cu content of the Al alloy plate is 0.01 to 5 wt%, whereas the Cu content on the surface is concentrated to 0.1 to 10 wt% and several times to several tens of times by strong etching. Precipitates. This is also true for the Cu content in the surface portion defined by the present invention at a depth of 80 mm from the outermost layer portion of the Al oxide film.
[0036]
Therefore, in the present invention, cleaning conditions (cleaning solution concentration, temperature, cleaning time, etc.) appropriately combined with an acid such as nitric acid and sulfuric acid, an alkaline solution such as caustic soda, or a commercially available detergent, etc. are used as much as possible. It is necessary to select conditions that do not etch the Al alloy material. In addition, since the oxide film and the Al alloy material are not etched, if there is no problem of contamination due to rolling oil or the like on the surface of the Al alloy material, of course, no cleaning is also an option. However, the concentration of Cu on the surface of the Al alloy material is not uniquely determined only by the cleaning conditions. Therefore, in order to regulate the concentration of Cu on the surface of the Al alloy material, the original Cu content or It is necessary to pay attention to other manufacturing conditions.
[0037]
Next, an Al alloy applied to the Al alloy material of the present invention will be described. In order to satisfy the characteristics for each specific application, such as transportation equipment for automobiles, ships, etc., structural materials or parts, the Al alloy material of the present invention, an AA to JIS 6000 series Al alloy is appropriately used. . In addition, as an Al alloy material, not only the plate material by rolling but the shape material by extrusion, or the forging material by forging is selected suitably, and the shape and manufacturing method of Al alloy material are not limited in principle.
[0038]
Al-Mg-Si based 6000 series Al alloy basically has a proof stress of 120 N / mm, especially as automotive panel materials and frame materials. 2 With the above, it is excellent in press formability and bending workability, and 150 N / mm after paint baking after molding 2 Or more, preferably 200 N / mm 2 It has excellent properties such as artificial age-hardening that provides the above yield strength, or recyclability that allows the scrap to be used as a melting raw material for the original alloy with a small amount of alloying elements.
[0039]
Hereinafter, a preferable chemical component composition in the 6000 series Al alloy will be described. In order to satisfy various required characteristics as the panel material and frame material of the automobile, the preferable range of the chemical composition is the component standard of 6000 series Al alloys (AA 6101, 6111, 6003, 6151, 6061, 6N01, 6063, etc. ) Basically, Si: 0.2-1.8%, Mg: 0.2-1.6%, Cu: 0.3-1.5%, other, preferably Zn: 0.005-1.0%, Ti: 0.001- One or two of 0.1%, B: 1 to 300 ppm, One or two of Be: 0.1 to 100 ppm, Mn: 1.0% or less, Cr: 0.3% or less, Zr: 0.15% or less, V: 0.15% or less One or two or more kinds are selectively included in total in an amount of 0.01 to 1.5%, and the remaining Al and inevitable impurities are used as an Al alloy.
[0040]
However, in the present invention, in order to improve the formability, the inclusion of Cu is essential, so the Cu content may not necessarily fall within the component standards of each AA or JIS. In addition, elements other than Si and Mg, which are the basic components, do not comply with the AA to JIS component standards, and as long as they have the basic characteristics described above, further improvement in characteristics and other characteristics The component composition can be changed as appropriate for adding. In this respect, it is allowed to appropriately include other elements such as Fe, Ni, V 2, Mn, Cr, Zr, Sc, and Ag depending on the application and required characteristics. Further, impurities such as oxygen and hydrogen are allowed to be contained to the extent that they do not deteriorate the various characteristics of the Al alloy material.
[0041]
Next, the preferable range of the content of each element of the Al alloy material of the present invention will be described.
[0042]
Si: 0.2-1.8%. Si, together with Mg, can be processed by artificial aging treatment. 2 It is an essential element for precipitating as Si and imparting high strength (yield strength) during use, but if it contains less than 0.2%, more strictly less than 0.8%, sufficient strength cannot be obtained by artificial aging. . On the other hand, if the content exceeds 1.8%, more specifically, exceeds 1.3%, it will precipitate as coarse particles during casting and quenching, and the formability will be hindered such as low elongation. Therefore, the Si content is 0.2-1.8%, and especially after the artificial aging treatment on the premise of solution treatment and quenching treatment in a continuous heat treatment furnace in order to suppress precipitation of Si at grain boundaries. In order to aim at high yield strength, it is preferably in the range of 0.8 to 1.3%.
