JP6897521B2 - Hot rolling method of titanium material - Google Patents

Hot rolling method of titanium material Download PDF

Info

Publication number
JP6897521B2
JP6897521B2 JP2017226792A JP2017226792A JP6897521B2 JP 6897521 B2 JP6897521 B2 JP 6897521B2 JP 2017226792 A JP2017226792 A JP 2017226792A JP 2017226792 A JP2017226792 A JP 2017226792A JP 6897521 B2 JP6897521 B2 JP 6897521B2
Authority
JP
Japan
Prior art keywords
titanium material
rolling
pass
hot rolling
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017226792A
Other languages
Japanese (ja)
Other versions
JP2019093439A (en
Inventor
元気 塚本
元気 塚本
知徳 國枝
知徳 國枝
英人 瀬戸
英人 瀬戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2017226792A priority Critical patent/JP6897521B2/en
Publication of JP2019093439A publication Critical patent/JP2019093439A/en
Application granted granted Critical
Publication of JP6897521B2 publication Critical patent/JP6897521B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、チタン材の熱間圧延方法に関する。 The present invention relates to a method for hot rolling a titanium material.

チタン材は、一般に、溶解工程から得られるインゴットを分塊工程でスラブまたはビレット形状にして、表面を手入れした後、熱間圧延し、さらに焼鈍や冷間加工を施して製造される。溶解工程には、広く用いられている真空アーク溶解(VAR:Vacuum Arc Remelting)法のほか、鋳型とは別の場所で溶解を行い鋳型に流し込む電子ビーム溶解(EBR:Electron Beam Remelting)法やプラズマ溶解法等がある。
前者では、鋳型が円筒型に限定されるため板材の製造には分塊もしくは鍛造工程が必須である。後者は、鋳型形状の自由度が高く、円筒型の他、角型の鋳型を使用できる。従って、前記電子ビーム溶解法やプラズマ溶解法を用いれば、角型インゴットや円柱型インゴットを直接鋳込むことができる。そのため、角型インゴットから板材を製造する場合や、円柱型インゴットから棒材や線材を製造する場合には、インゴット形状の点からは分塊工程を省略することができる。この場合、分塊工程にかかるコストと時間が省略できるため、生産効率が著しく向上することが期待される。
Titanium material is generally produced by forming an ingot obtained from a melting step into a slab or billet shape by a slabbing step, cleaning the surface, hot rolling, and further annealing or cold working. In addition to the widely used vacuum arc remelting (VAR) method, the melting process includes an electron beam remelting (EBR) method in which melting is performed in a place other than the mold and poured into the mold, and plasma. There is a dissolution method and the like.
In the former case, since the mold is limited to a cylindrical type, a lump or forging process is indispensable for manufacturing the plate material. The latter has a high degree of freedom in mold shape, and a square mold as well as a cylindrical mold can be used. Therefore, if the electron beam melting method or the plasma melting method is used, a square ingot or a cylindrical ingot can be directly cast. Therefore, when the plate material is manufactured from the square ingot, or when the bar or wire is manufactured from the cylindrical ingot, the slabbing step can be omitted from the point of view of the ingot shape. In this case, since the cost and time required for the slabbing process can be omitted, it is expected that the production efficiency will be significantly improved.

しかし、工業的に用いられる大型インゴットの鋳造まま組織は、結晶粒径が数十mmにもおよぶ粗大粒が形成される。このようなインゴットを、分塊工程を経ないで直接熱間圧延する場合には、粗大な結晶粒に起因して結晶粒内および結晶粒間の変形異方性の影響により表面に凹凸が生じて表面疵となる。従って、前記電子ビーム溶解や、プラズマ溶解法で、角型インゴットや円柱型インゴットを直接製造し、分塊工程を省略した場合、その後の熱間圧延において、表面疵が発生してしまう。熱間圧延で発生した表面疵を除去するためには、酸洗工程で熱延板表面の溶削量を増やす必要があり、コストや歩留を悪化させる問題が生じる。即ち、表面疵を落とすための精整工程を新たに導入する必要がある。従って、分塊工程を省略することによって期待される生産効率の向上は、このような精整工程の新たな導入によって相殺されてしまう懸念があった。このような問題に対し、熱間圧延用素材の製造方法や製造後に加工や熱処理を施すことによって表面疵を低減する方法が提案されている。 However, in the as-cast structure of a large ingot used industrially, coarse particles having a crystal grain size of several tens of mm are formed. When such an ingot is directly hot-rolled without undergoing a slabbing step, the surface becomes uneven due to the influence of deformation anisotropy within and between crystal grains due to the coarse crystal grains. It becomes a surface defect. Therefore, if a square ingot or a cylindrical ingot is directly manufactured by the electron beam melting method or the plasma melting method and the slabbing step is omitted, surface defects will occur in the subsequent hot rolling. In order to remove surface defects generated by hot rolling, it is necessary to increase the amount of wrought on the surface of the hot-rolled sheet in the pickling process, which causes a problem of deteriorating cost and yield. That is, it is necessary to newly introduce a rectification process for removing surface defects. Therefore, there is a concern that the improvement in production efficiency expected by omitting the slabbing step will be offset by the new introduction of such a refining step. To solve such problems, a method for producing a material for hot rolling and a method for reducing surface defects by processing or heat-treating after the production have been proposed.

