JP2985679B2 - Forging method of titanium ingot - Google Patents

Forging method of titanium ingot

Info

Publication number
JP2985679B2
JP2985679B2 JP6219731A JP21973194A JP2985679B2 JP 2985679 B2 JP2985679 B2 JP 2985679B2 JP 6219731 A JP6219731 A JP 6219731A JP 21973194 A JP21973194 A JP 21973194A JP 2985679 B2 JP2985679 B2 JP 2985679B2
Authority
JP
Japan
Prior art keywords
ingot
forging
temperature
rolling
slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6219731A
Other languages
Japanese (ja)
Other versions
JPH0881747A (en
Inventor
篤彦 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP6219731A priority Critical patent/JP2985679B2/en
Publication of JPH0881747A publication Critical patent/JPH0881747A/en
Application granted granted Critical
Publication of JP2985679B2 publication Critical patent/JP2985679B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Forging (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、分塊圧延後のチタンス
ラブ表面に発生する肌荒れまたは押し込み疵を防止する
ことのできる円柱状チタン鋳塊の鍛造加工方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of forging a cylindrical titanium ingot which can prevent roughening or indentation flaws occurring on the surface of a titanium slab after slab rolling.

【0002】[0002]

【従来の技術】チタンの結晶構造は、低温ではHCP構
造を持つα相であり、高温ではBCC構造を持つβ相で
あるが、このα相とβ相の変態温度をβ変態点と称し、
純チタンのβ変態点は883℃である。
2. Description of the Related Art The crystal structure of titanium is an α phase having an HCP structure at a low temperature and a β phase having a BCC structure at a high temperature. The transformation temperature of the α phase and the β phase is called a β transformation point.
The β transformation point of pure titanium is 883 ° C.

【0003】チタンの板材等の展伸材の一般的な製造方
法は、消耗電極式真空アーク溶解法等により鋳塊を溶製
し、それを鍛造した後分塊圧延によりスラブとなし、次
いで熱間圧延を施して製造する方法である。
[0003] A general method for producing wrought material such as a titanium plate material is to ingot an ingot by a consumable electrode type vacuum arc melting method or the like, forge it, form a slab by slab rolling, and then heat it. This is a method of manufacturing by performing cold rolling.

【0004】この場合、鍛造の初期はβ領域で材質上許
容できる高温で鍛練されている。すなわちチタンの鋳塊
は鍛造加工において室温からβ温度領域、すなわちβ変
態点以上の温度に一気に加熱されている。
[0004] In this case, in the early stage of forging, forging is performed at a high temperature which is acceptable in terms of material in the β region. That is, the ingot of titanium is heated at once from the room temperature to the β temperature region, that is, the temperature equal to or higher than the β transformation point in the forging process.

【0005】この鋳塊を鍛造し、分塊圧延によりスラブ
を製造する方法での問題点として、スラブ表面に肌荒れ
あるいは押し込み疵が発生するため、熱間圧延前にこれ
ら疵を切削除去する必要があり、製品の歩留りが低下す
ることが挙げられる。
A problem with the method of forging this ingot and producing a slab by slab rolling is that roughening or indentation flaws are generated on the slab surface, and it is necessary to cut and remove these flaws before hot rolling. In some cases, the product yield is reduced.

【0006】円柱形状の鋳塊からチタンスラブを製造す
る場合、円柱形の鋳塊上下端周縁がスラブ表面に押込ま
れ、それが疵となる。この押込み疵は円柱形状の鋳塊上
下端周縁部が鍛造加工中に他の部分に比べ早期に温度が
低下し、この部分での変形抵抗が上昇するため、円柱形
の縁の部分が平板上に押込まれて発生するものである。
When a titanium slab is manufactured from a cylindrical ingot, the upper and lower peripheral edges of the cylindrical ingot are pressed into the slab surface, which becomes flaws. This indentation flaw is lower at the upper and lower peripheral edges of the cylindrical ingot during forging than in other parts, and the deformation resistance in this part increases, so the cylindrical edge part is on a flat plate. It is generated by being pushed into.

【0007】また、上記肌荒れは鋳塊が凝固した時点
で、鋳塊表面に一方向凝固に伴う粗大な柱状晶が生成し
ていることが原因である。
[0007] The rough surface is caused by the formation of coarse columnar crystals accompanying the unidirectional solidification on the surface of the ingot when the ingot solidifies.

