JP2020056082A - Method of forming aluminum alloy - Google Patents

Method of forming aluminum alloy Download PDF

Info

Publication number
JP2020056082A
JP2020056082A JP2018188033A JP2018188033A JP2020056082A JP 2020056082 A JP2020056082 A JP 2020056082A JP 2018188033 A JP2018188033 A JP 2018188033A JP 2018188033 A JP2018188033 A JP 2018188033A JP 2020056082 A JP2020056082 A JP 2020056082A
Authority
JP
Japan
Prior art keywords
aluminum alloy
solution
treatment
forming
plate material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018188033A
Other languages
Japanese (ja)
Other versions
JP6817266B2 (en
Inventor
智美 前野
Tomomi Maeno
智美 前野
俊哉 谷口
Toshiya Taniguchi
俊哉 谷口
拓己 齋藤
Takumi Saito
拓己 齋藤
夏葵 飛田
Natsuki Hida
夏葵 飛田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
G Tekt Corp
Original Assignee
G Tekt Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by G Tekt Corp filed Critical G Tekt Corp
Priority to JP2018188033A priority Critical patent/JP6817266B2/en
Publication of JP2020056082A publication Critical patent/JP2020056082A/en
Application granted granted Critical
Publication of JP6817266B2 publication Critical patent/JP6817266B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

To make it possible to form an aluminum alloy at lower cost.SOLUTION: A method of forming aluminum alloy comprises: applying solution treatment to an aluminum alloy, and then heating a precipitation-hardened plate material with a solution-treated state maintained, without artificial aging treatment (S101); press-treating the plate material into a formed body while maintaining the solution-treated state (S102); and applying artificial aging treatment to the press-formed compact (S103). In the step S101, the plate material is heated to a temperature at which it can be press-treated.SELECTED DRAWING: Figure 1

Description

本発明は、アルミニウム合金からなる板材を成形加工するアルミニウム合金の成形方法に関する。   TECHNICAL FIELD The present invention relates to a method for forming an aluminum alloy, which forms a plate material made of an aluminum alloy.

現在、自動車の燃費向上のために軽量化が重要となっている。超高張力鋼板による薄肉化を中心に軽量化が進んでいるが、剛性に対して指数的に影響するため、板厚を薄くすることは、部品剛性の確保が難しく限界がある。これに対し、アルミニウム合金は、強度が高いだけでなく比重も軽いため、板厚を確保して軽量化ができる。特に、Al−Zn−Mg系合金またはAl−Zn−Mg−Cu系合金(7000系アルミニウム合金)は、強度が高く有効である。   At present, weight reduction is important for improving fuel efficiency of automobiles. Lightening is progressing mainly by thinning with ultra-high strength steel sheets, but since it has an exponential effect on rigidity, it is difficult to secure the rigidity of parts, and there is a limit to reducing the sheet thickness. On the other hand, an aluminum alloy has a high strength and a low specific gravity. In particular, an Al-Zn-Mg-based alloy or an Al-Zn-Mg-Cu-based alloy (7000-based aluminum alloy) has high strength and is effective.

特開2010−159489号公報JP 2010-159489 A

伊藤 吾朗 他、「Al−Zn−Mg系合金」、軽金属、Vol. 38、No. 12、818−839頁、1988年。Goro Ito et al., "Al-Zn-Mg based alloy", Light Metal, Vol. 38, No. 12, pp. 818-839, 1988.