特許文献1では、チタン材のインゴットを、分塊工程を省略して直接熱延加工する場合に、表層付近の結晶粒を微細化するために、表面層にひずみを付与した後、再結晶温度以上に加熱して表面から深さ2mm以上を再結晶させる方法が提案されている。ひずみを付与する手段としては、鍛造、ロール圧下、ショットブラスト等が挙げられている。 In Patent Document 1, when a titanium ingot is directly heat-rolled by omitting the slabbing step, the surface layer is strained in order to refine the crystal grains near the surface layer, and then the recrystallization temperature is obtained. A method of heating to a depth of 2 mm or more from the surface has been proposed. Examples of means for applying strain include forging, roll reduction, shot blasting, and the like.

特許文献2では、チタン材のインゴットを、Tβ+50℃以上に加熱後、Tβ−50℃以下に冷却した後に熱間圧延することで、粗大な結晶粒の変形異方性によって圧延中に形成される表面の波打ちやシワを低減し、表面疵を低減する方法が提案されている。 In Patent Document 2, a titanium ingot is heated to T β + 50 ° C. or higher , cooled to T β -50 ° C. or lower, and then hot-rolled. A method of reducing waviness and wrinkles on the formed surface and reducing surface defects has been proposed.

特許文献3では、チタン材において、分塊工程を経る場合の圧延製品の表面疵低減方法として、分塊工程終了時の温度をα域にする、あるいは、さらに熱間圧延前の加熱をα域で行うことにより、表面から60μm以上を等軸晶とする方法が提案されている。これにより、酸素リッチ層が部分的に深くなることを避けることができ、脱スケール工程で酸素リッチ層を除去できるようになり、硬度・延性の不均一な部分が無くなるため、冷間加工後の表面性状が改善するとしている。 In Patent Document 3, as a method for reducing surface defects of a rolled product when undergoing a slabbing process in a titanium material, the temperature at the end of the slabbing process is set to the α range, or the heating before hot rolling is set to the α range. A method has been proposed in which 60 μm or more from the surface is equiaxed. As a result, it is possible to prevent the oxygen-rich layer from becoming partially deep, the oxygen-rich layer can be removed in the descaling step, and the non-uniform hardness and ductility are eliminated, so that after cold working. It is said that the surface texture will improve.

特許文献4では、チタン材のインゴットを、熱間加工工程を省略して直接熱間圧延を行う場合に、インゴットの圧延面にあたる面の表層を高周波誘導加熱、アーク加熱、プラズマ加熱、電子ビーム加熱及びレーザー加熱などで溶融再凝固させることで、表層から深さ1mm以上を細粒化し、熱間圧延後の表層組織を改善する方法が挙げられている。これは、表層部を急冷凝固により微細で不規則な方位を有する凝固組織を形成することで、表面疵の発生を防止している。チタンスラブの表層組織を溶融させる方法として、高周波誘導加熱、アーク加熱、プラズマ加熱、電子ビーム加熱、及びレーザー加熱が挙げられている。 In Patent Document 4, when a titanium ingot is directly hot-rolled by omitting the hot working step, the surface layer of the surface corresponding to the rolled surface of the ingot is subjected to high-frequency induction heating, arc heating, plasma heating, and electron beam heating. A method of improving the surface structure after hot rolling by granulating a depth of 1 mm or more from the surface layer by melting and resolidifying by laser heating or the like is mentioned. This prevents the occurrence of surface defects by forming a solidified structure having a fine and irregular orientation on the surface layer portion by quenching solidification. Examples of the method for melting the surface layer structure of the titanium slab include high frequency induction heating, arc heating, plasma heating, electron beam heating, and laser heating.