【0008】この肌荒れ対策として、特開平1ー156
456号公報には、鋳塊表面に加工歪を加えた後再結晶
温度以上に加熱する方法が開示されている。
As a countermeasure against this roughening of the skin, Japanese Patent Laid-Open No.
No. 456 discloses a method of applying a working strain to the surface of an ingot and then heating it to a temperature higher than a recrystallization temperature.

【0009】上記従来の製造方法に対し、工程を簡略化
する目的で製造工程の一部を省略する試みが行われてい
る。例えば特開昭61−159562号公報には、鋳塊
を粗鍛造せず、直接圧延することによりスラブを製造す
る方法において、直接圧延の際に発生する表面疵を防止
するために必要な鋳塊の圧延条件が開示されている。
An attempt has been made to omit a part of the manufacturing process from the above conventional manufacturing method for the purpose of simplifying the process. For example, Japanese Unexamined Patent Publication (Kokai) No. 61-159562 discloses a method of manufacturing a slab by directly rolling an ingot without performing rough forging. In the ingot required to prevent surface flaws generated at the time of direct rolling, Are disclosed.

【0010】この方法では鋳塊を930〜1000℃の
温度域に加熱し、次いでβ変態点以上の温度域で40%
以上、かつβ変態点以下の温度域で20%以上の熱間圧
延するものである。ここでの圧延とは分塊又は厚板圧延
と考えられる。
In this method, the ingot is heated to a temperature range of 930 to 1000 ° C.
The hot rolling of 20% or more is performed in the above-mentioned temperature range below the β transformation point. Rolling here is considered to be lumping or plate rolling.

【0011】また、同じ目的で鋳塊を900℃以上11
00℃以下の温度で粗圧延を行い、さらにβ温度域で調
整圧延を行うことが特公平4ー46643号公報に開示
されている。
For the same purpose, the ingot is heated to 900 ° C. or higher.
Japanese Patent Publication No. 4-46643 discloses that rough rolling is performed at a temperature of 00 ° C. or less, and further, adjustment rolling is performed in a β temperature range.

【0012】特公開平1ー156456号公報には鋳塊
を直接圧延あるいは押出しなどの熱間加工を行う際の表
面疵の防止方法が開示されている。この方法は鋳塊表面
に加工歪を加え、これを再結晶温度以上に加熱し表面層
を再結晶させるものである。
Japanese Patent Publication No. 1-156456 discloses a method for preventing surface flaws when performing hot working such as direct rolling or extrusion of an ingot. In this method, a work strain is applied to the surface of the ingot, which is heated above the recrystallization temperature to recrystallize the surface layer.

【0013】[0013]

【発明が解決しようとする課題】ところで、チタンの製
造コストの低減を検討する場合、上記した従来の製造工
程の一部を省略することも重要な方策であるが、チタン
の場合、歩留りの向上を考えることも重要な課題であ
る。
When considering the reduction of titanium production cost, it is an important measure to omit a part of the above-mentioned conventional production steps. However, in the case of titanium, the yield is improved. Thinking about is also an important issue.

【0014】すなわち、チタンは鉱石からスポンジチタ
ンまでの精練過程、及びスポンジチタンを溶解し鋳塊を
製造する溶解過程において大量の電力を消費するため、
鋳塊のコストが高くなり、最終製品の製造コストに占め
る鋳塊のコストが大きな割合を占める。この様なコスト
構成を持つ工業製品の製造コストを低下させるには製造
工程の一部省略も重要な検討課題であるが、何よりも製
造過程における歩留りの改善を図る事が最も重要な課題
である。
That is, titanium consumes a large amount of electric power in the refining process from ore to titanium sponge and in the melting process of melting titanium sponge to produce an ingot.
The cost of the ingot increases, and the cost of the ingot accounts for a large proportion of the production cost of the final product. In order to reduce the manufacturing cost of industrial products with such a cost structure, it is important to omit some of the manufacturing processes, but most importantly, to improve the yield in the manufacturing process. .

【0015】前記特開平1ー156456号公報に開示
されている従来法における分塊圧延時に発生する肌荒れ
防止法は、条件が明記されていないが、加工歪は室温あ
るいは再結晶温度以下の温間で与えられる必要があると
考えられ、これらの温度域で鋳塊に加工歪を加えると、
この加工により鋳塊に割れ発生を招く事が懸念される。
またこの方法によってスラブ表面の押込み疵を防止する
事が出来ない。
In the conventional method disclosed in Japanese Patent Application Laid-Open No. 1-156456, the method for preventing the occurrence of surface roughness during bulk-rolling is not specified, but the processing strain is limited to room temperature or a warming temperature below the recrystallization temperature. It is thought that it is necessary to be given by, when working strain is applied to the ingot in these temperature ranges,
There is a concern that this processing may cause cracks in the ingot.
In addition, this method cannot prevent indentation flaws on the slab surface.

