JP6795460B2 - Manufacturing method of 7000 series aluminum alloy member with excellent stress corrosion cracking resistance - Google Patents

Manufacturing method of 7000 series aluminum alloy member with excellent stress corrosion cracking resistance Download PDF

Info

Publication number
JP6795460B2
JP6795460B2 JP2017113827A JP2017113827A JP6795460B2 JP 6795460 B2 JP6795460 B2 JP 6795460B2 JP 2017113827 A JP2017113827 A JP 2017113827A JP 2017113827 A JP2017113827 A JP 2017113827A JP 6795460 B2 JP6795460 B2 JP 6795460B2
Authority
JP
Japan
Prior art keywords
mass
aluminum alloy
series aluminum
web
corrosion cracking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017113827A
Other languages
Japanese (ja)
Other versions
JP2017214656A (en
Inventor
橋本 成一
成一 橋本
隆広 志鎌
隆広 志鎌
恒武 津吉
恒武 津吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2017113827A priority Critical patent/JP6795460B2/en
Publication of JP2017214656A publication Critical patent/JP2017214656A/en
Application granted granted Critical
Publication of JP6795460B2 publication Critical patent/JP6795460B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、高強度の7000系アルミニウム合金押出形材の長手方向に沿った少なくとも一部領域に、潰し加工を施して部材化した7000系アルミニウム合金部材の製造方法に関し、特に耐応力腐食割れ性に優れた7000系アルミニウム合金部材の製造方法に関する。 The present invention relates to a method for manufacturing a 7000 series aluminum alloy member in which at least a part of a high-strength 7000 series aluminum alloy extruded profile is crushed along the longitudinal direction to form a member, particularly stress corrosion cracking resistance. The present invention relates to a method for manufacturing an excellent 7000 series aluminum alloy member.

特許文献1〜3には、対向配置された一対のフランジとそれらに連結された複数のウエブからなるアルミニウム合金押出形材の端部領域に、フランジ面に対し垂直方向に潰し加工を施し、ドアビームやバンパーリインフォース等の自動車用補強部材を製造することが記載されている。このような潰し加工は、加工精度及びコスト面から時効処理後に行うことが望ましいとされ、特許文献2には、プレス焼き入れした6000系アルミニウム合金押出形材について、時効処理後に潰し加工を行うことが記載されている。 In Patent Documents 1 to 3, the end region of an aluminum alloy extruded profile composed of a pair of flanges arranged to face each other and a plurality of webs connected to them is crushed in a direction perpendicular to the flange surface, and a door beam is provided. It is described that it manufactures reinforcing members for automobiles such as bumper alloys. From the viewpoint of processing accuracy and cost, it is desirable to perform such crushing after aging, and Patent Document 2 states that press-quenched 6000 series aluminum alloy extruded profiles are crushed after aging. Is described.

一方、Zn、Mg、Cuなどの合金元素量が多く、時効処理したとき他の合金系に比して高強度化される7000系アルミニウム合金押出形材では、時効処理後の成形性が悪く、時効処理後に潰し加工を行うと、潰し加工率(断面高さの減少率)が小さくても、曲げ変形するウエブに亀裂が発生する。なお、この傾向は高合金側でより顕著である。このため、例えば特許文献4では、押出後のT1調質の状態で潰し加工を行い、その後に時効処理を行うことが望ましいと記載されている。
しかし、7000系アルミニウム合金押出形材は、プレス焼き入れ後、時効処理前の材料(T1調質)でも、自然時効によって硬化し、成形性が低下する。その成形性を改善するため、例えば特許文献5〜7に記載されているように、従来より、自然時効により硬化した7000系アルミニウム合金の強度を低下させる復元処理が行われている。
On the other hand, the 7000 series aluminum alloy extruded profile, which has a large amount of alloying elements such as Zn, Mg, and Cu and has higher strength than other alloys when aging, has poor moldability after aging. When the crushing process is performed after the aging process, cracks occur in the web that is bent and deformed even if the crushing process rate (decrease rate of the cross-sectional height) is small. This tendency is more remarkable on the high alloy side. Therefore, for example, Patent Document 4 describes that it is desirable to perform a crushing process in a state of T1 tempering after extrusion, and then perform an aging process.
However, the 7000 series aluminum alloy extruded profile is hardened by natural aging even if it is a material (T1 tempered) after press quenching and before aging treatment, and the moldability is lowered. In order to improve the moldability, for example, as described in Patent Documents 5 to 7, a restoration treatment for reducing the strength of a 7000 series aluminum alloy cured by natural aging has been conventionally performed.

特許第3465862号公報Japanese Patent No. 3465862 特許第4111651号公報Japanese Patent No. 4111651 特開平7−25296号公報Japanese Unexamined Patent Publication No. 7-25296 特開2003−118367号公報Japanese Unexamined Patent Publication No. 2003-118367 特開平7−305151号公報Japanese Unexamined Patent Publication No. 7-305151 特開平10−168553号公報Japanese Unexamined Patent Publication No. 10-168553 特開2007−119853号公報Japanese Unexamined Patent Publication No. 2007-1198553

確かに、この復元処理をT1調質の7000系アルミニウム合金押出形材に適用すると、同形材は強度が低下し、成形性が向上する。しかし、ウエブの板厚が1.5〜4mmの実用材を用い、これに潰し加工を行った場合、潰し加工率の大きさによっては、ウエブの曲げ外側に亀裂が発生し、これは従来の復元処理では解消できない。同時に、潰し加工後のウエブに高い引張残留応力が付与され、耐応力腐食割れ性が低下するという問題もある。 Certainly, when this restoration treatment is applied to a T1 tempered 7000 series aluminum alloy extruded shape material, the strength of the shape material is reduced and the moldability is improved. However, when a practical material with a web plate thickness of 1.5 to 4 mm is used and crushed, cracks occur on the bent outer side of the web depending on the crushing rate, which is the conventional method. It cannot be resolved by the restoration process. At the same time, there is also a problem that a high tensile residual stress is applied to the web after the crushing process, and the stress corrosion cracking resistance is lowered.

本発明は、このような問題に鑑みてなされてもので、7000系アルミニウム合金押出形材の長手方向に沿った少なくとも一部の領域に、押出方向に対し垂直方向の潰し加工を施して部材化した7000系アルミニウム合金部材において、潰し加工による亀裂の発生を防止し、同時に引張残留応力を低減して耐応力腐食割れ性を改善することを目的とする。 Since the present invention has been made in view of such a problem, at least a part of the region along the longitudinal direction of the 7000 series aluminum alloy extruded profile is crushed in the direction perpendicular to the extrusion direction to form a member. It is an object of the present invention to prevent the occurrence of cracks due to crushing in the 7000 series aluminum alloy member, and at the same time, to reduce the tensile residual stress and improve the stress corrosion cracking resistance.