ところで、一般に、溶体化処理および人工時効処理をして時効硬化しているアルミニウム合金の板材を納入し、この板材をプレス加工して自動車の部品としている。しかしながら、7000系などの高強度のアルミニウム合金は、時効硬化している板材の室温における延性が約10%と低く、冷間プレス成形が困難である。このため、従来では、納入(購入)した板材を溶体化処理し、この後、焼きなましの状態でプレスして成形するようにしている(特許文献1参照)。この方法は、高い温度に加熱する必要あるなど、コストが高いため、例えば、自動車部品などのコスト低減が要求される場合には適用が困難である。   By the way, in general, a plate material of an aluminum alloy which has been subjected to solution treatment and artificial aging treatment and which has been age-hardened is delivered, and this plate material is pressed to form automobile parts. However, a high-strength aluminum alloy such as 7000 series has a low ductility at room temperature of about 10% of an age-hardened sheet material, and it is difficult to perform cold press forming. For this reason, conventionally, a delivered (purchased) plate material is subjected to a solution treatment, and then pressed and formed in an annealed state (see Patent Document 1). This method is expensive, for example, it is necessary to heat it to a high temperature. Therefore, it is difficult to apply this method, for example, when cost reduction of automobile parts is required.

本発明は、以上のような問題点を解消するためになされたものであり、アルミニウム合金をより低コストで成形できるようにすることを目的とする。   The present invention has been made to solve the above problems, and an object of the present invention is to enable an aluminum alloy to be formed at a lower cost.

本発明に係るアルミニウム合金の成形方法は、アルミニウム合金からなる溶体化処理の後、人工時効処理をすることなく析出硬化している板材を、溶体化処理がなされた状態が維持された状態で加熱する第1工程と、溶体化処理がなされた状態を維持して板材をプレス加工して成形体とする第2工程と、プレス加工した成形体を人工時効処理する第3工程とを備え、第1工程では、板材をプレス加工可能な温度に加熱する。   In the method for forming an aluminum alloy according to the present invention, after a solution treatment of an aluminum alloy, a plate material that has been precipitation-hardened without being subjected to artificial aging is heated in a state where the solution-treated state is maintained. A first step of performing a solution treatment, a second step of pressing a sheet material to form a formed body while maintaining a state of being subjected to a solution treatment, and a third step of performing an artificial aging treatment on the pressed formed body. In one step, the plate is heated to a temperature at which press working is possible.

上記アルミニウム合金の成形方法の一構成例において、第1工程では、板材を150℃〜250℃の範囲のいずれかの温度に加熱する。   In one configuration example of the method for forming an aluminum alloy, in the first step, the plate is heated to any temperature in the range of 150C to 250C.

上記アルミニウム合金の成形方法の一構成例において、第1工程では、板材を接触加熱により加熱する。   In one configuration example of the method for forming an aluminum alloy, in the first step, the plate is heated by contact heating.

上記アルミニウム合金の成形方法の一構成例において、アルミニウム合金は、Al−Zn−Mg系合金またはAl−Zn−Mg−Cu系合金である。   In one configuration example of the aluminum alloy forming method, the aluminum alloy is an Al-Zn-Mg-based alloy or an Al-Zn-Mg-Cu-based alloy.

以上説明したように、本発明によれば、アルミニウム合金からなる溶体化処理がされている板材を、溶体化処理がなされた状態が維持された状態で加熱し、溶体化処理がなされた状態を維持してプレス加工するので、アルミニウム合金がより低コストで成形できるという優れた効果が得られる。   As described above, according to the present invention, a sheet material that has been subjected to a solution treatment made of an aluminum alloy is heated in a state where the state of the solution treatment has been performed, and the state in which the solution treatment has been performed is performed. Since the press working is performed while maintaining, an excellent effect that the aluminum alloy can be formed at lower cost can be obtained.