【0016】本発明はスラブの製造工程として鋳塊を鍛
造後、分塊圧延する工程を対象とするもので、本発明の
目的は、円柱形状のチタン鋳塊の鍛造後の分塊圧延時に
発生する肌荒れ及び押し込み疵を防止することのできる
鍛造加工方法を提供することである。
The present invention is directed to a process of slab production in which an ingot is forged and then subjected to slab-rolling. An object of the present invention is to generate a slab in the ingot-rolling after forging of a cylindrical titanium ingot. An object of the present invention is to provide a forging method capable of preventing roughening and indentation flaws.

【0017】この肌荒れは前記の押込み疵と同様、スラ
ブに発生すると熱間圧延前にこれを除去しておく必要が
ある。このため肌荒れの発生は製造時の歩留りを低下さ
せると共に、肌荒れ、疵除去に伴う作業工数の増大とい
う大きな問題を招いている。
If this rough surface occurs on the slab, as in the case of the above-mentioned indentation flaw, it is necessary to remove it before hot rolling. For this reason, the occurrence of rough skin reduces the yield at the time of manufacturing, and causes a serious problem that the number of work steps associated with rough skin and removal of flaws increases.

【0018】[0018]

【課題を解決するための手段】そこで、本発明者等は上
記目的を達成すべく鋭意研究を行った結果、次のような
知見を得た。
The inventors of the present invention have conducted intensive studies to achieve the above object, and have obtained the following findings.

【0019】すなわち、分塊圧延後のスラブ表面に発生
する肌荒れは、β変態点以上の加熱時に鋳造組織の急激
な粒成長が原因であり、その前処理として、鋳塊の凝固
時に成長した柱状晶を 800℃〜β変態点の温度域にて破
壊する予備鍛造をした後、通常のβ変態点以上の温度域
における鍛造加工を実施することにより肌荒れが防止が
できること、更にこの柱状晶を破壊する予備鍛造と通常
の鍛造加工の二工程によりブルームを製造することによ
り押し込み疵をも防止することができることである。
That is, the rough surface generated on the slab surface after the ingot rolling is caused by rapid grain growth of the cast structure at the time of heating at the β transformation point or higher. Preliminary forging to break the crystal in the temperature range from 800 ° C to the β transformation point, and then forging in the temperature range above the normal β transformation point to prevent roughening of the surface. By producing a bloom by two steps of preliminary forging and normal forging, indentation flaws can also be prevented.

【0020】本発明は上記知見に基づきなされたもの
で、その要旨とするところは、「チタン円柱状鋳塊を8
00℃以上β変態点以下の温度域に加熱し、鋳塊径の5
%以上40%以下の範囲内で圧下を加える予備鍛造によ
り柱状晶を破壊した後、β変態点以上1100℃以下に
加熱して鍛造加工することを特徴とするチタン鋳塊の鍛
造加工方法」にある。
The present invention has been made based on the above findings, and the gist of the present invention is that “titanium cylindrical ingot is
Heat to a temperature range from 00 ° C to β transformation point,
% Of the titanium ingot, characterized in that the columnar crystal is broken by pre-forging in which the rolling is performed within a range of not less than 40% and not more than 40%, and then heated to a temperature of not less than the β transformation point and not more than 1100 ° C. is there.

【0021】[0021]

【作用】次に、本発明の鍛造加工方法を上記の如く限定
した理由と作用について説明をする。
Next, the reason why the forging method of the present invention is limited as described above and the operation thereof will be described.

【0022】A )柱状晶破壊のための予備鍛造温度 鋳塊内の粗大柱状晶を破壊するための温度を800℃〜
β変態点の温度域に規定した理由は以下の通りである。
A) Pre-forging temperature for fracture of columnar crystals The temperature for destroying coarse columnar crystals in the ingot is 800 ° C.
The reason specified in the temperature range of the β transformation point is as follows.