特許文献5では、熱間圧延用チタン素材を、うねりの輪郭曲線要素の平均高さが0.2〜1.5mm、平均長さが3〜15mmのディンプルを冷間で塑性変形によって付与することで、インゴットのブレークダウン工程を省略しても熱間圧延にて生じる表面欠陥を軽微にする方法が提案されている。 In Patent Document 5, a titanium material for hot rolling is provided with dimples having an average height of 0.2 to 1.5 mm and an average length of 3 to 15 mm of undulation contour curve elements by cold plastic deformation. Therefore, a method has been proposed in which surface defects caused by hot rolling are minimized even if the breakdown step of the ingot is omitted.

特許文献6では、電子ビーム溶解炉で溶製したチタンスラブを、鋳型内から直接引き抜いたスラブの断面組織において、表層から内部に向かう凝固方向とスラブの鋳造方向とのなす角θが45°〜90°、もしくは、表層の結晶方位分布において、hcpのc軸とスラブ表層との法線のなす角が、35°〜90°である場合に、熱間加工工程を省略しても、鋳肌が良好で且つ熱間圧延後の表面疵が改善できる方法が開示されている。即ち、表面の結晶粒の形状や結晶方位を制御することによってこのような粗大結晶粒に起因する疵の発生を抑制することができる。 In Patent Document 6, in the cross-sectional structure of the slab in which the titanium slab melted in the electron beam melting furnace is directly drawn from the inside of the mold, the angle θ between the solidification direction from the surface layer to the inside and the casting direction of the slab is 45 ° to When the angle formed by the normal line between the c-axis of hcp and the surface layer of the slab is 35 ° to 90 ° in the crystal orientation distribution of 90 ° or the surface layer, the casting surface is cast even if the hot working step is omitted. A method is disclosed in which the surface defects after hot rolling can be improved. That is, by controlling the shape and crystal orientation of the crystal grains on the surface, it is possible to suppress the occurrence of defects caused by such coarse crystal grains.

特開平01−156456号公報Japanese Unexamined Patent Publication No. 01-156456 特開平08−060317号公報Japanese Unexamined Patent Publication No. 08-060317 特開平07−102351号公報Japanese Unexamined Patent Publication No. 07-102351 特開2007−332420号公報JP-A-2007-332420 国際公開第2010/090352号International Publication No. 2010/090352 国際公開第2010/090353号International Publication No. 2010/090353

特許文献1〜5に提案された方法は、熱間圧延を行う前に、チタン素材表面の加工や、熱処理を施すことが必要である。また、特許文献6に提案された方法は、鋳造時の操業条件のばらつきにより、インゴット全面を狙いとしている組織に制御するのは難しく、場合によっては、粗大鋳造組織に起因した表面疵が発生し、表面性状が悪化する可能性が懸念される。 The methods proposed in Patent Documents 1 to 5 require processing of the surface of the titanium material and heat treatment before hot rolling. Further, the method proposed in Patent Document 6 is difficult to control to a structure aiming at the entire surface of the ingot due to variations in operating conditions at the time of casting, and in some cases, surface defects due to a coarse casting structure occur. , There is a concern that the surface texture may deteriorate.

ところで、チタン材の熱間圧延で発生する表面疵の主なものは、ヘゲ疵、エッジヘゲ、飛び込み疵が挙げられる。このうち、ヘゲ疵は、熱間圧延後の表面の断面図である図1に示したように、チタン材の表面から部分的に剥がれた金属チタンが、チタン材の表面にかぶさった疵である。 By the way, the main surface flaws generated by hot rolling of titanium material are heald flaws, edge healds, and diving flaws. Of these, the hege flaw is a flaw in which metallic titanium partially peeled off from the surface of the titanium material covers the surface of the titanium material, as shown in FIG. 1, which is a cross-sectional view of the surface after hot rolling. is there.