図1は、本発明の実施の形態におけるアルミニウム合金の成形方法を説明するためのフローチャートである。FIG. 1 is a flowchart illustrating a method for forming an aluminum alloy according to an embodiment of the present invention. 図2は、第1工程における加熱温度と硬さとの関係について調査した結果を示す特性図である。FIG. 2 is a characteristic diagram showing a result of investigation on a relationship between a heating temperature and hardness in the first step. 図3は、本発明の実施の形態におけるアルミニウム合金の成形方法によるプレス加工(V曲げ)試験の結果を示す特性図である。FIG. 3 is a characteristic diagram showing a result of a press working (V-bending) test by the method for forming an aluminum alloy according to the embodiment of the present invention. 図4は、第1工程における加熱時間と硬さとの関係について調査した結果を示す特性図である。FIG. 4 is a characteristic diagram showing a result of investigation on a relationship between the heating time and the hardness in the first step. 図5は、アルミニウム合金からなる溶体化処理がされている板材の溶体化処理をした後の自然放置の期間と、硬度との関係を示す特性図である。FIG. 5 is a characteristic diagram showing the relationship between the hardness and the period of natural standing after the solution treatment of a plate material that has been solution treated of an aluminum alloy. 図6は、アルミニウム合金からなる溶体化処理がされている板材の溶体化処理をした後の自然放置の期間と、電気伝導率との関係を示す特性図である。FIG. 6 is a characteristic diagram showing the relationship between the electrical conductivity and the period of natural standing after the solution treatment of a plate material that has been solution treated of an aluminum alloy. 図7は、アルミニウム合金からなる溶体化処理がされている板材の溶体化処理をした後の自然放置の期間と、人工時効処理後の電気伝導率との関係を示す特性図である。FIG. 7 is a characteristic diagram showing the relationship between the period of natural standing after the solution treatment of a solution-treated plate material made of an aluminum alloy and the electrical conductivity after the artificial aging treatment.

以下、本発明の実施の形態おけるアルミニウム合金の成形方法について図1を参照して説明する。   Hereinafter, a method of forming an aluminum alloy according to an embodiment of the present invention will be described with reference to FIG.

まず、ステップS101で、アルミニウム合金からなる溶体化処理がされている板材を、溶体化処理(非特許文献1参照)がなされ、この後、人工時効処理をすることなく析出硬化している板材を、溶体化処理がなされた状態が維持された状態で加熱する(第1工程)。ステップS101における板材の加熱は、例えば、よく知られたホットプレートなどを用いた接触加熱により実施する。   First, in step S101, a plate material that has been subjected to a solution treatment made of an aluminum alloy is subjected to a solution treatment (see Non-Patent Document 1), and thereafter, a plate material that has been precipitation-hardened without being subjected to artificial aging treatment. Then, heating is performed in a state where the solution-treated state is maintained (first step). The heating of the plate material in step S101 is performed by, for example, contact heating using a well-known hot plate or the like.

次に、ステップS102で、溶体化処理がなされた板材をプレス加工して成形体とする(第2工程)。例えば、ステップS101における加熱を実施した直後に、ステップS102のプレス加工を実施する。次に、ステップS103で、プレス加工した成形体を人工時効処理する(第3工程)。   Next, in step S102, the sheet material that has been subjected to the solution treatment is pressed to form a formed body (second step). For example, immediately after the heating in step S101, the press working in step S102 is performed. Next, in step S103, the pressed compact is subjected to artificial aging treatment (third step).

板材は、例えば、A7075(JIS)などのAl−Zn−Mg系合金またはAl−Zn−Mg−Cu系合金である。ステップS101(第1工程)では、板材をプレス加工可能な温度に加熱する。例えば、板材がA7075の場合、まず、温度条件を200℃とし、加熱時間を最大でも100秒として短時間で処理すれば、溶体化処理がなされて析出硬化した状態が維持され、かつプレス加工可能な状態となる。上記処理条件は、対象とする材料に合わせ、溶体化処理がなされた状態が維持される範囲で適宜に設定する。例えば、温度は、250℃より低い条件とすることが可能である。   The plate material is, for example, an Al-Zn-Mg-based alloy such as A7075 (JIS) or an Al-Zn-Mg-Cu-based alloy. In step S101 (first step), the plate is heated to a temperature at which press working is possible. For example, when the plate material is A7075, if the temperature condition is first set to 200 ° C. and the heating time is set to a maximum of 100 seconds for a short time, the solution hardened and the precipitation hardened state is maintained, and press working is possible. It becomes a state. The above-mentioned processing conditions are appropriately set in accordance with the target material within a range in which the solution-treated state is maintained. For example, the temperature can be lower than 250 ° C.