【0023】加熱温度がβ変態点を超えると鋳塊組織が
β相の温度域で急激な粒成長を起こすため、粗大組織の
破壊を達成することが出来ない。また加熱温度が800
℃未満であれば、鋳塊の加工性が不足し、加工中に割れ
または粗大な疵の発生を招いてしまう。
If the heating temperature exceeds the β transformation point, the ingot structure undergoes rapid grain growth in the β phase temperature range, so that it is not possible to achieve the destruction of the coarse structure. The heating temperature is 800
If the temperature is lower than ℃, the workability of the ingot is insufficient, and cracks or coarse flaws are generated during the processing.

【0024】B )予備鍛造の圧下量 次に、加工度が直径の5%未満であれば、α相域での予
歪が少なく、加工後にβ変態点以上に加熱した際にかえ
って結晶粒の異常成長を起こし、結晶粒の微細化を達成
することが出来ない。一方、40%超の加工を加える
と、この工程中に鋳塊側面に割れの発生を招き、鍛造後
の手入れ量を増大させる結果を招く。従って、柱状晶破
壊のための圧下量を5〜40%とした。
B) Reduction amount of pre-forging Next, if the degree of work is less than 5% of the diameter, the pre-strain in the α phase region is small, and when the material is heated to the β transformation point or more after working, the crystal grains may be reduced. Abnormal growth occurs, and it is not possible to achieve finer crystal grains. On the other hand, if the processing exceeds 40%, cracks are generated on the side surface of the ingot during this process, and the amount of care after forging is increased. Therefore, the rolling reduction for columnar crystal breakage was set to 5 to 40%.

【0025】圧下方向は鋳塊横断面において直交する二
方向から圧下すると効率よく柱状晶の破壊ができる。
When the rolling direction is reduced from two directions orthogonal to each other in the cross section of the ingot, columnar crystals can be efficiently destroyed.

【0026】図1は、鋳塊の横断面における圧下方向と
圧下後の横断面形状を示す図であり、圧下方向は、例え
ば図1(a) に示すように垂直方向(Y方向)及び水平方
向(X方向)である。従って、圧下後の断面形状は図1
(b) のようになる。なお、圧下は一方向からのみでも柱
状晶の破壊は可能であるが二方向の方が好ましい。
FIG. 1 is a diagram showing the rolling direction and the cross-sectional shape after rolling in the cross section of the ingot. The rolling direction is, for example, as shown in FIG. 1 (a), a vertical direction (Y direction) and a horizontal direction. Direction (X direction). Therefore, the cross-sectional shape after reduction is shown in FIG.
(b). Although the columnar crystal can be broken even when the rolling is performed from only one direction, it is preferable to perform the rolling in two directions.

【0027】C )鍛造加工温度 鍛造加工温度がβ変態点未満であれば、鋳塊組織の加工
性が不足し、鍛造加工中に割れの発生を招き、またこの
温度が1100℃超になると鋳塊表面が加熱中に著しく
ガス吸収し、加工後の手入れ量の増大を招くのでβ変態
点〜1100℃とした。
C) Forging temperature If the forging temperature is lower than the β transformation point, the workability of the ingot structure is insufficient, cracks are generated during forging, and if this temperature exceeds 1100 ° C., the forging temperature increases. Since the lump surface significantly absorbs gas during heating and causes an increase in the amount of care after processing, the β transformation point is set to 1001100 ° C.

【0028】上記柱状晶破壊のための予備鍛造と本鍛造
加工との二度に分けることにより、押し込み疵の発生を
低減できるのは、鋳塊上下端周縁の加工が二つの工程に
分けて実施されるため一回の加工における加工中の円周
縁部の温度低下が小さくなり変形しやすく、円周縁部が
押し込まれにくくなるからである。一方、従来の工程で
は、円柱形の鋳塊が平板状のブルームへ一度の鍛造加工
で加工されるため、円周縁部の温度低下が大きく、この
温度低下部が顕著な押込み疵となっていた。
The fact that the indentation flaw can be reduced by dividing the preforging for columnar crystal destruction into two steps, ie, the forging and the main forging, is that the processing of the upper and lower edges of the ingot is performed in two steps. Therefore, the temperature drop of the peripheral portion during processing in one processing is small, and the peripheral portion is easily deformed, so that the peripheral portion is hard to be pushed. On the other hand, in the conventional process, since the cylindrical ingot is processed into a flat bloom by a single forging process, the temperature drop at the peripheral edge portion is large, and this temperature drop portion has become a noticeable indentation flaw. .