このヘゲ疵も、粗大な結晶粒に起因して結晶粒内の変形異方性、結晶粒間の変形異方性のそれぞれの影響により表面に生じる。このうち、結晶粒内の変形異方性の影響で生じるヘゲ疵(以下、「粒内由来ヘゲ疵」という。)は、結晶粒間の変形異方性の影響により生じるヘゲ疵(以下、「粒界由来ヘゲ疵」という。)より数が多いので、深刻な影響がある。しかしながら、その一方で、粒内由来ヘゲ疵は粒界由来ヘゲ疵に比べて、疵の深さが浅く、また、疵の長さが短い傾向にある。粒内由来ヘゲ疵の数が少ない場合は、粒界由来ヘゲ疵がほとんど発生しないことを経験的に確認している。そのため、熱間圧延前の加工、熱処理や、鋳造条件に依存せずに、熱間圧延の条件を最適化することで粒内由来ヘゲ疵を発生させないことが望まれる。 This bald defect also occurs on the surface due to the effects of deformation anisotropy within the crystal grains and deformation anisotropy between the crystal grains due to the coarse crystal grains. Of these, hesitation defects caused by the effects of deformation anisotropy within crystal grains (hereinafter referred to as "intra-grain origin hege defects") are hege defects caused by the effects of deformation anisotropy between crystal grains (hereinafter referred to as "intra-grain origin hege defects"). Hereinafter, the number is larger than that of "grain boundary-derived hesitation defects"), so it has a serious effect. However, on the other hand, intragranular-derived heald flaws tend to have shallower flaw depths and shorter flaw lengths than grain boundary-derived heald flaws. It has been empirically confirmed that when the number of intergranular-derived bald spots is small, almost no grain boundary-derived bald spots occur. Therefore, it is desired that the conditions of hot rolling are optimized without depending on the processing, heat treatment, and casting conditions before hot rolling to prevent the occurrence of intragranular blemishes.

そこで、本発明では、熱間圧延前の加工、熱処理や、鋳造条件に依存せずに、熱間圧延後に生じる粒内由来ヘゲ疵の発生を抑制し、表面性状を良好に保つことのできる、チタン材の熱間圧延方法を提供することを目的とするものである。 Therefore, in the present invention, it is possible to suppress the occurrence of intragranular-derived bald spots that occur after hot rolling and maintain good surface properties without depending on processing before hot rolling, heat treatment, or casting conditions. , An object of the present invention is to provide a method for hot rolling a titanium material.

本発明の要旨とするところは、以下のとおりである。
(1)チタン材を熱間圧延温度に加熱して、圧延ロールにより熱間圧延を施すチタン材の熱間圧延方法であって、
熱間圧延中のチタン材の温度は、表面温度でβ変態点以下であり、
熱間圧延においての最初の1パスは、前記最初の1パス前のチタン材表面温度をT[℃]、最初の1パス前の圧延ロールの表面温度をT[℃]、最初の1パス前のチタン材の厚さをh[mm]、最初の1パス後のチタン材の厚さをh[mm]、圧延ロールの直径をD[mm]、圧延ロールの回転速度をr[rpm]としたときに、下記(1)式で計算されるTが、670以上となるように行うことを特徴とするチタン材の熱間圧延方法。
The gist of the present invention is as follows.
(1) A method for hot rolling a titanium material in which the titanium material is heated to a hot rolling temperature and hot rolled by a rolling roll.
The temperature of the titanium material during hot rolling is below the β transformation point at the surface temperature.
In the first 1 pass in hot rolling, the surface temperature of the titanium material one pass before the first pass is T 0 [° C], the surface temperature of the rolling roll one pass before the first pass is T 1 [° C], and the first 1 The thickness of the titanium material before the pass is h 0 [mm], the thickness of the titanium material after the first pass is h 1 [mm], the diameter of the rolling roll is D [mm], and the rotation speed of the rolling roll is r. A method for hot rolling a titanium material, characterized in that T 2 calculated by the following equation (1) is 670 or more when [rpm] is set.

Figure 0006897521
Figure 0006897521

(2)圧延ロールを予め加熱し、その表面温度T[℃]を200℃以上、500℃以下とすることを特徴とする(1)に記載のチタン材の熱間圧延方法。
(3)前記チタン材が、JIS規格の工業用純チタンであるか、α型チタン合金のチタン材であることを特徴とする(1)または(2)に記載のチタン材の熱間圧延方法。
(4)前記最初の1パスを施す前のチタン材は、その結晶粒径が平均粒径で500μm以上であることを特徴とする(1)ないし(3)のいずれか1つに記載のチタン材の熱間圧延方法。
(2) The method for hot rolling a titanium material according to (1), wherein the rolling roll is preheated and the surface temperature T 1 [° C.] thereof is set to 200 ° C. or higher and 500 ° C. or lower.
(3) The method for hot rolling a titanium material according to (1) or (2), wherein the titanium material is a JIS standard industrial pure titanium or a titanium material of an α-type titanium alloy. ..
(4) The titanium according to any one of (1) to (3), wherein the titanium material before the first pass is characterized in that its crystal particle size is 500 μm or more in average particle size. Hot rolling method of material.