本発明に係る耐応力腐食割れ性に優れた7000系アルミニウム合金部材の製造方法は、Zn:3.0〜8.0質量%、Mg:0.5〜2.5質量%、Cu:0.05〜2.0質量%、Ti:0.005〜0.2質量%を含有し、さらに、Mn:0.01〜0.3質量%、Cr:0.01〜0.3質量%、Zr:0.01〜0.3質量%の1種又は2種以上を含有し、残部Al及び不可避不純物からなる組成を有し、複数の板で構成されプレス焼き入れされた7000系アルミニウム合金押出形材の長手方向に沿った少なくとも一部の領域に、押出方向に対し垂直方向の潰し加工を施して部材化するもので、前記7000系アルミニウム合金押出形材の少なくとも前記領域(潰し加工を施す領域)に対し、0.4℃/秒以上の昇温速度で加熱し、200〜550℃の温度範囲に0秒を超え60秒以下保持し、次いで0.5℃/秒以上の冷却速度で冷却する復元処理を施し、復元処理後72時間以内に、1.5mm≦t≦4.0mm、3t/2≦R≦10tとなる条件で前記潰し加工を施し、潰し加工後、部材全体に時効処理を施すことを特徴とする。
前記7000系アルミニウム合金押出形材は、典型的には、対向配置された一対のフランジとそれらを連結する1又は2以上のウエブからなる。その場合、通常、前記ウエブが潰し加工により最も大きく曲げ変形を受ける板となる。
The method for producing a 7000 series aluminum alloy member having excellent stress-resistant corrosion cracking resistance according to the present invention is Zn: 3.0 to 8.0% by mass, Mg: 0.5 to 2.5% by mass, Cu: 0. It contains 05 to 2.0% by mass, Ti: 0.005 to 0.2% by mass, and further, Mn: 0.01 to 0.3% by mass, Cr: 0.01 to 0.3% by mass, Zr. : 7000 series aluminum alloy extruded type containing 0.01 to 0.3% by mass of 1 type or 2 or more types, having a composition of the balance Al and unavoidable impurities, composed of a plurality of plates and press-hardened. At least a part of the region along the longitudinal direction of the material is crushed in the direction perpendicular to the extrusion direction to form a member, and at least the region (the region to be crushed) of the 7000 series aluminum alloy extruded profile is formed. ), Heated at a heating rate of 0.4 ° C./sec or higher, held in the temperature range of 200 to 550 ° C. for more than 0 seconds and 60 seconds or less, and then cooled at a cooling rate of 0.5 ° C./sec or higher. The restoration process is performed, and within 72 hours after the restoration process, the crushing process is performed under the condition that 1.5 mm ≦ t ≦ 4.0 mm, 3 t / 2 ≦ R ≦ 10 t, and after the crushed process, the entire member is aged. It is characterized by applying.
The 7000 series aluminum alloy extruded profile typically consists of a pair of opposed flanges and one or more webs connecting them. In that case, the web is usually the plate that undergoes the largest bending deformation due to the crushing process.

本発明によれば、プレス焼き入れされた7000系アルミニウム合金押出形材の長手方向に沿った少なくとも一部の領域に対し潰し加工を施して部材化する場合に、高強度で、亀裂の発生がなく、引張残留応力を低減して耐応力腐食割れ性が改善された7000系アルミニウム合金部材を提供することができる。 According to the present invention, when at least a part of a press-quenched 7000 series aluminum alloy extruded profile is crushed along the longitudinal direction to form a member, cracks are generated with high strength. It is possible to provide a 7000 series aluminum alloy member having reduced tensile residual stress and improved stress corrosion cracking resistance.

7000系アルミニウム合金押出形材におけるY(=σrs/σ0.2)とX(=[Mg]+[Zn])の関係を示すグラフである。It is a graph which shows the relationship between Y (= σrs / σ 0.2 ) and X (= [Mg] + [Zn]) in the 7000 series aluminum alloy extruded profile. 実施例で作製した7000系アルミニウム合金押出形材の断面図(2A)、及び潰し加工の試験方法を説明する側面図(2B)である。It is sectional drawing (2A) of the 7000 series aluminum alloy extruded profile produced in an Example, and the side view (2B) explaining the test method of a crushing process.

以下、本発明に係る7000系アルミニウム合金部材及びその製造方法について、具体的に説明する。
(アルミニウム合金の組成)
まず、本発明に係る7000系アルミニウム合金の組成について説明する。ただし、この組成自体は7000系アルミニウム合金として公知のものである。
Zn:3.0〜8.0質量%
Mg:0.4〜2.5質量%
ZnとMgは金属間化合物であるMgZn2を形成して、7000系アルミニウム合金の強度を向上させる元素である。Zn含有量が3.0質量%未満又はMg含有量が0.4質量%未満では、実用材として必要な200MPa以上の耐力が得られない。一方、Zn含有量が8.0質量%を越え又はMg含有量が2.5質量%を越えると、押出形材に対し潰し加工前に所定の復元処理を行っても、潰し加工による亀裂の発生を防止できず、同時に、潰し加工により付与される引張残留応力を低減できず、耐応力腐食割れ性が顕著に低下する。高強度化及び軽量化の観点からは、Zn含有量、Mg含有量はより高合金側、例えばそれぞれ5.0〜8.0質量%、1.0〜2.5質量%、合計で6.0〜10.5質量%が望ましい。
Hereinafter, the 7000 series aluminum alloy member and the manufacturing method thereof according to the present invention will be specifically described.
(Composition of aluminum alloy)
First, the composition of the 7000 series aluminum alloy according to the present invention will be described. However, this composition itself is known as a 7000 series aluminum alloy.
Zn: 3.0 to 8.0% by mass
Mg: 0.4 to 2.5% by mass
Zn and Mg are elements that form MgZn2, which is an intermetallic compound, to improve the strength of the 7000 series aluminum alloy. If the Zn content is less than 3.0% by mass or the Mg content is less than 0.4% by mass, the proof stress of 200 MPa or more required for a practical material cannot be obtained. On the other hand, when the Zn content exceeds 8.0% by mass or the Mg content exceeds 2.5% by mass, cracks due to the crushing process are cracked even if the extruded profile is subjected to a predetermined restoration treatment before the crushing process. The occurrence cannot be prevented, and at the same time, the tensile residual stress applied by the crushing process cannot be reduced, and the stress corrosion cracking resistance is significantly reduced. From the viewpoint of high strength and light weight, the Zn content and Mg content are higher alloy side, for example, 5.0 to 8.0% by mass and 1.0 to 2.5% by mass, respectively, for a total of 6. 0 to 10.5% by mass is desirable.