[0043]
Mg: 0.2-1.6%. Mg is Mg together with Si due to artificial aging (molding, baking hardening after painting, etc.) 2 It is an essential element for precipitating as Si, and further forming a compound phase with Cu and Al in a Cu-containing composition to impart high strength (yield strength) or bake curability during use. If the Mg content is less than 0.2%, the amount of work hardening decreases, and it may not be able to withstand shear deformation when subjected to press molding or bending, and may crack. Moreover, sufficient strength cannot be obtained even by artificial aging. On the other hand, if the content exceeds 1.6%, more strictly 0.7%, the strength (proof strength) becomes too high and the formability is inhibited. Therefore, the Mg content is in the range of 0.2 to 1.6%, preferably 0.2 to 0.7%.
[0044]
Cu: 0.05-1.5%. Cu forms a compound phase with Mg and Al during baking and deposits, imparts bake hardenability, and improves formability in the solid solution state during T4 tempering. If the Cu content is less than 0.05%, these effects are not obtained, and if it exceeds 1.5%, the effects are saturated. Moreover, if the Cu content exceeds 1.5%, when the Al alloy material is etched, a large amount of Cu precipitates (concentrates) on the surface of the Al alloy material, and on the contrary, the yarn rust resistance of the Al alloy material deteriorates. Let Therefore, the Cu content is 0.05 to 1.5%.
[0045]
Next, Zn, Ti, B, Be, Mn, Cr, Zr, and V are elements that are selectively contained depending on the purpose.
[0046]
Zn: 0.005 to 1.0%. Zn is MgZn during artificial aging. 2 Is deposited finely and densely to achieve high strength. However, if the Zn content is less than 0.005%, sufficient strength cannot be obtained by artificial aging. On the other hand, if it exceeds 1.0%, the corrosion resistance is remarkably lowered. Therefore, the Zn content is preferably in the range of 0.005 to 1.0%.
[0047]
Ti: 0.0001 to 0.1%. Ti is an element added to refine crystal grains of the ingot and improve press formability. However, when the Ti content is less than 0.001%, this effect cannot be obtained. On the other hand, when the Ti content exceeds 0.1%, a coarse crystallized product is formed and the formability is lowered. Therefore, the Ti content is preferably in the range of 0.0001 to 0.1%.
[0048]
B: 1 to 300 ppm. B, like Ti, is an element added to refine the ingot crystal grains and improve press formability. However, if the content of B is less than 1 ppm, this effect cannot be obtained. On the other hand, if the content exceeds 300 ppm, coarse crystals are formed and the moldability is lowered. Therefore, the B content is preferably in the range of 1 to 300 ppm.
[0049]
Mn: 1.0% or less, Cr: 0.3% or less, Zr: 0.15% or less, V: 0.15% or less. These elements are added during homogenization heat treatment and subsequent hot rolling. 20 Cu 2 Mn Three , Al 12 Mg 2 Cr, Al Three Zr, Al 2 Mg Three Zn Three To produce dispersed particles. Since these dispersed particles have an effect of hindering the grain boundary movement after recrystallization, fine crystal grains can be obtained. However, an excessive content tends to generate a coarse intermetallic compound during melting and casting, which becomes a starting point of fracture during molding and causes a decrease in moldability. Further, when Zr is excessively contained, the microstructure is easily formed into a needle length, and the fracture toughness and fatigue characteristics in a specific direction and further the formability are deteriorated. Therefore, the contents of these elements are respectively Mn: 1.0% or less, Cr: 0.3% or less, Zr: 0.15% or less, and V: 0.15% or less.
[0050]
Fe: Fe contained as impurities is Al 7 Cu 2 Fe, Al 12 (Fe, Mn) Three Cu 2 , (Fe, Mn) Al 6 A crystallized product such as These crystallized materials deteriorate fracture toughness and fatigue characteristics as well as formability. Particularly, when the Fe content exceeds 0.5%, these characteristics are remarkably deteriorated. Therefore, the Fe content is preferably 0.5% or less. In addition, the crystallized matter generated during casting is not limited to the Fe-based material. 2 Cu 2 Mg, Al 2 Cu 2 , Mg 2 Some of them are soluble, such as Si, and it is preferable to sufficiently re-dissolve them in the Al matrix by solution treatment and quenching. In addition, Ni is preferably 0.05% or less.
[0051]