上述した実施の形態におけるアルミニウム合金の成形方法によれば、溶体化処理がなされた状態を維持してプレス加工しているので、成形後も溶体化処理がなされた状態となっており、プレス加工した後で溶体化処理をする必要がない。また、プレス加工の後で人工時効処理をすることで、十分な硬度が得られるものとなる。このように、実施の形態によれば、従来に比較して、低コストで成形できる。   According to the method for forming an aluminum alloy in the above-described embodiment, since the press working is performed while maintaining the solution-processed state, the solution processing is performed after the forming, and the press working is performed. It is not necessary to perform a solution treatment after the formation. In addition, by performing the artificial aging treatment after the press working, sufficient hardness can be obtained. As described above, according to the embodiment, molding can be performed at lower cost than in the related art.

次に、第1工程における加熱温度と硬さとの関係について調査した結果を図2に示す。調査は、溶体化処理をし、人工時効処理はしていないA7075からなる板厚2mmの板材に対して実施した。接触加熱により加熱し、加熱時間は10秒とした。また、この処理をした後に、人工時効処理をした後の硬さについても調査した。図2において、人工時効処理前の結果を白三角で示し、人工時効処理をした後の結果を白丸で示す。いずれも、冷却した後に硬さ測定を実施した。   Next, FIG. 2 shows the result of investigation on the relationship between the heating temperature and the hardness in the first step. The investigation was carried out on a 2 mm-thick plate made of A7075 that had been subjected to a solution treatment and had not been subjected to artificial aging treatment. Heating was performed by contact heating, and the heating time was 10 seconds. After this treatment, the hardness after the artificial aging treatment was also investigated. In FIG. 2, the result before the artificial aging treatment is indicated by a white triangle, and the result after the artificial aging treatment is indicated by a white circle. In each case, the hardness was measured after cooling.

図2に示すように、加熱温度の条件が200℃であれば、人工時効処理(時効硬化処理)をした後で、析出硬化している状態の硬さが得られている。また、加熱温度が230℃を超えると、人工時効処理をしても、硬度が低下している。これは、加熱温度が230℃を超えると、溶体化処理がなされた状態が維持されなくなるためと考えられる。また、関連する技術と同様の溶体化処理温度を超える温度条件では、人工時効処理をすることで、所定の十分な硬度が得られている。   As shown in FIG. 2, when the condition of the heating temperature is 200 ° C., the hardness in a precipitation hardened state is obtained after the artificial aging treatment (age hardening treatment). Further, when the heating temperature exceeds 230 ° C., the hardness is lowered even after the artificial aging treatment. This is considered to be because if the heating temperature exceeds 230 ° C., the state in which the solution treatment has been performed is not maintained. Further, under a temperature condition exceeding the solution treatment temperature similar to that of the related technique, a predetermined sufficient hardness is obtained by performing the artificial aging treatment.

次に、プレス加工(V曲げ)試験の結果について説明する。この試験により、第1工程における加熱温度がスプリングバックに及ぼす影響を検討した。プレス加工試験では、先端半径2mmのパンチ(型)を用いてV曲げを実施した。成形速度は、120mm/sとし、下死点保持時間は5秒とした。プレス加工試験の結果を図3に示す。図3において、縦軸は、型におけるV曲げの角度と、成形した試験片におけるV曲げの角度との差(スプリングバック)を示している。また、図3において、人工時効処理前の結果を白三角で示し、人工時効処理をした後の結果を白丸で示す。   Next, the results of the press working (V bending) test will be described. Through this test, the effect of the heating temperature in the first step on springback was examined. In the press working test, V-bending was performed using a punch (mold) having a tip radius of 2 mm. The molding speed was 120 mm / s, and the bottom dead center holding time was 5 seconds. FIG. 3 shows the results of the press working test. In FIG. 3, the vertical axis indicates the difference (spring back) between the angle of the V-bend in the mold and the angle of the V-bend in the molded test piece. In FIG. 3, the results before the artificial aging treatment are indicated by white triangles, and the results after the artificial aging treatment are indicated by white circles.