Cu:0.05〜2.0質量%
Cuは7000系アルミニウム合金の強度を向上させる元素である。Cu含有量が0.05質量%未満では十分な強度向上効果がなく、一方、2.0質量%を越えると押出加工性の低下を招く。Cu含有量は、望ましくは0.5〜1.5質量%である。
Ti:0.005〜0.2質量%
Tiは7000系アルミニウム合金の鋳造時に結晶粒を微細化して、押出形材の成形性(潰し加工性)を向上させる作用があり、0.005質量%以上添加する。一方、0.2質量%を越えるとその作用が飽和し、かつ粗大な金属間化合物が晶出して、かえって成形性を低下させる。
Cu: 0.05 to 2.0% by mass
Cu is an element that improves the strength of 7000 series aluminum alloys. If the Cu content is less than 0.05% by mass, there is no sufficient effect of improving the strength, while if it exceeds 2.0% by mass, the extrusion processability is lowered. The Cu content is preferably 0.5 to 1.5% by mass.
Ti: 0.005 to 0.2% by mass
Ti has the effect of refining the crystal grains during casting of the 7000 series aluminum alloy to improve the formability (crushing workability) of the extruded profile, and is added in an amount of 0.005% by mass or more. On the other hand, if it exceeds 0.2% by mass, the action is saturated and a coarse intermetallic compound crystallizes, which rather lowers the moldability.

Mn:0.01〜0.3質量%
Cr:0.01〜0.3質量%
Zr:0.01〜0.3質量%
Mn,Cr,Zrは7000系アルミニウム合金押出形材の再結晶を抑制して、結晶組織を微細再結晶又は繊維状組織とし、耐応力腐食割れ性を向上させる作用があるため、その1種又は2種以上を上記範囲内で添加する。
不可避不純物
7000系アルミニウム合金の主要な不可避不純物として、Fe及びSiが挙げられる。7000系アルミニウム合金の諸特性を低下させないため、Fe:0.35質量%以下、Si:0.3質量%以下に制限される。
Mn: 0.01 to 0.3% by mass
Cr: 0.01 to 0.3% by mass
Zr: 0.01 to 0.3% by mass
Mn, Cr, and Zr have the effect of suppressing recrystallization of the 7000 series aluminum alloy extruded profile, making the crystal structure fine recrystallization or fibrous structure, and improving stress corrosion cracking resistance. Two or more are added within the above range.
Inevitable Impurities Fe and Si are mentioned as the main unavoidable impurities of the 7000 series aluminum alloy. In order not to deteriorate various properties of the 7000 series aluminum alloy, Fe: 0.35% by mass or less and Si: 0.3% by mass or less are limited.

(アルミニウム合金部材の製造方法)
本発明に係る7000系アルミニウム合金部材は、上記組成を有し、複数の板から構成される7000系アルミニウム合金押出形材をプレス焼き入れで製造した後(通常、数十日〜数ヶ月の保管期間がある)、同形材の長手方向に沿った全部又は一部の領域に対し、0.4℃/秒以上の昇温速度で加熱し、200〜550℃の温度範囲に0秒を超え60秒以下保持し、次いで0.5℃/秒以上の冷却速度で冷却する復元処理を施し、復元処理後72時間以内に、前記領域に押出方向に対し垂直方向の潰し加工を、前記複数の板のうち最も大きく曲げ変形を受けた板の板厚をtとし、曲げ内側半径の最小値をRとしたとき、1.5mm≦t≦4.0mm、3t/2≦R≦10tとなる条件で施し、さらに部材全体に時効処理を施すことにより製造することができる。
(Manufacturing method of aluminum alloy member)
The 7000 series aluminum alloy member according to the present invention has the above composition, and after producing a 7000 series aluminum alloy extruded profile composed of a plurality of plates by press quenching (usually, storage for several tens of days to several months). (There is a period), all or part of the region along the longitudinal direction of the same shape material is heated at a heating rate of 0.4 ° C./sec or more, and exceeds 0 seconds in the temperature range of 200 to 550 ° C. 60. The plurality of plates are held for a second or less, and then cooled at a cooling rate of 0.5 ° C./sec or more, and within 72 hours after the restoration treatment, the region is crushed in a direction perpendicular to the extrusion direction. When the thickness of the plate that has undergone the largest bending deformation is t and the minimum value of the bending inner radius is R, then 1.5 mm ≤ t ≤ 4.0 mm, 3 t / 2 ≤ R ≤ 10 t. It can be manufactured by applying it and further applying an aging treatment to the entire member.

素材である押出形材は、典型的には対向配置された一対のフランジとそれらを連結する1又は2以上のウエブからなり、これには例えば断面口型、日型、目型などほか、さらにフランジがウエブの左右に突出したものなどが含まれる。フランジ又はウエブは板状であるが、これには多少湾曲したものも含まれる。この押出形材を、一対のフランジが互いに接近する方向に潰し加工した場合、ウエブが最も大きく(大きい曲率で)曲げ変形を受けた板となる。以下、潰し加工により最も大きく曲げ変形を受ける板をウエブと称することにする。
本発明において、押出形材のウエブの板厚tを1.5mm≦t≦4.0mmと比較的厚めに規定したのは、本発明に係る7000系アルミニウム合金部材の用途として、主としてドアビームやバンパーリインフォース等の自動車用補強部材を想定したためである。
The extruded profile, which is the material, typically consists of a pair of flanges that are opposed to each other and one or more webs that connect them, such as cross-section mouth-shaped, sun-shaped, eye-shaped, and more. Includes flanges that protrude to the left and right of the web. Flange or web is plate-shaped, including slightly curved ones. When this extruded profile is crushed in a direction in which a pair of flanges approach each other, the web becomes the plate that has undergone the largest bending deformation (with a large curvature). Hereinafter, the plate that undergoes the largest bending deformation due to the crushing process will be referred to as a web.
In the present invention, the thickness t of the web of the extruded profile is specified to be relatively thick as 1.5 mm ≦ t ≦ 4.0 mm, because the 7000 series aluminum alloy member according to the present invention is mainly used for door beams and bumpers. This is because it is assumed to be a reinforcing member for automobiles such as reinforce.

プレス焼き入れで製造された押出形材は、自然時効により金属間化合物が析出し、硬化しているが、潰し加工の前に前記復元処理を受けることで金属間化合物が再固溶し、押出形材は軟化し、成形性(潰し加工性)が向上する。これにより、押出形材を潰し加工したとき、曲げ変形したウエブの曲げ外側に亀裂が発生するのを防止し、同時に、同ウエブに発生する引張残留応力を低減することができる。 In the extruded profile produced by press quenching, the intermetallic compound is precipitated and hardened by natural aging, but the intermetallic compound is re-solidified and extruded by undergoing the restoration treatment before the crushing process. The shape material is softened and the moldability (crushing workability) is improved. As a result, when the extruded profile is crushed, it is possible to prevent cracks from being generated on the bent outer side of the bent and deformed web, and at the same time, it is possible to reduce the tensile residual stress generated on the web.