The Al alloy material itself in the present invention can be produced by a conventional method. For example, a molten Al alloy melt adjusted within the 6000 series Al alloy component specification range is cast by appropriately selecting a normal melting casting method such as a continuous casting rolling method or a semi-continuous casting method (DC casting method). Next, the Al alloy ingot is subjected to a homogenization heat treatment, and then subjected to hot rolling and cold rolling (intermediate annealing if necessary), or plastic processing methods such as extrusion or forging, so that a plate material, a die material, a wire rod material, It is plastic processed into the shape of the desired Al alloy material such as forging. The rolled material or extruded material that has been plastically processed is either rolled, extruded, or forged, or subjected to tempering treatment such as T6 treatment (quenching after solution treatment) or aging treatment, overaging treatment as necessary. Desired mechanical properties.
[0052]
However, in order to further improve the press formability of the 6000 series Al alloy sheet material and to further improve the age-hardening ability at the time of baking coating after press forming, as described above, the Si amount is set to 0.8 to 1.3%, Si It is preferable to increase the amount. However, when the amount of Si is increased, the problem of deterioration of formability due to Si precipitation at the grain boundary becomes large during the tempering treatment. For this reason, in order to prevent this, it is necessary to heat and rapidly cool the plate in a short time, and in this respect, in particular, the final solution treatment and water quenching treatment are not performed batchwise but from the coil. It is preferable to carry out in a continuous heat treatment furnace which can be heat treated by continuously passing through the plate.
[0053]
In addition, the Al oxide film with controlled Cu content in the surface part at a depth of 80 mm from the outermost layer of the Al oxide film changes with time (increase in film thickness due to oxidation) and composition changes (Mg) due to storage, etc. Suppressing the increase in the amount is preferable from the viewpoint of phosphate treatment. As an embodiment for that, it is preferable to further galvanize the surface. If zinc plating (including pure zinc or zinc alloy plating) is applied, chemical conversion properties such as phosphate treatment can be further improved. However, when this galvanization is performed, if the galvanized layer remains after chemical conversion treatment such as phosphate treatment, the corrosion resistance after coating such as yarn rust resistance is deteriorated. Therefore, after the chemical conversion treatment such as phosphate treatment, it is preferable to perform galvanization by an amount or thickness that does not leave a galvanized layer on the surface of the Al alloy material.
[0054]
In addition, it is also preferable to apply rust preventive oil or lubricating oil to the surface of the Al alloy material in order to improve formability such as press molding. In other words, the present invention allows not only an untreated Al alloy material but also such a new surface treatment for improving characteristics. And by taking the above-mentioned countermeasures for the production of Al alloy material, there is also an advantage that long-term storage on the side using this Al alloy material becomes possible.
[0055]
In addition, the problem that the thread rust resistance deteriorates due to the concentration of Cu on the Al alloy material surface includes not only phosphate treatment but also other phosphate-chromate treatment, chromate treatment, zirconium and titanium. The same occurs even when coating is performed after a chemical conversion treatment as a coating base such as a non-chromate treatment or a treatment of providing a hydrated oxide film of Al. Therefore, the chemical conversion treatment referred to in the present invention includes these chemical conversion treatments that are widely used as a coating base treatment.
[0056]
【Example】
Next, examples of the present invention will be described. An ingot of Al alloy having the composition shown in Table 1 was melted by a DC casting method, subjected to homogenization heat treatment in the range of 470 ° C. × 8 hours, and hot-rolled to a thickness of 3.5 mm. Next, it was cold-rolled to a thickness of 1.0 mm, subjected to a solution treatment at 560 ° C. for several seconds in a continuous heat treatment furnace, and then quenched by water cooling to prepare an Al alloy plate.
[0057]