【0029】[0029]

【実施例】重量%で、Fe:0.03% 、 O:0.04% を含むJI
S1種の純チタンの鋳塊を消耗電極式真空アーク溶解法に
より溶製した。鋳塊寸法は、直径200mm 、長さ600mm
で、そのβ変態点は 883℃であった。
[Example] JI containing 0.03% of Fe and 0.04% of O by weight%
An ingot of pure titanium of the S1 type was produced by a consumable electrode type vacuum arc melting method. Ingot dimensions are 200mm in diameter and 600mm in length
And its β transformation point was 883 ° C.

【0030】鋳塊を表1に示す各条件で予備鍛造加工し
た。予備鍛造後表1に示す各温度に再加熱して鍛造加工
を施しブルームとした。しかる後、 950℃に加熱して分
塊圧延を行い幅180mm 、厚み50mmのスラブを製造した。
このスラブについて、切削加工により1mm単位で側面を
除去し、浸透探傷法により疵の残存を調査した。この浸
透探傷法で肌荒れの無いことが確認されるまで側面の機
械加工を継続し、側面の肌荒れ深さを調査した。
The ingot was pre-forged under the conditions shown in Table 1. After the preliminary forging, it was reheated to each temperature shown in Table 1 and forged to give a bloom. Thereafter, the slab was heated to 950 ° C. and slab-rolled to produce a slab having a width of 180 mm and a thickness of 50 mm.
With respect to this slab, the side face was removed in 1 mm units by cutting, and the residual flaw was examined by a penetrant inspection method. Machine processing of the side surface was continued until it was confirmed by this penetrant inspection that there was no skin roughness, and the depth of the surface roughness was investigated.

【0031】また、鍛造加工後の製品上面の幅方向中心
部から縁部の押込み疵発生部を採取し、樹脂に埋め込み
検鏡用試料を作成し、x50の光学顕微鏡で表面から押
込み疵先端までの長さを測定して、押込み疵の深さを調
査した。
Also, the indentation flaws at the edges are sampled from the center in the width direction on the upper surface of the product after forging, and a sample for a speculum embedded in resin is prepared. From the surface to the tip of the indentation flaw by an x50 optical microscope. Was measured and the depth of the indentation flaw was investigated.

【0032】調査結果を表1に併せて示す。この表では
従来工程(No16)の結果を基準として、側面の肌荒れ、表
面の押込み疵のそれぞれの深さが従来工程よりも浅かっ
た場合を結果良好として評価○、このどちらか一つ、又
は両方が従来工程より深かった場合、不良として評価×
とした。
The results of the survey are shown in Table 1. In this table, based on the results of the conventional process (No 16), the surface roughness was evaluated as good when the side surface roughness and the depth of each of the indentation flaws on the surface were shallower than the conventional process. ○, one or both of these were evaluated. If it was deeper than the conventional process, it was evaluated as defective.
And

【0033】[0033]

【表1】 [Table 1]

【0034】この結果から本発明条件内で鍛造加工され
た鋳塊は側面の肌荒れ、上面上の押込み疵の深さとも浅
く、本発明の目的が達成されている。
From these results, the ingot forged under the conditions of the present invention has rough side surfaces and shallow indentation flaws on the upper surface, and the object of the present invention has been achieved.

【0035】また、本発明法により製造したスラブは、
従来の粗鍛造工程の省略材(No17)に比較して肌荒れ、押
込み疵の発生状態が低減されていることが分る。
The slab manufactured by the method of the present invention is
It can be seen that the roughened surface and the occurrence of indentation flaws are reduced as compared with the material omitted in the conventional rough forging process (No. 17).

【0036】[0036]

【発明の効果】チタンの板材等の展伸材を製造するに際
し、円柱形の鋳塊から展伸材の中間製品である板状のス
ラブを製造する際に問題となる肌荒れ、押し込み疵の防
止が同時にでき、製品を歩留り良く製造することが可能
となった。
EFFECT OF THE INVENTION In the production of wrought materials such as titanium plate materials, the prevention of rough skin and indentation flaws, which are problems when producing plate-like slabs, which are intermediate products of wrought materials, from cylindrical ingots. At the same time, making it possible to manufacture products with good yield.

【図面の簡単な説明】[Brief description of the drawings]

【図1】鋳塊の横断面における圧下方向と圧下後の断面
形状を示す図である。
FIG. 1 is a diagram showing a rolling direction and a cross-sectional shape after rolling in a cross section of an ingot.

フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C22F 1/18 B21J 1/00 B21J 5/00 Continuation of front page (58) Field surveyed (Int.Cl. 6 , DB name) C22F 1/18 B21J 1/00 B21J 5/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】円柱状チタン鋳塊を800℃以上β変態点
以下の温度域に加熱し、鋳塊径の5%以上40%以下の
範囲内で圧下を加える予備鍛造により柱状晶を破壊した
後、β変態点以上1100℃以下に加熱して鍛造加工す
ることを特徴とするチタン鋳塊の鍛造加工方法。
1. A columnar crystal is broken by pre-forging, in which a columnar titanium ingot is heated to a temperature range of 800 ° C. or more and a β transformation point or less and a rolling is performed within a range of 5% to 40% of the ingot diameter. A forging method for a titanium ingot, wherein the forging is performed by heating to a temperature from the β transformation point to 1100 ° C. or lower.
JP6219731A 1994-09-14 1994-09-14 Forging method of titanium ingot Expired - Lifetime JP2985679B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6219731A JP2985679B2 (en) 1994-09-14 1994-09-14 Forging method of titanium ingot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6219731A JP2985679B2 (en) 1994-09-14 1994-09-14 Forging method of titanium ingot

Publications (2)

Publication Number Publication Date
JPH0881747A JPH0881747A (en) 1996-03-26
JP2985679B2 true JP2985679B2 (en) 1999-12-06

Family

ID=16740100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6219731A Expired - Lifetime JP2985679B2 (en) 1994-09-14 1994-09-14 Forging method of titanium ingot

Country Status (1)

Country Link
JP (1) JP2985679B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001012358A1 (en) * 1999-08-16 2001-02-22 Sumitomo Sitix Of Amagasaki, Inc. Titanium material superior in upset-forgeability and method of producing the same
UA105035C2 (en) * 2009-02-09 2014-04-10 Ніппон Стіл Корпорейшн Titanium slab for hot-rolling, and smelting method and rolling method therefor
GB201117183D0 (en) 2011-10-06 2011-11-16 Rolls Royce Plc Method and equipment for shaping a cast component
CN104988443B (en) * 2015-05-29 2017-03-15 宝鸡钛业股份有限公司 The preparation method of titanium alloy slab
CN106903248B (en) * 2015-12-22 2019-12-31 宁波创润新材料有限公司 Forging method
CN112935163B (en) * 2021-01-22 2023-02-17 西安瑞达金属材料科技有限公司 Radial forging method for infinite deformation of titanium alloy bar

Also Published As

Publication number Publication date
JPH0881747A (en) 1996-03-26

Similar Documents

Publication Publication Date Title
JP5754559B2 (en) Titanium cast for hot rolling and method for producing the same
EP2394752B1 (en) Titanium material for hot rolling and manufacturing method thereof
TWI491747B (en) High purity wrought copper having uniform and fine microstructure
TWI617670B (en) Titanium material for hot rolling
JP2007332420A (en) Method for producing titanium material and stock for hot rolling
EP2394756A1 (en) Titanium slab for hot-rolling, and smelting method and rolling method therefor
JP6709695B2 (en) Method of manufacturing titanium material for hot rolling
KR20130133050A (en) Titanium slab for hot rolling and process for producing same
JP2985679B2 (en) Forging method of titanium ingot
WO2016051511A1 (en) Cast titanium slab for use in hot rolling and exhibiting excellent surface properties after hot rolling, even when omitting blooming and purifying steps, and method for producing same
JP6075384B2 (en) Titanium cast for hot rolling and method for producing the same
JPH01156456A (en) Method for hot-working titanium ingot
JPH0860317A (en) Production of titanium material
JP6372373B2 (en) Production method of titanium material mainly containing α phase and titanium hot rolling material
JP4179080B2 (en) Hot working method of high Nb alloy
JP2015080793A (en) Titanium alloy slab for hot rolling and method of producing the same
JP3896431B2 (en) Method for producing copper or copper alloy
JP6794585B1 (en) Manufacturing method of titanium material for hot rolling
JP6897521B2 (en) Hot rolling method of titanium material
JP3711196B2 (en) Method for producing titanium for sputtering target and titanium slab used for the production
JPH07251202A (en) Manufacture of hot rolled plate of pure titanium
JPS634907B2 (en)
WO2016051482A1 (en) Titanium cast piece for hot rolling and method for producing same
JPH0135915B2 (en)
JPS62284052A (en) Method for forging titanium and titanium alloy

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111001

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121001

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 14

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 14

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 14

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term