本発明により、熱間圧延条件を最適化することにより、特に粒内由来ヘゲ疵の発生を抑制できるので、熱間圧延前の加工、熱処理を必要とせず、制御の難しい鋳造条件を管理する必要なくチタン材の表面性状を良好に保つことができる。 According to the present invention, by optimizing the hot rolling conditions, it is possible to suppress the occurrence of in-grain-derived scabs, so that processing and heat treatment before hot rolling are not required, and casting conditions that are difficult to control are managed. The surface texture of the titanium material can be kept good without the need for it.

熱間圧延後のチタン材のヘゲ疵の例を示す断面写真である。It is a cross-sectional photograph which shows the example of the dent of the titanium material after hot rolling. ヘゲ疵の発生、伸展過程を示す断面写真である。It is a cross-sectional photograph showing the occurrence and extension process of a bald defect. 粒内由来ヘゲ疵の起点となった熱間双晶を示す断面写真である。It is a cross-sectional photograph showing a hot twin crystal which became a starting point of an intragranular scab.

本発明の開発の経緯について述べる。
最初に、ヘゲ疵の発生、伸展過程について得られた知見を図2により説明する。熱間圧延の最初の2パス後(2パス前後の圧下率が22%)である粗圧延初期には、チタン材の表面に、50〜15μm程度の深さの凹みが発生する。この凹みが、粗圧延後(粗圧延初期のパスを含めて7パス後、粗圧延の圧下率が85%)や、仕上げ圧延後(粗圧延前から仕上げ圧延後で圧下率が85〜90%)には、伸展し、大きく表面から部分的に剥がれた金属チタンが、チタン材の表面にかぶさったヘゲ疵となる。
The background of the development of the present invention will be described.
First, the findings obtained regarding the development and extension process of scabs will be described with reference to FIG. At the initial stage of rough rolling, which is after the first two passes of hot rolling (a rolling reduction of about two passes is 22%), a dent with a depth of about 50 to 15 μm is generated on the surface of the titanium material. This dent is found after rough rolling (7 passes including the initial pass in rough rolling, the reduction rate of rough rolling is 85%) and after finish rolling (from before rough rolling to after finish rolling, the reduction rate is 85 to 90%). ), The metallic titanium that has been stretched and largely peeled off from the surface becomes a scab that covers the surface of the titanium material.

粒内由来ヘゲ疵も、粒界由来ヘゲ疵も、このように、概ね、粗圧延初期に発生した凹みが伸展することにより発生、伸展する。従って、粗圧延初期の凹みの発生を抑制すれば、ヘゲ疵の発生も抑制できることになる。
そこで、図3に示すような、粒内由来ヘゲ疵の原因となる凹み部分の組織を分析した。図3によれば、結晶粒内に生成した、特定の組織の表面上に、凹み部分が発生していることがわかる。この組織をEBSD(Electron Back Scatter Diffraction Patterns)で結晶方位解析したところ、粗大な熱間双晶であることが明らかとなった。そのため、この粗圧延初期に熱間双晶組織を発生させないことにより、凹みの発生の抑制が可能であると考えられた。
Both the intragranular-derived baldness defect and the grain boundary-derived baldness defect are generally generated and extended by the extension of the dents generated at the initial stage of rough rolling. Therefore, if the occurrence of dents at the initial stage of rough rolling is suppressed, the occurrence of dents can also be suppressed.
Therefore, as shown in FIG. 3, the structure of the dented portion that causes the intragranular blemishes was analyzed. According to FIG. 3, it can be seen that a dented portion is generated on the surface of a specific structure generated in the crystal grain. Crystal orientation analysis of this structure by EBSD (Electron Back Scatter Diffraction Patterns) revealed that it was a coarse hot twin. Therefore, it is considered that the generation of dents can be suppressed by not generating the hot twin structure at the initial stage of rough rolling.

具体的に、熱間圧延条件をさまざまに変更して検討した結果、この粒内由来ヘゲ疵の原因である熱間双晶は、粗圧延の最初の1パスのチタン材の表面温度が低下していると発生しやすい傾向にあることが明らかとなった。 Specifically, as a result of examining various changes in the hot rolling conditions, the surface temperature of the titanium material in the first pass of rough rolling of the hot twins, which is the cause of the intragranular baldness, is lowered. It became clear that it tends to occur when rolling.