前記復元処理において、昇温速度が0.4℃/秒未満では、昇温過程において金属間加工物の析出が促進され、復元処理の効果が得られない。保持温度(実体温度)が200℃未満では、自然時効で析出した金属間化合物が再固溶せず、むしろ析出が促進されて粗大化し、一方、保持温度が550℃を越えると、押出形材がO材化し、いずれにしても時効処理後に必要な強度が得られない。保持時間は少なくとも0秒を越えることが必要である。要するに、押出形材が保持温度に到達後、同温度に所定時間保持してから冷却してもよく、直ちに冷却してもよい。保持時間の上限は特に限定的ではないが、例えば60秒以内の短時間で済ます方が生産効率の点で望ましく、さらに10秒以内、5秒以内のより短時間が望ましい。加熱手段として例えば高周波誘導加熱装置又は硝石炉を利用することができる。
また、保持温度からの冷却速度が0.5℃/秒未満の緩冷却では、冷却過程で再び金属間化合物の析出が生じ、この復元処理の効果が弱まり又は失われる。なお、従来の復元処理では、冷却過程の冷却速度について特に考慮されていなかった。
In the restoration process, if the rate of temperature rise is less than 0.4 ° C./sec, precipitation of the work between metals is promoted in the process of temperature rise, and the effect of the restoration process cannot be obtained. When the holding temperature (substantive temperature) is less than 200 ° C., the intermetallic compound precipitated by natural aging does not re-solidify, but rather the precipitation is promoted and coarsened, while when the holding temperature exceeds 550 ° C., the extruded shape material However, the required strength cannot be obtained after the aging treatment. The retention time should exceed at least 0 seconds. In short, after the extruded profile reaches the holding temperature, it may be held at the same temperature for a predetermined time and then cooled, or it may be cooled immediately. The upper limit of the holding time is not particularly limited, but for example, a short time of 60 seconds or less is desirable from the viewpoint of production efficiency, and a shorter time of 10 seconds or less and 5 seconds or less is preferable. As the heating means, for example, a high frequency induction heating device or a saltpeter furnace can be used.
Further, if the cooling rate from the holding temperature is less than 0.5 ° C./sec, the intermetallic compound is precipitated again in the cooling process, and the effect of this restoration treatment is weakened or lost. In the conventional restoration process, the cooling rate in the cooling process was not particularly considered.

上記復元処理後、押出形材が自然時効により再硬化する前に潰し加工を行う。具体的には、復元処理後、72時間以内に潰し加工を行うことが望ましい。潰し加工後のウエブの曲げ内側半径の最小値をRとしたとき、1.5t≦Rを満たす潰し加工率であれば、曲げ変形したウエブの曲げ外側に亀裂が発生するのを防止でき、同時にウエブに発生する引張残留応力の増大が防止できる。しかし、R<1.5tでは、押出形材を潰し加工する前に上記復元処理を行っても、ウエブの曲げ外側に亀裂が発生するのを防止できない。同時に、ウエブに発生する引張残留応力が増大するのを防止できず、部材の耐応力腐食割れ性が低下する。一方、R>10tでは、押出形材を潰し加工する前に上記復元処理を行わなくても(押出形材がT1状態でも)亀裂の発生がない。 After the restoration treatment, the extruded shape is crushed before being re-hardened by natural aging. Specifically, it is desirable to perform the crushing process within 72 hours after the restoration process. When the minimum value of the bending inner radius of the web after crushing is R, if the crushing ratio satisfies 1.5t ≦ R, it is possible to prevent cracks from occurring on the bending outer side of the bent and deformed web, and at the same time. It is possible to prevent an increase in tensile residual stress generated on the web. However, when R <1.5t, even if the restoration treatment is performed before the extruded profile is crushed, it is not possible to prevent cracks from occurring on the bent outer side of the web. At the same time, it is not possible to prevent the tensile residual stress generated in the web from increasing, and the stress corrosion cracking resistance of the member is reduced. On the other hand, when R> 10t, cracks do not occur even if the restoration treatment is not performed before the extruded shape is crushed (even if the extruded shape is in the T1 state).

潰し加工後の時効処理は、通常の7000系アルミニウム合金で行われている周知の条件でよい。この時効処理により、製品である7000系アルミニウム合金部材において、200MPa以上の強度(0.2%耐力値)が確保される。
上記製造方法で製造された7000系アルミニウム合金部材は、高強度材であるにも関わらず、潰し加工を施した領域のウエブに亀裂の発生がなく、ウエブの引張残留応力σsrと部材の0.2%耐力値σ0.2の比Y(σsr/σ0.2)が、7000系アルミニウム合金のMg含有量[Mg]とZn含有量[Zn] の合計X(=[Mg]+[Zn])との間で、下記式(1)を満たし、優れた耐応力腐食割れ性を示す。
Y≦−0.1X+1.4 ・・・(1)
The aging treatment after the crushing process may be performed under well-known conditions that are carried out with ordinary 7000 series aluminum alloys. By this aging treatment, the strength (0.2% proof stress value) of 200 MPa or more is secured in the 7000 series aluminum alloy member which is a product.
Although the 7000 series aluminum alloy member manufactured by the above manufacturing method is a high-strength material, there is no cracking in the web in the crushed region, and the tensile residual stress σsr of the web and 0. The ratio Y (σsr / σ 0.2 ) of the 2% proof stress value σ 0.2 is the total X (= [Mg] + [Zn] of the Mg content [Mg] and the Zn content [Zn] of the 7000 series aluminum alloy. ]) Satisfies the following formula (1) and exhibits excellent stress corrosion cracking resistance.
Y ≦ −0.1X + 1.4 ・ ・ ・ (1)