In addition, a 150 mmvφ billet was melted from the Al alloy ingot with the composition shown in Table 1 by the DC casting method, and then subjected to a homogenization heat treatment in the range of 470 ° C x 8 hours. The extrusion temperature was 500 ° C and the extrusion speed was 10 m / min. A flat plate having a thickness of 2 mm and a width of 100 mm was extruded. At this time, immediately after extrusion, a water spray was extended in the platen around the extrudate and in the longitudinal direction, and forcedly cooled with water. Then, in a batch type heat treatment furnace, solution treatment was performed at 560 ° C. for several tens of minutes, followed by quenching by water cooling to prepare an Al alloy profile.
[0058]
By changing the cleaning conditions (including no cleaning) of various Al plates or shapes after solution treatment and quenching, the thickness of the Al oxide film on the surface of the Al alloy material and the Al oxidation The test material was obtained by changing the Cu content in the surface portion at a depth of 80 mm from the outermost layer portion of the coating.
[0059]
The cleaning conditions shown in Table 2 are “no cleaning” with no cleaning, “weak cleaning” with almost no etching with a neutral detergent at 30 ° C., and 5 wt% hydroxylation at 50 ° C. Three types of “strong cleaning” were performed, in which cleaning was performed with two-stage etching of an aqueous sodium solution and a 10 wt% sulfuric acid aqueous solution at 80 ° C.
[0060]
Of the invention examples shown in Table 2, Nos. 5 and 6 were left for 1 month in an air atmosphere after cleaning, and Comparative Examples 10 and 12 were left after being left for 3 months in an air atmosphere after cleaning. The material was used as a test material.
[0061]
The thickness of the Al oxide film on the surface of these test materials was measured by the XPS. In addition, the Cu content in the surface portion at a depth of 80 mm from the Al oxide film outermost layer portion was measured by measuring the Cu amount (at%) detected at each point of every 10 mm in the depth direction by the XPS. The average value. Further, the Cu content of the Al alloy material was measured by the above XPS, and the Cu content (at%) at a depth of 300 mm from the outermost layer portion of the Al oxide film was measured. These results are shown in Table 2. In Table 2, Al alloy material from the outermost layer of the Al oxide film in Invention Example No. 1 (no cleaning), Comparative Example No. 9 (weak cleaning), and Comparative Example No. 11 (strong cleaning) Figure 1 shows the Cu concentration distribution in the depth (thickness) direction.
[0062]
Incidentally, among the invention examples in Table 2, both the Al plate that was quenched by water cooling after increasing the amount of water after the solution treatment and the shape that was water cooled immediately after increasing the amount of water immediately after the extrusion were both 200 N / mm 2 It had the above proof stress.
[0063]
Next, these specimens were used as they were (only Invention Example No. 2 was zinc-plated at 1 g / m2 by zincate treatment). 2 After being attached to the surface and allowed to stand for 1 month), it is treated with a colloidal dispersion of titanium phosphate, and then immersed in a zinc phosphate bath containing 150 ppm of free fluorine to carry out zinc phosphate treatment. The coverage of zinc phosphate on the sample was measured. The zinc phosphate coverage was measured by observing 1000 times of SEM and measuring the unit area (0.04mm) of each specimen surface. 2 The surface area ratio of the test material coated with zinc phosphate was determined.
[0064]
Furthermore, a coating film of 2 coats and 2 bakes was provided on the test material provided with this zinc phosphate coating by cationic electrodeposition coating and spray coating, and the rust resistance against the test material provided with these coatings. An evaluation test was conducted. These results are shown in Table 3. The coating film of 2 coats and 2 bake is provided with a 30 μm thick polyester melamine coating film as an intermediate coating, baked at 140 ° C. for 20 minutes, and further as a top coating, a 30 μm thick polyester melamine coating is applied. A system coating film was provided and baked at 180 ° C. for 20 minutes.
[0065]
In the yarn rust resistance evaluation test, a piece of 7cm cross-cut was applied to the coating test piece, then immersed in a 3% HCl aqueous solution at 35 ° C for 2 minutes, and then in an atmosphere of 40 ° C and 85RH constant temperature and humidity for 1500 hours. Then, the maximum length L of the yarn rust that occurred (the distance in the vertical direction from the crosscut) was measured. In the evaluation of yarn rust resistance, the maximum length L of the yarn rust generated in the Al alloy coated test piece of Comparative Example No. 12 in Table 1 was set to 1, and compared with this, ◎: L ≦ 0.1, ○: 0.1 <L ≦ 0.5, Δ: 0.5 <L <1, ×: L ≧ 1. In addition, this yarn rust resistance evaluation test is immersed in an aqueous HCl solution compared to other yarn rust resistance evaluation tests in which, for example, the test is performed under the same conditions by immersion in a 5% NaCl solution or the like. In this respect, the test conditions are more severe.