そこで、この粗圧延の最初の1パスが、どのような条件であると、粗圧延の最初の1パスの後にチタン材の表面温度が低下しやすくなり、粒内由来ヘゲ疵が発生するかを検討した。
チタン材の表面温度への影響として考えられたのは、加熱したチタン材の表面に常温の圧延ロールが接触することによる抜熱である。圧延ロールからの抜熱は、圧延ロールとチタン材の接触時間t[sec]が長いほど大きくなり、チタン材の表面温度が低下する。t[sec]は、最初の1パス前のチタン材の厚さをh[mm]、最初の1パス後のチタン材の厚さをh[mm]、圧延ロールの直径をD[mm]、圧延ロールの回転速度をr[rpm]とすると、次式(2)で表される。
Therefore, under what conditions the first 1 pass of the rough rolling tends to lower the surface temperature of the titanium material after the first 1 pass of the rough rolling, and whether intragranular blemishes occur. It was investigated.
The effect on the surface temperature of the titanium material was considered to be the heat removal caused by the contact of the rolling roll at room temperature with the surface of the heated titanium material. The heat removal from the rolling roll increases as the contact time t [sec] between the rolling roll and the titanium material increases, and the surface temperature of the titanium material decreases. For t [sec], the thickness of the titanium material before the first pass is h 0 [mm], the thickness of the titanium material after the first pass is h 1 [mm], and the diameter of the rolling roll is D [mm]. ], If the rotation speed of the rolling roll is r [rpm], it is expressed by the following equation (2).

Figure 0006897521
Figure 0006897521

実験的に、このt[sec]と、最初の1パス前後のチタン材の表面温度変化のしやすさ(以下、温度減少量指数ΔT(℃)という。)との関係をとると、ΔTは、ln(t)に対し以下の式(3)のような関係にあることが明らかとなった。 Experimentally, when this t [sec] is related to the ease of changing the surface temperature of the titanium material around the first pass (hereinafter referred to as the temperature reduction index ΔT (° C.)), ΔT is , Ln (t) was found to have a relationship as shown in the following equation (3).

Figure 0006897521
Figure 0006897521

一方、もっとも単純にチタン材の表面温度に影響するのは、この粗圧延前のチタン材表面温度T[℃]である。T[℃]が高ければ高いほど、当然ながら1パス通過後の温度は高くなる。
また、圧延ロールからの抜熱は、最初の1パス前の圧延ロールの表面温度T[℃]が低いほど圧延ロールの冷却能が大きくなるため、チタン材の表面温度が低下する。式(3)に式(2)を代入し、さらに、T[℃]、T[℃]の影響を考慮して、温度減少量指数ΔT(℃)を求める以下の式(4)を導いた。この温度減少量指数ΔTは、厳密に温度の減少量を計算できるものではなく、後述する熱間双晶の発生度合いを評価できるTを計算するための指標である。
On the other hand, it is the titanium material surface temperature T 0 [° C.] before rough rolling that most simply affects the surface temperature of the titanium material. The higher the T 0 [° C.], the higher the temperature after passing one pass, of course.
Further, as for heat removal from the rolling roll, the lower the surface temperature T 1 [° C.] of the rolling roll one pass before, the larger the cooling capacity of the rolling roll, and therefore the lower the surface temperature of the titanium material. Substituting equation (2) into equation (3), and further considering the effects of T 0 [° C] and T 1 [° C], obtain the following equation (4) to obtain the temperature reduction index ΔT (° C). lead. This temperature decrease index ΔT cannot be calculated exactly as the temperature decrease, but is an index for calculating T 2 which can evaluate the degree of generation of hot twins, which will be described later.

Figure 0006897521
Figure 0006897521

最初の1パス前のチタン材表面温度をT[℃]から、式(4)で求められたΔTを、次式(5)のように引き算して、Tとして、1パス後のチタン材表面温度を疑似的に評価できる。式(5)は式(1)と同じものである。このTにより、チタン材の表面温度の低下度合、ひいては粒内由来ヘゲ疵の原因となる凹み部分の原因となる熱間双晶の発生度合い、粒内由来ヘゲ疵の発生度合いを予測および評価できる。 The surface temperature of the titanium material one pass before the first pass is subtracted from T 0 [° C.] by subtracting ΔT obtained by the equation (4) as in the following equation (5) to obtain T 2 , and the titanium one pass after the first pass. The material surface temperature can be evaluated in a pseudo manner. Equation (5) is the same as Equation (1). From this T 2 , the degree of decrease in the surface temperature of the titanium material, the degree of occurrence of hot twins that cause the dented portion that causes the intragranular blemishes, and the degree of the occurrence of the intragranular blemishes are predicted. And can be evaluated.