図1に示すグラフは、ZnとMgの合計含有量X(=[Zn]+[Mg])と、引張残留応力σrsと0.2%耐力σ0.2の比Y(σrs/σ0.2)からなるX−Y座標に、後述する実施例のデータをプロット(△、□)したものであり、図中のラインは、Y=−0.1X+1.4で表される直線である。図1において、△は実施例のNo.1〜6に相当し、これらは全てY≦−0.1X+1.4の領域に入り、表2に示すとおり、耐応力腐食割れ性に優れている。一方、□はNo.7〜14に相当し、全てY>−0.1X+1.4の領域に入り、表2に示すとおり、耐応力腐食割れ性が劣る。また、表2に示すとおり、Y≦−0.1X+1.4の領域に入るNo.1〜6はいずれもウエブに亀裂がなく、Y>−0.1X+1.4の領域に入るNo.7〜14はいずれもウエブに亀裂が生じている。
なお、図1において、Yの分母である0.2%耐力(σ0.2)は、後述する実施例に示すように、プレス焼き入れで製造された押出材を自然時効させた後、復元処理及び拡管加工を行うことなく時効処理した箇所の0.2%耐力である。
The graph shown in FIG. 1 shows the ratio Y (σrs / σ 0. ) of the total content X (= [Zn] + [Mg]) of Zn and Mg, the tensile residual stress σrs, and the 0.2% proof stress σ 0.2 . The data of the examples described later are plotted (Δ, □) on the XY coordinates consisting of 2 ), and the line in the figure is a straight line represented by Y = −0.1X + 1.4. In FIG. 1, Δ is No. 1 of the embodiment. Corresponding to 1 to 6, all of them fall into the region of Y ≦ −0.1X + 1.4, and as shown in Table 2, they are excellent in stress corrosion cracking resistance. On the other hand, □ is No. Corresponding to 7 to 14, all of them are in the region of Y> -0.1X + 1.4, and as shown in Table 2, the stress corrosion cracking resistance is inferior. Further, as shown in Table 2, No. 1 in the region of Y ≦ −0.1X + 1.4. Nos. 1 to 6 have no cracks in the web and fall into the region of Y> -0.1X + 1.4. In each of 7 to 14, the web is cracked.
In FIG. 1, the 0.2% proof stress (σ 0.2 ), which is the denominator of Y, is restored after the extruded material produced by press quenching is naturally aged, as shown in Examples described later. It has a 0.2% proof stress of the portion that has been aged without being treated or expanded.

表1に示す7000系アルミニウム合金を熱間押出成形し、押出直後にオンラインでファン空冷(プレス焼き入れ)し、図2Aに示すように、対向配置された一対のフランジ(内側フランジ1,外側フランジ2)と、これらを垂直に接続する2個のウエブ3,4からなる断面略口型(突出フランジあり)の押出形材を製造した。この押出形材はドアビームを想定したもので、高さ30.0mm、外側フランジ1の板厚4.0mm、幅40.0mm、内側フランジ2の板厚4.0mm、幅50.0mm、両ウエブ3,4の板厚2.0mm又は4.0mm、外側フランジ1は両ウエブ3,4から左右に各5mm突出し、内側フランジ2は両ウエブ3,4から左右に各10mm突出している。 The 7000 series aluminum alloy shown in Table 1 is hot-extruded, immediately after extrusion, fan air-cooled (press-quenched) online, and as shown in FIG. 2A, a pair of flanges (inner flange 1, outer flange) arranged opposite to each other. 2) and an extruded shape member having a substantially open cross section (with a protruding flange) composed of two webs 3 and 4 for vertically connecting them were manufactured. This extruded profile assumes a door beam, height 30.0 mm, outer flange 1 plate thickness 4.0 mm, width 40.0 mm, inner flange 2 plate thickness 4.0 mm, width 50.0 mm, both webs. The plate thickness of 3 and 4 is 2.0 mm or 4.0 mm, the outer flange 1 protrudes 5 mm to the left and right from both webs 3 and 4, and the inner flange 2 protrudes 10 mm to the left and right from both webs 3 and 4.

プレス焼き入れ後のNo.1〜14の押出形材を所定長さに切断して、No.1〜14のそれぞれについて2本ずつの試験材(押出形材)を採取し、室温で20日間放置して自然時効させた後、高周波誘導加熱装置を用い、表1に示す種々の昇温速度、到達温度(実体温度)、保持時間、及び冷却速度で復元処理を施した(No.11のみ施さず)。復元処理は試験材の長手方向に沿った一部領域(端部領域)にのみ施した。 No. after press quenching The extruded profiles 1 to 14 were cut to a predetermined length to obtain No. Two test materials (extruded shapes) were collected for each of 1 to 14, left at room temperature for 20 days to allow natural aging, and then using a high-frequency induction heating device, various heating rates shown in Table 1 were used. , The restoration process was performed at the reached temperature (body temperature), the holding time, and the cooling rate (not only No. 11). The restoration treatment was applied only to a part of the test material along the longitudinal direction (end region).

Figure 0006795460
Figure 0006795460

復元処理後、表1に示す時間経過した後、図2Bに示すように、試験材5を水平台6上に置き、水平台6の上方に配置された潰し加工用治具7で垂直にプレスし、同時に図示しない水平加工治具(特許文献3に記載された水平負荷用治具9参照)でウエブ3,4に内向きの負荷を加え、試験材5の復元処理した端部領域(No.11のみ復元処理していない領域)を、潰し加工用治具7の傾斜面7aで上下方向に潰し加工した。潰し加工により試験材5のウエブ3,4が曲げ変形し、中空部の内側に張り出した。この潰し加工において、潰し加工用治具7のストロークを一定とし、水平台6上で試験材5の長手方向(図2Bにおいて左右方向)の位置を調整することにより、No.1〜14の試験材5(各2本)の潰し加工率、すなわちウエブ3,4の曲げ半径を調整した。
潰し加工後、No.1〜14の試験材(各2本)全体に130℃×8時間の時効処理を施した。
時効処理後、No.1〜14の一方の試験材を用い、下記要領で引張試験、ウエブの曲げ外側の亀裂発生の有無の検査、ウエブの曲げ内側半径(最小値R)の測定、及びウエブの引張残留応力の測定を行った。また、No.1〜14のもう1つの試験材を用い、耐応力腐食割れ性試験を行った。その結果を表2に示す。
After the time shown in Table 1 has elapsed after the restoration process, as shown in FIG. 2B, the test material 5 is placed on the horizontal table 6 and pressed vertically with the crushing jig 7 arranged above the horizontal table 6. At the same time, an inward load was applied to the webs 3 and 4 with a horizontal processing jig (see the horizontal load jig 9 described in Patent Document 3) (see Patent Document 3), and the end region (No.) of the test material 5 was restored. The region (area not restored only in .11) was crushed in the vertical direction on the inclined surface 7a of the crushing jig 7. The webs 3 and 4 of the test material 5 were bent and deformed by the crushing process, and overhanged inside the hollow portion. In this crushing process, the stroke of the crushing jig 7 is made constant, and the position of the test material 5 in the longitudinal direction (horizontal direction in FIG. 2B) is adjusted on the horizontal table 6 to obtain No. The crushing rate of the test materials 5 (2 each) of 1 to 14 was adjusted, that is, the bending radii of the webs 3 and 4 were adjusted.
After crushing, No. The entire test materials (2 each) from 1 to 14 were aged at 130 ° C. for 8 hours.
After the aging process, No. Using one of the test materials 1 to 14, a tensile test, inspection of the presence or absence of cracks on the outside of the bending of the web, measurement of the inner radius of bending of the web (minimum value R), and measurement of the tensile residual stress of the web are performed as follows. Was done. In addition, No. A stress corrosion cracking resistance test was performed using another test material from 1 to 14. The results are shown in Table 2.