[0066]
As is apparent from Table 2, the Al oxide film has a thickness of 100 mm or less, and the Cu content in the surface portion at a depth of about 80 mm from the Al oxide film outermost layer is an Al alloy with a depth of 300 mm. Inventive Example Nos. 1-8, which are less than the Cu content of the material, compared to Comparative Examples No. 9-12, which deviate from this requirement, the zinc phosphate coverage is rather small, but the thread rust resistance is improved. is doing. This is because the comparative example shows that the surface coverage of Cu improves the zinc phosphate coverage, but conversely the Cu surface concentration reduces the rust resistance of the coated Al alloy material. I support it.
[0067]
Then, as is clear from FIG. 1 showing the concentration distribution of Cu from the outermost layer portion of the Al oxide film to the depth (thickness) direction of the Al alloy material, the surface concentration of Cu in the comparative example is the invention example No. 1 (Al Comparative example No. 9 (weak cleaning), comparative example No. 11 (strong cleaning) It is remarkable in the case of. In addition, in comparative example No. 9 in which the Cu content of the surface portion at a depth of about 80 mm from the outermost layer portion of the Al oxide film is slightly higher than the Cu content of the Al alloy material despite the weak cleaning. However, the thread rust resistance is inferior to that of the inventive examples, and the critical significance of the definition of the Cu content on the surface of the Al alloy material of the present invention is understood.
[0068]
Further, FIG. 2 shows a more detailed concentration distribution of the Cu content in the depth from the outermost surface layer portion of the Al oxide film of Example No. 1 in FIG. 1 to 10 mm. As is clear from FIG. 2, Invention Example No. 1 in which the Cu content at a depth of 10 mm from the outermost layer of the Al oxide film is 0 at% is the zinc phosphate coverage ratio among the invention examples shown in Table 1. And excellent rust resistance. When this thread rust resistance is expressed more specifically by thread rust length L, the thread rust length L of Invention Examples Nos. 1 to 4, 7, and 8 in which the thread rust resistance is particularly excellent (marked with ◎) is Among them, the thread rust length L of Invention Example No. 1 is about 0.06, and L of Invention Examples No. 2 to 4, 7, and 8 is 0.08 to 0.1 (L is Comparative Example No. The thread rust length is shorter than the 12 thread rust length. Also from this example, Cu present in the oxide film or on the outermost surface portion of the Al fabric (interface portion between the oxide coating and the Al fabric) affects the thread rust resistance, and the Cu present in this portion is suppressed, It can be seen that the zinc phosphate coverage and yarn rust resistance are excellent.
[0069]
Of the invention examples, Nos. 5 and 6 left for 3 months in an air atmosphere have a relatively thick Al oxide film, and the zinc phosphate coverage is higher than that of the other invention examples. The yarn rust resistance is lower than that of the other invention examples. This is presumed to be due to the fact that the thickness of the Al oxide film is increased, the hydroxide in the Al oxide film is increased in a moisture atmosphere, and the Al oxide film is denatured. Is done. In the comparative examples No. 10 and 12, which are left for a longer period of 3 months in the air atmosphere, these tendencies are more remarkable.
[0070]
These results support the critical significance of the regulation of the thickness of the Al oxide film in the present invention and the Cu content of the surface portion at a depth of about 80 mm from the outermost layer portion of the Al oxide film.
[0071]
[Table 1]
Figure 0004171141
[0072]
[Table 2]
Figure 0004171141
[0073]
【The invention's effect】
According to the present invention, it is possible to provide a 6000 series Al alloy plate having excellent yarn rust resistance. Therefore, it has a great industrial value in that the use of the Al alloy plate for transportation equipment such as automobiles, vehicles and ships can be expanded.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a Cu concentration distribution in the depth direction from the outermost layer portion of an Al oxide film.
FIG. 2 is an explanatory diagram showing a Cu concentration distribution in the depth direction from the outermost layer portion of the Al oxide film.