図3に示すように、第1工程における加熱温度条件が160℃以上で、ほとんどスプリングバックが生じていない。図3から明らかなように、スプリングバックに関しては、第1工程における温度条件が160〜200℃程度であれば、溶体化処理温度を超える温度条件でプレス加工をした場合と遜色のない結果が得られている。このように、実施の形態によれば、より低温条件で、ほとんどスプリングバックの発生しない状態とすることができる。   As shown in FIG. 3, when the heating temperature condition in the first step is 160 ° C. or higher, almost no springback occurs. As is clear from FIG. 3, with regard to the springback, if the temperature condition in the first step is about 160 to 200 ° C., a result comparable to that obtained by pressing at a temperature condition exceeding the solution treatment temperature can be obtained. Have been. As described above, according to the embodiment, a state in which almost no springback occurs under a lower temperature condition can be achieved.

次に、加熱時間について調査した結果について図4に示す。なお、この調査は、溶体化処理をした後のA7075からなる板厚2mmの板材に対して実施し、160℃および180℃に加熱処理をして冷却した後で、硬さの測定および電気伝導率の測定を実施している。調査の結果、加熱時間を1秒と短くしても、析出硬化状態の硬さが得られていることが判明した。また、加熱時間が100秒を超えると、硬さの低下がみられた。また、電気伝導率にも変化が確認されている。これらの結果より、加熱時間は、プレス加工可能な状態となる温度となる範囲で、短い方がよいことがわかる。   Next, FIG. 4 shows the results of an investigation on the heating time. This investigation was carried out on a 2 mm-thick plate made of A7075 after solution treatment, and after heat treatment at 160 ° C. and 180 ° C. and cooling, measurement of hardness and electric conduction The rate is being measured. As a result of the investigation, it was found that even when the heating time was shortened to 1 second, hardness in a precipitation hardened state was obtained. When the heating time exceeded 100 seconds, a decrease in hardness was observed. Also, a change has been confirmed in the electric conductivity. From these results, it is understood that the shorter the heating time is, the better the temperature is in the range where the temperature can be pressed.

次に、溶体化処理をした後の自然放置(自然時効処理)の期間と、硬度との関係を調査した結果について図5に示す。この調査では、溶体化処理をしたA7075からなる板厚2mmの板材に対し、接触加熱により150〜500℃の範囲の加熱処理を実施し、水冷した後の硬さ、およびこの後で人工時効処理をした後の硬さを測定した。人工時効処理は、120℃・24時間とした。   Next, FIG. 5 shows the result of investigation of the relationship between the hardness and the period of natural standing (natural aging treatment) after the solution treatment. In this investigation, a 2 mm-thick plate made of solution-treated A7075 was subjected to heat treatment in the range of 150 to 500 ° C. by contact heating, hardness after water cooling, and then artificial aging treatment After the test, the hardness was measured. The artificial aging treatment was performed at 120 ° C. for 24 hours.

図5において、破線は人工時効処理前の結果を示し、実線は、人工時効処理後の結果を示している。また、白四角は、自然放置期間が1日であり、黒三角は、自然放置期間が1週間日であり、黒四角は、自然放置期間が2週間日であり、黒丸は、自然放置期間が3週間日である。   In FIG. 5, the broken line indicates the result before the artificial aging treatment, and the solid line indicates the result after the artificial aging treatment. In addition, a white square indicates that the natural standing period is one day, a black triangle indicates that the natural standing period is one week, a black square indicates that the natural standing period is two weeks, and a solid circle indicates that the natural standing period is one week. Three weeks a day.