Figure 0006897521
Figure 0006897521

このTが高ければ高いほど、粒内由来ヘゲ疵の原因となる凹み部分の原因となる熱間双晶は発生しにくい。そのためには、Tが、670以上であることが必要である。670未満であると、粒内由来ヘゲ疵の原因となる凹み部分の原因となる熱間双晶が、熱間圧延の最初の1パスで発生しやすくなり、その結果、結晶粒内に凹みが発生するため、粒内由来ヘゲ疵の発生と伸展を防止できない。
また、Tを、670以上とすることにより、粒界由来ヘゲ疵も減少する。これは、次の理由による。Tを、670以上とすることにより、最初の1パス時の熱間圧延温度が高くなる。そのため、結晶粒間の変形異方性の差があっても、両者ともに1パス目の圧延は高温下で行われることで、変形しやすくなるため変形異方性の差が緩和される。
このように、熱間圧延の最初の1パスでの圧延において、Tを670以上とすることにより、粒内由来ヘゲ疵のない、表面性状が良好なチタン材を製造することができる。より好ましいTは700以上である。一方、Tが(β変態点−30℃)の温度と同じ数値を超える場合、内部の温度が加工発熱のためにβ変態点を超え、表層と内部で塑性変形能に大きな差が生じ、割れやシワ等の原因となる可能性があるため、Tは(β変態点−30℃)の温度と同じ数値を上限とすることが好ましい。
The higher the T 2 , the less likely it is that hot twins will occur, which will cause dents that cause intragranular baldness. For that purpose, T 2 needs to be 670 or more. If it is less than 670, hot twins that cause dents that cause intragranular baldness are likely to occur in the first pass of hot rolling, resulting in dents in the grains. Therefore, it is not possible to prevent the occurrence and extension of intragranular twinning defects.
Further, by setting T 2 to 670 or more, grain boundary-derived hesitation defects are also reduced. This is due to the following reasons. By setting T 2 to 670 or more, the hot rolling temperature in the first pass becomes high. Therefore, even if there is a difference in deformation anisotropy between the crystal grains, the difference in deformation anisotropy is alleviated because the rolling in the first pass is performed at a high temperature so that the crystals are easily deformed.
As described above, in the rolling in the first pass of hot rolling, by setting T 2 to 670 or more, it is possible to produce a titanium material having no intragranular blemishes and good surface texture. A more preferable T 2 is 700 or more. On the other hand, when T 2 exceeds the same value as the temperature (β transformation point -30 ° C), the internal temperature exceeds the β transformation point due to processing heat generation, and a large difference in plastic deformability occurs between the surface layer and the inside. Since it may cause cracks and wrinkles, it is preferable that the upper limit of T 2 is the same as the temperature at (β transformation point −30 ° C.).

本発明において、Tを、670以上とするパスが、熱間圧延の最初の1パスであると規定している理由は、最初の1パスを行う際が、最も結晶粒径が粗大であり、粒内由来ヘゲ疵にしろ、粒界由来ヘゲ疵にしろ、ヘゲ疵が発生しやすいためである。2パス目以降では、1パス目の圧延により結晶粒径が減少しているので、ヘゲ疵が発生しにくく、Tを670以上としなくともよい。2パス目以降は、粗圧延、仕上げ圧延ともに、通常通り、圧延、成形し、所定の形状とすればよい。熱間圧延の後には所望に応じて冷間圧延を施してもよい。最初の1パスでの圧下率は、3%以上であることが好ましい。 In the present invention, the reason why the pass having T 2 of 670 or more is defined as the first pass of hot rolling is that the crystal grain size is the coarsest when the first pass is performed. This is because hesitation defects are likely to occur regardless of whether they are intragrain-derived hesitation defects or grain boundary-derived hesitation defects. In the second and subsequent passes, since the crystal grain size is reduced by rolling in the first pass, baldness is less likely to occur, and T 2 does not have to be 670 or more. From the second pass onward, both rough rolling and finish rolling may be rolled and molded as usual to obtain a predetermined shape. After the hot rolling, cold rolling may be performed if desired. The reduction rate in the first pass is preferably 3% or more.