Claims (8)

Si:0.2〜1.8% (質量% 、以下同じ) 、Mg:0.2〜1.6%、Cu:0.05 〜1.5%を含み、化成処理後塗装されて用いられるAl-Mg-Si系アルミニウム合金材であって、表面に厚さが100 Å (オングストローム) 以下のアルミニウムの酸化皮膜を有するとともに、アルミニウムの酸化皮膜最表層部から少なくとも80Åの深さの表面部分におけるCu含有量を、アルミニウム合金材自体のCu含有量以下とすることを特徴とする耐糸さび性に優れたアルミニウム合金材。  Si: 0.2-1.8% (mass%, the same shall apply hereinafter), Mg: 0.2-1.6%, Cu: 0.05-1.5%, Al-Mg-Si-based aluminum alloy material used after chemical conversion treatment In addition to having an aluminum oxide film with a thickness of 100 mm (angstrom) or less on the surface, the Cu content in the surface part at least 80 mm deep from the outermost layer part of the aluminum oxide film is reduced by the Cu content of the aluminum alloy material itself. Aluminum alloy material excellent in yarn rust resistance, characterized by being less than the amount. 前記アルミニウムの酸化皮膜最表層部から10Åまでの深さの表面部分における、X 線光電子分光法により検出される、Cu含有量を0at%とする請求項1に記載の耐糸さび性に優れたアルミニウム合金材。  2. The excellent rust resistance of the yarn according to claim 1, wherein the Cu content is 0 at% detected by X-ray photoelectron spectroscopy in the surface portion of the aluminum oxide film from the outermost layer portion to a depth of 10 mm. Aluminum alloy material. 前記アルミニウム合金材が、Si:0.8〜1.3%、Mg:0.2〜0.7%を含み、連続熱処理炉にて溶体化および焼入処理された板である請求項1または2に記載の耐糸さび性に優れたアルミニウム合金材。  3. The yarn rust resistance according to claim 1, wherein the aluminum alloy material is a plate that contains Si: 0.8 to 1.3% and Mg: 0.2 to 0.7% and is solution-treated and quenched in a continuous heat treatment furnace. Excellent aluminum alloy material. 前記化成処理がリン酸塩処理である請求項1乃至3のいずれか1項に記載の耐糸さび性に優れたアルミニウム合金材。  The aluminum alloy material excellent in yarn rust resistance according to any one of claims 1 to 3, wherein the chemical conversion treatment is a phosphate treatment. 前記アルミニウム合金材が、リン酸塩処理の前処理としてコロイダルTiにより表面処理されるものである請求項4に記載の耐糸さび性に優れたアルミニウム合金材。  The aluminum alloy material excellent in yarn rust resistance according to claim 4, wherein the aluminum alloy material is surface-treated with colloidal Ti as a pretreatment for phosphate treatment. 前記リン酸塩の浴中のフリーフッ素イオン量が100ppm以上である請求項4または5に記載の耐糸さび性に優れたアルミニウム合金材。  The aluminum alloy material excellent in yarn rust resistance according to claim 4 or 5, wherein the amount of free fluorine ions in the phosphate bath is 100 ppm or more. 前記アルミニウム合金材が輸送機用である請求項1乃至6の何れか1項に記載の耐糸さび性に優れたアルミニウム合金材。 The aluminum alloy material excellent in yarn rust resistance according to any one of claims 1 to 6, wherein the aluminum alloy material is used for a transport aircraft . 前記アルミニウム合金板が、前記溶体化および焼入処理された後に洗浄処理されたものである請求項1乃至7の何れか1項に記載の耐糸さび性に優れたアルミニウム合金材。 The aluminum alloy material excellent in yarn rust resistance according to any one of claims 1 to 7, wherein the aluminum alloy plate is washed after the solution treatment and quenching treatment .
JP21980599A 1999-03-30 1999-08-03 Aluminum alloy material with excellent yarn rust resistance Expired - Lifetime JP4171141B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21980599A JP4171141B2 (en) 1999-03-30 1999-08-03 Aluminum alloy material with excellent yarn rust resistance