(引張試験)
試験材5の復元処理していない領域からJIS5号試験片を採取し、JISZ2241に規定する金属材料試験方法に準じて引張試験を行い、0.2%耐力(σ0.2)を測定した。
(亀裂発生の有無)
試験材5の潰し加工した領域のウエブ3,4を目視で観察し、ウエブ3,4の曲げ外側における亀裂発生の有無を検査した。亀裂は主として試験材5の潰し加工した端面近傍に生じていた。
(曲げ内側半径の最小値R)
試験材5の潰し加工した端面においてウエブ3,4の曲げ内側半径が最も小さくなることから、同端面においてウエブ3,4の曲げ内側半径を測定した。
(Tensile test)
A JIS No. 5 test piece was taken from the region of the test material 5 that had not been restored, and a tensile test was performed according to the metal material test method specified in JIS Z2241, and a 0.2% proof stress (σ 0.2 ) was measured.
(Presence or absence of cracks)
The webs 3 and 4 in the crushed region of the test material 5 were visually observed, and the presence or absence of cracks on the bent outer side of the webs 3 and 4 was inspected. The cracks were mainly generated near the crushed end face of the test material 5.
(Minimum value R of bending inner radius)
Since the bending inner radius of the webs 3 and 4 is the smallest on the crushed end face of the test material 5, the bending inner radius of the webs 3 and 4 was measured on the same end face.

(ウエブの引張残留応力)
残留応力の測定法は切断法により次の手順で行った。測定対象位置として、図2に示す潰し加工開始位置A、端部位置B、及び中間位置Cを選定し(いずれも高さ中央位置)、これら測定対象位置表面をサンドペーパーで研磨後、アセトン洗浄し、この研磨部位に歪みゲージを瞬間接着剤で接着し、24時間室温放置後、歪みゲージのリード線を歪み計に接続してゼロ点設定をし、歪みゲージの周囲を金属のこぎりで10mm角に切断して応力開放し、切断後の歪み量εを計測し、次式にて残留応力値σrsを算出した。σrs=−E×ε(E;ヤング率)、ここでE=68894N/mmとした。
なお、No.1〜14の試験材全てにおいて、潰し加工開始位置Aで測定した引張残留応力値が最大値となった。これは、潰し加工開始位置Aにおいて最も材料の拘束が大きく、一方、端部位置B及び中間位置Cでは材料の拘束が比較的小さく、潰し加工による歪みが解放されたためではないかと推測される。従って、表2に記載した残留応力値σrsは、潰し加工開始位置Aで測定した値である。
(Tensile residual stress of web)
The method for measuring the residual stress was the following procedure by the cutting method. The crushing start position A, the end position B, and the intermediate position C shown in FIG. 2 are selected as the measurement target positions (all are at the center of the height), and the surface of these measurement target positions is sanded and then washed with acetone. Then, attach the strain gauge to this polished part with instant adhesive, leave it at room temperature for 24 hours, connect the lead wire of the strain gauge to the strain gauge, set the zero point, and use a metal saw around the strain gauge to set a 10 mm square. The stress was released by cutting, the strain amount ε after cutting was measured, and the residual stress value σrs was calculated by the following formula. σrs = −E × ε (E; Young's modulus), where E = 68894N / mm 2 .
In addition, No. In all of the test materials 1 to 14, the tensile residual stress value measured at the crushing start position A was the maximum value. It is presumed that this is because the material constraint is the largest at the crushing start position A, while the material constraint is relatively small at the end position B and the intermediate position C, and the strain due to the crushing process is released. Therefore, the residual stress value σrs shown in Table 2 is a value measured at the crushing start position A.

(耐応力腐食割れ性)
クロム酸促進法による耐応力腐食割れ試験を行った。潰し加工した試験材を用いて、90℃の試験溶液に最大16時間まで浸漬し、応力腐食割れを目視で観察した。また、試験溶液は、蒸留水に参加クロム36g、2クロム酸カリウム30g及び食塩3g(1リットルあたり)を加えて作製した。試験は1時間毎に試験材を溶液から取り出し、割れ発生の有無を確認し、割れ無し又は割れ発生までの時間が12時間以上であったものを耐応力腐食割れ性が優れる(○)と評価し、割れ発生までの時間が12時間未満であったものを劣る(×)と評価した。なお、応力腐食割れは全て潰し加工開始位置A(図2(b)参照)の付近で生じていた。
(Stress corrosion cracking resistance)
A stress corrosion cracking resistance test was conducted by the chromic acid acceleration method. Using the crushed test material, the test material was immersed in a test solution at 90 ° C. for up to 16 hours, and stress corrosion cracking was visually observed. The test solution was prepared by adding 36 g of participating chromium, 30 g of potassium dichromate and 3 g of salt (per liter) to distilled water. In the test, the test material is taken out from the solution every hour, the presence or absence of cracking is confirmed, and those with no cracking or the time until cracking occurs are evaluated as having excellent stress corrosion cracking resistance (○). However, those in which the time until cracking occurred was less than 12 hours were evaluated as inferior (x). All stress corrosion cracking occurred near the crushing start position A (see FIG. 2B).

Figure 0006795460
Figure 0006795460

残留応力値(σrs)と0.2%耐力値(σ0.2)から、両者の比Y(=σrs/σ0.2)を算出した。また、Zn含有量[Zn]とMg含有量[Mg]から、ZnとMgの合計含有量X(=[Zn]+[Mg])、及び前記式(1)の右辺(−0.1X+1.4)の値を算出した。以上の算出結果を基に、X,Yの値が前記関係式(1)を満たす場合を○と判定し、満たさない場合を×と判定した。以上の算出結果及び判定結果を表2に示す。
表1,2から、本発明に規定する合金組成を有し、本発明に規定する条件で復元処理及び潰し加工を行ったNo.1〜6の試験材は、潰し加工後のウエブに亀裂がなく、時効処理後の耐力値が200MPa以上で、かつY(=σrs/σ0.2)とX(=[Zn]+[Mg])が前記式(1)を満たし、いずれも耐応力腐食割れ性が優れる。
From the residual stress value (σrs) and the 0.2% proof stress value (σ 0.2 ), the ratio Y (= σrs / σ 0.2 ) of the two was calculated. Further, from the Zn content [Zn] and the Mg content [Mg], the total content X (= [Zn] + [Mg]) of Zn and Mg, and the right side (-0.1X + 1) of the above formula (1). The value of 4) was calculated. Based on the above calculation results, the case where the values of X and Y satisfy the above relational expression (1) is determined as ◯, and the case where the values do not satisfy is determined as x. Table 2 shows the above calculation results and judgment results.
From Tables 1 and 2, No. 1 having the alloy composition specified in the present invention and undergoing restoration treatment and crushing under the conditions specified in the present invention. The test materials 1 to 6 have no cracks in the web after crushing, have a proof stress value of 200 MPa or more after aging treatment, and Y (= σrs / σ 0.2 ) and X (= [Zn] + [Mg]. ]) Satisfies the above formula (1), and all have excellent stress corrosion cracking resistance.