次に、溶体化処理をした後の自然放置(自然時効処理)の期間と、電気伝導率との関係を調査した結果について図6,図7に示す。この調査では、溶体化処理をしたA7075からなる板厚2mmの板材に対し、接触加熱により150〜500℃の範囲の加熱処理を実施し、水冷した後の電気伝導率、およびこの後で人工時効処理をした後の電気伝導度を測定した。人工時効処理は、120℃・24時間とした。   Next, FIGS. 6 and 7 show the results of investigation of the relationship between the electrical conductivity and the period of natural standing (natural aging treatment) after the solution treatment. In this investigation, a 2 mm-thick plate made of solution-treated A7075 was subjected to a heat treatment in the range of 150 to 500 ° C. by contact heating, followed by electric conductivity after water cooling, and then artificial aging. The electric conductivity after the treatment was measured. The artificial aging treatment was performed at 120 ° C. for 24 hours.

図6は、人工時効処理前の結果を示し、図7は、人工時効処理後の結果を示している。また、白四角は、自然放置期間が1日であり、黒三角は、自然放置期間が1週間日であり、黒丸は、自然放置期間が3週間日である。   FIG. 6 shows the result before the artificial aging treatment, and FIG. 7 shows the result after the artificial aging treatment. The white squares indicate that the natural standing period is one day, the black triangles indicate that the natural standing period is one week, and the black circles indicate that the natural standing period is three weeks.

以上の結果より、溶体化処理をした後で1週間以上経過することで、実施の形態におけるアルミニウム合金の成形方法により、人工時効処理後に十分な高度が得られていることが分かる。また、第1工程における加熱温度は、250℃が上限と考えられる。これを超えた温度で加熱すると、硬度の低下が確認された。なお、図2に示す結果より明らかなように、第1工程における加熱温度は、150℃以上であればよい。   From the above results, it can be seen that a sufficient altitude has been obtained after the artificial aging treatment by the method of forming an aluminum alloy according to the embodiment when one week or more has elapsed after the solution treatment. The upper limit of the heating temperature in the first step is considered to be 250 ° C. When heated at a temperature exceeding this, a decrease in hardness was confirmed. Note that, as is clear from the results shown in FIG. 2, the heating temperature in the first step may be 150 ° C. or more.

なお、本発明のアルミニウム合金の成形方法によれば、プレス加工時の下死点保持時間を短くしても、プレス加工後の硬さの低下に大きな変化は見られないことが判明している。従って、本発明によれば、従来のように、下死点の保持を所定の時間かける必要がなく、処理時間を短縮することが可能になる。   According to the method for forming an aluminum alloy of the present invention, it has been found that even when the bottom dead center holding time during press working is shortened, no significant change is observed in the decrease in hardness after press working. . Therefore, according to the present invention, it is not necessary to maintain the bottom dead center for a predetermined time as in the related art, and the processing time can be reduced.

また、本発明によれば、200℃程度の温度でプレス加工するため、潤滑剤および金型表面処理を用いることなく、焼き付きの発生が抑制できるという利点がある。   Further, according to the present invention, since press working is performed at a temperature of about 200 ° C., there is an advantage that occurrence of image sticking can be suppressed without using a lubricant and a mold surface treatment.

以上に説明したように、本発明によれば、アルミニウム合金からなる溶体化処理がされている板材を、溶体化処理がなされた状態が維持された状態で加熱し、溶体化処理がなされた状態を維持してプレス加工するので、アルミニウム合金が、より低コストで成形できるようになるという優れた効果が得られる。   As described above, according to the present invention, a sheet material that has been subjected to a solution treatment made of an aluminum alloy is heated in a state where the solution treatment has been performed, and a state in which the solution treatment has been performed. , The excellent effect that the aluminum alloy can be formed at lower cost can be obtained.

なお、本発明は以上に説明した実施の形態に限定されるものではなく、本発明の技術的思想内で、当分野において通常の知識を有する者により、多くの変形および組み合わせが実施可能であることは明白である。例えば、上述した実施の形態では、7000系アルミニウム合金を例に説明したが、これに限るものではなく、2000系、6000系のアルミニウム合金であっても、同様の効果が得られる。   Note that the present invention is not limited to the above-described embodiments, and many modifications and combinations can be made by those having ordinary knowledge in the art without departing from the technical concept of the present invention. That is clear. For example, in the above-described embodiment, the 7000 series aluminum alloy has been described as an example. However, the present invention is not limited to this, and similar effects can be obtained with 2,000 series and 6000 series aluminum alloys.