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-88826 1999-03-30
JP8882699 1999-03-30
JP21980599A JP4171141B2 (en) 1999-03-30 1999-08-03 Aluminum alloy material with excellent yarn rust resistance

Publications (2)

Publication Number Publication Date
JP2000345364A JP2000345364A (en) 2000-12-12
JP4171141B2 true JP4171141B2 (en) 2008-10-22

Family

ID=26430169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21980599A Expired - Lifetime JP4171141B2 (en) 1999-03-30 1999-08-03 Aluminum alloy material with excellent yarn rust resistance

Country Status (1)

Country Link
JP (1) JP4171141B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4829412B2 (en) * 2001-02-23 2011-12-07 株式会社神戸製鋼所 Aluminum alloy material with excellent yarn rust resistance
PL2085436T3 (en) 2008-01-29 2011-05-31 Akzo Nobel Coatings Int Bv Acrylic coating powders comprising hydrophobic particles and powder coatings therefrom having filliform corrosion resistance
JP2015157967A (en) * 2014-02-21 2015-09-03 株式会社神戸製鋼所 Aluminum alloy sheet, conjugate and automotive member
JP6433380B2 (en) * 2014-06-27 2018-12-05 株式会社神戸製鋼所 Aluminum alloy rolled material
JP2016089261A (en) * 2014-11-11 2016-05-23 株式会社神戸製鋼所 Aluminum alloy material, conjugate, automotive member, and manufacturing method of aluminum alloy material
EP3669015B1 (en) * 2017-12-21 2023-08-02 Novelis, Inc. Aluminum alloy articles having improved bond durability and inert surface aluminum alloy articles and methods of making and using the same
CA3166074A1 (en) 2017-12-21 2019-06-27 Novelis Inc. Aluminum alloy products exhibiting improved bond durability and/or having phosphorus-containing surfaces and methods of making the same
CA3085858A1 (en) * 2017-12-21 2019-06-27 Constellium Extrusions Decin S.R.O. 6xxx aluminium alloy extruded forging stock and method of manufacturing thereof

Also Published As

Publication number Publication date
JP2000345364A (en) 2000-12-12

Similar Documents

Publication Publication Date Title
KR102246752B1 (en) Method for producing a part from a steel sheet coated with a metallic coating based on aluminum
JP5650222B2 (en) Method of manufacturing a steel member with a metal coating that provides protection against corrosion, and steel member
US20160222484A1 (en) Method for producing a steel component having a metal coating protecting it against corrosion, and steel component
US20100294400A1 (en) Method for producing a steel component by hot forming and steel component produced by hot forming
JP5020526B2 (en) Alloyed hot-dip galvanized steel sheet with excellent corrosion resistance, workability, and paintability and method for producing the same
US20140349134A1 (en) Hot-dip galvannealed steel sheet
JP4171141B2 (en) Aluminum alloy material with excellent yarn rust resistance
JP2000144294A (en) Aluminum alloy sheet excellent in press formability and hem workability
WO2016031938A1 (en) Aluminum alloy sheet
WO2016059742A1 (en) High-strength hot-dip-galvanized steel sheet
JP3754624B2 (en) Method for producing automotive aluminum alloy panel material excellent in room temperature aging suppression and low temperature age hardening ability, and automotive aluminum alloy panel material
JP2000239778A (en) Aluminum alloy material excellent in chemical convertibility
JP6585436B2 (en) Aluminum alloy plate for automobile body panel excellent in yarn rust resistance, paint bake hardenability and processability, and production method thereof, and automobile body panel using the same and production method thereof
JP3781097B2 (en) Aluminum alloy plate for automobile and manufacturing method thereof
JP4386393B2 (en) Aluminum alloy sheet for transport aircraft with excellent corrosion resistance
JP3442699B2 (en) Cleaning method of aluminum alloy material with excellent thread rust resistance
JP3255625B2 (en) Composite material with excellent phosphatability and electric corrosion resistance
JP4829412B2 (en) Aluminum alloy material with excellent yarn rust resistance
JP2000212674A (en) Aluminum alloy material excellent in corrosion resistance after coating
JP3217768B2 (en) Aluminum alloy material for zinc phosphate treatment
WO2017170181A1 (en) Aluminum alloy material with heat-cured coating having excellent durability and production method therefor
JP2000355724A (en) Aluminum alloy sheet for press forming
JPH0480109B2 (en)
JP2000129458A (en) Aluminum alloy sheet excellent in press formability and corrosion resistance
WO2016059743A1 (en) Hot-dip-galvanized steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080808

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4171141

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

EXPY Cancellation because of completion of term