一方、No.7の試験材は、Zn及びMgの含有量が過剰で、潰し加工によりウエブに亀裂が入り、かつY(=σrs/σ0.2)とX(=[Zn]+[Mg])が前記式(1)を満たさず、耐応力腐食割れ性が劣る。
No.8の試験材は、復元処理の冷却速度が遅いため復元処理の効果が失われ、潰し加工によりウエブに亀裂が入り、かつY(=σrs/σ0.2)とX(=[Zn]+[Mg])が前記式(1)を満たさず、耐応力腐食割れ性が劣る。
No.9の試験材は、復元処理の到達温度が低いため復元処理の効果がなく、時効処理により耐力が向上せず、比較的低Zn、Mgであるにも関わらず、潰し加工によりウエブに亀裂が入るのを防止できなかった。また、Y(=σrs/σ0.2)とX(=[Zn]+[Mg])が前記式(1)を満たさず、耐応力腐食割れ性も劣る。
On the other hand, No. In the test material of No. 7, the contents of Zn and Mg were excessive, the web was cracked by crushing, and Y (= σrs / σ 0.2 ) and X (= [Zn] + [Mg]) were described above. It does not satisfy the formula (1) and is inferior in stress corrosion cracking resistance.
No. In the test material No. 8, the effect of the restoration process was lost due to the slow cooling rate of the restoration process, the web was cracked by the crushing process, and Y (= σrs / σ 0.2 ) and X (= [Zn] +). [Mg]) does not satisfy the above formula (1), and the stress corrosion cracking resistance is inferior.
No. The test material of No. 9 had no effect of the restoration treatment because the temperature reached by the restoration treatment was low, the yield strength was not improved by the aging treatment, and although the Zn and Mg were relatively low, the web was cracked by the crushing process. I couldn't prevent it from entering. Further, Y (= σrs / σ 0.2 ) and X (= [Zn] + [Mg]) do not satisfy the above formula (1), and the stress corrosion cracking resistance is also inferior.

No.10の試験材は、R/tが小さすぎる(潰し加工率が高すぎる)ため、復元処理の条件は適正であったが、比較的低Zn,Mgであるにも関わらず、潰し加工による亀裂の発生を防止できなかった。また、Y(=σrs/σ0.2)とX(=[Zn]+[Mg])が前記式(1)を満たさず、耐応力腐食割れ性も劣る。
No.11の試験材は、復元処理を行っていないため、潰し加工によりウエブに亀裂が発生した。また、Y(=σrs/σ0.2)とX(=[Zn]+[Mg])が前記式(1)を満たさず、耐応力腐食割れ性も劣る。
No.12の試験材は、復元処理から潰し加工を行うまでの時間が長いため、復元処理の効果が失われ、潰し加工によりウエブに亀裂が入り、かつY(=σrs/σ0.2)とX(=[Zn]+[Mg])が前記式(1)を満たさず、耐応力腐食割れ性が劣る。
No. Since the R / t of the test material 10 was too small (the crushing rate was too high), the conditions for the restoration process were appropriate, but despite the relatively low Zn and Mg, cracks due to the crushing process. Could not be prevented. Further, Y (= σrs / σ 0.2 ) and X (= [Zn] + [Mg]) do not satisfy the above formula (1), and the stress corrosion cracking resistance is also inferior.
No. Since the test material of No. 11 was not subjected to the restoration treatment, cracks were generated in the web due to the crushing process. Further, Y (= σrs / σ 0.2 ) and X (= [Zn] + [Mg]) do not satisfy the above formula (1), and the stress corrosion cracking resistance is also inferior.
No. Since the test material of No. 12 has a long time from the restoration process to the crushing process, the effect of the restoration process is lost, the web is cracked by the crushing process, and Y (= σrs / σ 0.2 ) and X. (= [Zn] + [Mg]) does not satisfy the above formula (1), and the stress corrosion cracking resistance is inferior.

No.13の試験材は、復元処理の昇温速度が小さいため復元処理の効果が得られず、潰し加工によりウエブに亀裂が入り、かつY(=σrs/σ0.2)とX(=[Zn]+[Mg])が前記式(1)を満たさず、耐応力腐食割れ性が劣る。
No.14の試験材は、復元処理の冷却速度が小さいため復元処理の効果が失われ、潰し加工によりウエブに亀裂が入り、かつY(=σrs/σ0.2)とX(=[Zn]+[Mg])が前記式(1)を満たさず、耐応力腐食割れ性が劣る。
No. In the test material of No. 13, the effect of the restoration treatment could not be obtained because the temperature rise rate of the restoration treatment was small, the web was cracked by the crushing process, and Y (= σrs / σ 0.2 ) and X (= [Zn). ] + [Mg]) does not satisfy the above formula (1), and the stress corrosion cracking resistance is inferior.
No. In the test material No. 14, the effect of the restoration process was lost due to the low cooling rate of the restoration process, the web was cracked by the crushing process, and Y (= σrs / σ 0.2 ) and X (= [Zn] +). [Mg]) does not satisfy the above formula (1), and the stress corrosion cracking resistance is inferior.

1,2 フランジ
3,4 ウエブ
5 試験材(押出形材)
7 潰し加工用治具
1, 2, Flange 3, 4 Web 5 Test material (extruded profile)
7 Jig for crushing

Claims (1)