Claims (4)

アルミニウム合金からなる溶体化処理の後、人工時効処理をすることなく析出硬化している板材を、溶体化処理がなされた状態が維持された状態で加熱する第1工程と、
溶体化処理がなされた状態を維持して前記板材をプレス加工して成形体とする第2工程と、
プレス加工した成形体を人工時効処理する第3工程と
を備え、
前記第1工程では、前記板材をプレス加工可能な温度に加熱することを特徴とするアルミニウム合金の成形方法。
After the solution treatment of the aluminum alloy, the first step of heating the plate material that has been precipitation-hardened without performing the artificial aging treatment, while maintaining the state in which the solution treatment has been performed,
A second step of pressing the plate material to form a compact while maintaining the solution-treated state;
A third step of artificially aging the pressed compact,
In the first step, a method of forming an aluminum alloy, wherein the plate is heated to a temperature at which press working is possible.
請求項1記載のアルミニウム合金の成形方法において、
前記第1工程では、前記板材を150℃〜250℃の範囲のいずれかの温度に加熱することを特徴とするアルミニウム合金の成形方法。
The method for forming an aluminum alloy according to claim 1,
In the first step, a method of forming an aluminum alloy, wherein the plate material is heated to any temperature in a range of 150C to 250C.
請求項1または2記載のアルミニウム合金の成形方法において、
前記第1工程では、前記板材を接触加熱により加熱することを特徴とするアルミニウム合金の成形方法。
The method for forming an aluminum alloy according to claim 1 or 2,
In the first step, the plate material is heated by contact heating, the method for forming an aluminum alloy.
請求項1〜3のいずれか1項に記載のアルミニウム合金の成形方法において、
前記アルミニウム合金は、Al−Zn−Mg系合金またはAl−Zn−Mg−Cu系合金であることを特徴とするアルミニウム合金の成形方法。
The method for forming an aluminum alloy according to any one of claims 1 to 3,
The method for forming an aluminum alloy, wherein the aluminum alloy is an Al-Zn-Mg-based alloy or an Al-Zn-Mg-Cu-based alloy.
JP2018188033A 2018-10-03 2018-10-03 Aluminum alloy molding method Active JP6817266B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018188033A JP6817266B2 (en) 2018-10-03 2018-10-03 Aluminum alloy molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018188033A JP6817266B2 (en) 2018-10-03 2018-10-03 Aluminum alloy molding method

Publications (2)

Publication Number Publication Date
JP2020056082A true JP2020056082A (en) 2020-04-09
JP6817266B2 JP6817266B2 (en) 2021-01-20

Family

ID=70106604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018188033A Active JP6817266B2 (en) 2018-10-03 2018-10-03 Aluminum alloy molding method

Country Status (1)

Country Link
JP (1) JP6817266B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021149411A1 (en) * 2020-01-20 2021-07-29 株式会社神戸製鋼所 Method for producing aluminum alloy member

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63176449A (en) * 1987-01-16 1988-07-20 Honda Motor Co Ltd Method for working sheet metal material made of aluminum alloy
JP2005194620A (en) * 2003-12-12 2005-07-21 Kayaba Ind Co Ltd Aluminum-alloy pipe and its manufacturing method
JP2008196009A (en) * 2007-02-13 2008-08-28 Toyota Motor Corp Method for manufacturing aluminum alloy material, and heat treatment type aluminum alloy material
JP2009114514A (en) * 2007-11-08 2009-05-28 Sumitomo Light Metal Ind Ltd Al-Zn-Mg-Cu ALLOY EXTRUDED MATERIAL WITH EXCELLENT WARM WORKABILITY, ITS MANUFACTURING METHOD, AND WARM WORKED MATERIAL USING THE EXTRUDED MATERIAL
JP2017155251A (en) * 2016-02-29 2017-09-07 株式会社神戸製鋼所 Aluminum alloy forging material excellent in strength and ductility and manufacturing method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63176449A (en) * 1987-01-16 1988-07-20 Honda Motor Co Ltd Method for working sheet metal material made of aluminum alloy
JP2005194620A (en) * 2003-12-12 2005-07-21 Kayaba Ind Co Ltd Aluminum-alloy pipe and its manufacturing method
JP2008196009A (en) * 2007-02-13 2008-08-28 Toyota Motor Corp Method for manufacturing aluminum alloy material, and heat treatment type aluminum alloy material
JP2009114514A (en) * 2007-11-08 2009-05-28 Sumitomo Light Metal Ind Ltd Al-Zn-Mg-Cu ALLOY EXTRUDED MATERIAL WITH EXCELLENT WARM WORKABILITY, ITS MANUFACTURING METHOD, AND WARM WORKED MATERIAL USING THE EXTRUDED MATERIAL
JP2017155251A (en) * 2016-02-29 2017-09-07 株式会社神戸製鋼所 Aluminum alloy forging material excellent in strength and ductility and manufacturing method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021149411A1 (en) * 2020-01-20 2021-07-29 株式会社神戸製鋼所 Method for producing aluminum alloy member
JP2021113348A (en) * 2020-01-20 2021-08-05 株式会社神戸製鋼所 Manufacturing method of component made of aluminum alloy

Also Published As

Publication number Publication date
JP6817266B2 (en) 2021-01-20

Similar Documents

Publication Publication Date Title
JP5882380B2 (en) Manufacturing method of aluminum alloy sheet for press forming
CN101514436B (en) Aluminum alloy sheet for cold press forming, method of manufacturing the same, and cold press forming method for aluminum alloy sheet
Zhong et al. Effect of alloy composition and heat treatment on mechanical performance of 6xxx aluminum alloys
JP5082483B2 (en) Method for producing aluminum alloy material
CN104862551B (en) Al Mg Cu Zn line aluminium alloys and aluminum alloy plate materials preparation method
JP5498069B2 (en) Method for producing aluminum alloy sheet blank for cold press forming, and cold press forming method and molded product thereby
JP2004124151A (en) Heat treatment method for aluminum alloy
JP5937865B2 (en) Production method of pure titanium plate with excellent balance of press formability and strength, and excellent corrosion resistance
JP2016020530A (en) WARM MOLDING METHOD FOR Al-Mg-Si BASED ALLOY ROLLED SHEET
JP6894849B2 (en) New 6xxx Aluminum Alloy Manufacturing Method
JPWO2019159810A1 (en) Manufacturing method of aluminum alloy member
JP2020056082A (en) Method of forming aluminum alloy
RU2019119527A (en) HIGH STRENGTH AND HIGHLY FORMABLE ALUMINUM ALLOYS RESISTANT TO HARDENING BY NATURAL AGING, AND METHODS OF THEIR PRODUCTION
JP4306547B2 (en) Magnesium alloy plate and manufacturing method thereof
JP7117364B2 (en) Forming method of aluminum alloy
JP2010202897A (en) Magnesium alloy sheet material having superior cold-forming characteristics, and manufacturing method therefor
JP6987692B2 (en) Aluminum alloy molding method
JP2016078119A (en) Warm molding method of super high tensile steel plate
JP2011063868A (en) Methods for manufacturing aluminum molded component and metal structure including the aluminum molded component
TW524863B (en) Copper alloy and process for making same
JP2006299295A (en) High temperature molding method for aluminum alloy
JP2005139530A (en) Method of producing aluminum alloy sheet for forming
WO2023053845A1 (en) Forming method for aluminum alloy sheet
CN109794507B (en) Transverse vibration rolling process for high-performance aluminum alloy plate
JP2012152780A (en) Molding working method for aluminum alloy plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200324

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201224

R150 Certificate of patent or registration of utility model

Ref document number: 6817266

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250