Zn:3.0〜8.0質量%、Mg:0.4〜2.5質量%、Cu:0.05〜2.0質量%、Ti:0.005〜0.2質量%を含有し、さらに、Mn:0.01〜0.3質量%、Cr:0.01〜0.3質量%、Zr:0.01〜0.3質量%の1種又は2種以上を含有し、残部Al及び不可避不純物からなる組成を有し、対向配置された一対の板状のフランジとそれらを連結する1又は2以上の板状のウエブで構成され、プレス焼き入れで製造された7000系アルミニウム合金押出形材の端部領域に、押出方向に対し垂直方向でかつ前記一対のフランジが互いに接近する方向の潰し加工を施して前記ウエブを曲げ変形させ部材化する7000系アルミニウム合金部材の製造方法において、潰し加工の前に、前記押出形材の少なくとも前記領域に対し、0.4℃/秒以上の昇温速度で加熱し、200〜550℃の温度範囲に0秒を超え60秒以下保持し、次いで0.5℃/秒以上の冷却速度で冷却する復元処理を施し、復元処理後72時間以内に、前記ウエブの曲げ内側半径が前記押出形材の端面において最も小さくなり、かつ前記ウエブの板厚をtとし、前記端面における前記ウエブの曲げ内側半径をRとしたとき、1.5mm≦t≦4.0mm、3t/2≦R≦10tとなる条件で前記潰し加工を施し、潰し加工後、部材全体に時効処理を施すことを特徴とする耐応力腐食割れ性に優れた7000系アルミニウム合金部材の製造方法。 It contains Zn: 3.0 to 8.0% by mass, Mg: 0.4 to 2.5% by mass, Cu: 0.05 to 2.0% by mass, and Ti: 0.005 to 0.2% by mass. Further, Mn: 0.01 to 0.3% by mass, Cr: 0.01 to 0.3% by mass, Zr: 0.01 to 0.3% by mass containing one or more kinds, and the balance. A 7000 series aluminum alloy having a composition consisting of Al and unavoidable impurities, composed of a pair of plate-shaped flanges arranged opposite to each other and one or more plate-shaped webs connecting them, and manufactured by press extrusion. In a method for manufacturing a 7000 series aluminum alloy member, in which the end region of an extruded profile is crushed in a direction perpendicular to the extrusion direction and in a direction in which the pair of flanges approach each other to bend and deform the web to form a member. Prior to the crushing process, at least the region of the extruded profile is heated at a heating rate of 0.4 ° C./sec or more and held in a temperature range of 200 to 550 ° C. for more than 0 seconds and 60 seconds or less. Then, a restoration process of cooling at a cooling rate of 0.5 ° C./sec or more is performed, and within 72 hours after the restoration process, the bending inner radius of the web becomes the smallest at the end face of the extruded profile, and the web When the plate thickness is t and the bending inner radius of the web on the end face is R, the crushing process is performed under the condition that 1.5 mm ≤ t ≤ 4.0 mm, 3 t / 2 ≤ R ≤ 10 t. A method for manufacturing a 7000 series aluminum alloy member having excellent stress-resistant corrosion cracking resistance, which is characterized by subjecting the entire member to an aging treatment.
JP2017113827A 2017-06-08 2017-06-08 Manufacturing method of 7000 series aluminum alloy member with excellent stress corrosion cracking resistance Active JP6795460B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017113827A JP6795460B2 (en) 2017-06-08 2017-06-08 Manufacturing method of 7000 series aluminum alloy member with excellent stress corrosion cracking resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017113827A JP6795460B2 (en) 2017-06-08 2017-06-08 Manufacturing method of 7000 series aluminum alloy member with excellent stress corrosion cracking resistance

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013015456A Division JP6195448B2 (en) 2013-01-30 2013-01-30 Method for producing 7000 series aluminum alloy member excellent in stress corrosion cracking resistance

Publications (2)

Publication Number Publication Date
JP2017214656A JP2017214656A (en) 2017-12-07
JP6795460B2 true JP6795460B2 (en) 2020-12-02

Family

ID=60575400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017113827A Active JP6795460B2 (en) 2017-06-08 2017-06-08 Manufacturing method of 7000 series aluminum alloy member with excellent stress corrosion cracking resistance

Country Status (1)

Country Link
JP (1) JP6795460B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07305151A (en) * 1994-05-10 1995-11-21 Mitsubishi Heavy Ind Ltd Formation of high strength aluminum alloy
JP3638188B2 (en) * 1996-12-12 2005-04-13 住友軽金属工業株式会社 Manufacturing method of high strength aluminum alloy extruded tube for front fork outer tube of motorcycle with excellent stress corrosion cracking resistance
JP3800275B2 (en) * 1998-03-17 2006-07-26 株式会社神戸製鋼所 Aluminum alloy door beam manufacturing method
JP2003118367A (en) * 2001-10-18 2003-04-23 Kobe Steel Ltd Aluminum alloy extruded material for door beam
JP2010083381A (en) * 2008-09-30 2010-04-15 Kobe Steel Ltd Bumper system and method for manufacturing the same
JP5827830B2 (en) * 2011-07-05 2015-12-02 株式会社竹中工務店 Method and apparatus for measuring low water permeable material and water-stopping material

Also Published As

Publication number Publication date
JP2017214656A (en) 2017-12-07

Similar Documents

Publication Publication Date Title
JP6195448B2 (en) Method for producing 7000 series aluminum alloy member excellent in stress corrosion cracking resistance
JP7321828B2 (en) High-strength 6xxx aluminum alloy and method for making same
JP6195446B2 (en) Method for producing 7000 series aluminum alloy member excellent in stress corrosion cracking resistance
JP5968285B2 (en) Bumper reinforcement and manufacturing method thereof
JP5671422B2 (en) Method for producing high strength 7000 series aluminum alloy member and high strength 7000 series aluminum alloy member
JP5882380B2 (en) Manufacturing method of aluminum alloy sheet for press forming
JP2016151045A (en) Method for producing 7000 series aluminum alloy member excellent in stress corrosion cracking resistance
JP5968284B2 (en) Bumper structure and bumper beam manufacturing method
EP1990430B1 (en) High-strength hot rolled steel plate and manufacturing method thereof
TW201636440A (en) A wire rod for non-heat treated mechanical parts, a steel wire for non-heat treated mechanical parts, and a non-heat treated mechanical part
JP6677584B2 (en) Method of manufacturing energy absorbing member
JP7244407B2 (en) Aluminum alloy sheet for automobile structural member, automobile structural member, and method for producing aluminum alloy plate for automobile structural member
JP6506678B2 (en) Aluminum alloy sheet for automobile structural member and method of manufacturing the same
JP2017125228A (en) Manufacturing method of molding member
US20220220588A1 (en) Superplastic-forming aluminum alloy plate and production method therefor
JP6795460B2 (en) Manufacturing method of 7000 series aluminum alloy member with excellent stress corrosion cracking resistance
JP6688828B2 (en) Aluminum alloy plate for automobile structural member, automobile structural member and method for manufacturing aluminum alloy plate for automobile structural member
JP6005539B2 (en) Method for producing high strength 7000 series aluminum alloy member
JP2020066768A (en) Manufacturing method of member made of 7000 series aluminum alloy
JP3454755B2 (en) Shock absorbing member with excellent pressure-resistant cracking resistance
JP6465040B2 (en) Manufacturing method of molded member
JP2003105473A (en) Aluminum alloy sheet having excellent bendability and drawability and method for manufacturing the same
JP2021014612A (en) Manufacturing method of 7000 series aluminum alloy member
JP6611287B2 (en) Method for producing 7000 series aluminum alloy member excellent in stress corrosion cracking resistance
US3253965A (en) Thermal treatment of aluminum base alloy articles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180725

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180921

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190205

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20190419

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200212

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20200623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200817

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20201013

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20201110

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20201110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201112

R150 Certificate of patent or registration of utility model

Ref document number: 6795460

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150