ここで、T[℃]は、β変態点以下が好ましい。T[℃]がβ変態点を超えると、表面に発生する酸化物スケールの量が著しくなるからである。
[℃]は500℃以下が好ましい。T[℃]が500℃を超えると、ロールの強度が低下し、ロールの損傷が激しくなる可能性がある。T[℃]の下限を特に規定する必要はないが、通常は室温が下限となる。
[mm]、h[mm]は、設備仕様によって決まるものである。h[mm]は、通常は40〜280mmであり、h[mm]は、通常は30〜270mmである。
D[mm]は、通常300〜1500mmであり、r[rpm]は、通常25〜100rpmである。
Here, T 0 [° C.] is preferably equal to or lower than the β transformation point. This is because when T 0 [° C.] exceeds the β transformation point, the amount of oxide scale generated on the surface becomes significant.
T 1 [° C.] is preferably 500 ° C. or lower. If T 1 [° C.] exceeds 500 ° C., the strength of the roll may decrease and the roll may be severely damaged. It is not necessary to specify the lower limit of T 1 [° C.], but usually room temperature is the lower limit.
h 0 [mm] and h 1 [mm] are determined by the equipment specifications. h 0 [mm] is usually 40 to 280 mm, and h 1 [mm] is usually 30 to 270 mm.
D [mm] is usually 300 to 1500 mm, and r [rpm] is usually 25 to 100 rpm.

また、2パス目まで、あるいは、3パス目までは、各パス(nパス目)の前後で、各々以下の式のTが670以上となるように圧延することが好ましい。 Further, it is preferable to roll up to the second pass or up to the third pass before and after each pass (nth pass) so that T 3 of the following formula is 670 or more.

Figure 0006897521
Figure 0006897521

ここで、当該パス前のチタン材表面温度をT[℃]、当該パス前の圧延ロールの表面温度をT[℃]、当該パス前のチタン材の厚さをh[mm]、当該パス後のチタン材の厚さをh[mm]、当該圧延ロールの直径をD[mm]、圧延ロールの回転速度をr[rpm]とする。 Here, the titanium material surface temperature before the path T b [° C.], the surface temperature of the reduction roll before the path T a [° C.], the thickness of the titanium material before the path h b [mm], the thickness of the titanium material after the path h a [mm], the diameter of the rolling roll D n [mm], the rotational speed of the rolling rolls and r n [rpm].

本発明において、熱間圧延中のチタン材の温度を、表面温度でβ変態点以下と規定した。これは、表面温度がβ変態点を超えると、表面に発生する酸化物スケールの量が著しくなるからである。 In the present invention, the temperature of the titanium material during hot rolling is defined as the β transformation point or less in terms of surface temperature. This is because when the surface temperature exceeds the β transformation point, the amount of oxide scale generated on the surface becomes remarkable.

本発明において熱間圧延を施すチタン材は、スラブ、ビレット等、その形状は問わない。チタン材の材質としては、α型チタン合金、JIS規格の工業用純チタンが好ましい。特に、加工しやすいので、通常の工業規格程度以下の不純物を含む純チタンが好ましい。 In the present invention, the titanium material to be hot-rolled may have any shape such as a slab or a billet. As the material of the titanium material, α-type titanium alloy and JIS standard industrial pure titanium are preferable. In particular, since it is easy to process, pure titanium containing impurities below the normal industrial standard is preferable.

また、本発明のチタン材の熱間圧延方法は、電子ビーム溶解やプラズマ溶解などの後の分塊圧延や鍛造を施していない、直接鋳造スラブに適用することが好ましい。本発明によれば、分塊圧延や鍛造を施さずとも、ヘゲ疵の発生を抑制できるので、分塊圧延や鍛造の工程を省略できる。 Further, the hot rolling method for titanium material of the present invention is preferably applied to a direct casting slab which has not been subjected to slabbing or forging after electron beam melting or plasma melting. According to the present invention, since the occurrence of dents can be suppressed without performing bulk rolling or forging, the steps of bulk rolling or forging can be omitted.

また、本発明は、結晶粒径が、平均粒径で500μm以上であるチタン材に適用することが好ましい。結晶粒径が粗大なチタン材はヘゲ疵が発生しやすいところ、本発明では、結晶粒径が粗大なチタン材においても、ヘゲ疵の発生を抑制できる。 Further, the present invention is preferably applied to a titanium material having a crystal particle size of 500 μm or more on average. Where a titanium material having a coarse crystal grain size is prone to blemishes, the present invention can suppress the occurrence of blemishes even in a titanium material having a coarse crystal grain size.

平均結晶粒径750μmのJIS I種の純チタンを素材として用い、最初の1パス目の熱間圧延を、表1に示したT[℃]、T[℃]、h[mm]、h[mm]、D[mm]、r[rpm]の条件で行い、その後圧下率80%以上になるまで熱間圧延した。 Using JIS type I pure titanium with an average crystal grain size of 750 μm as a material, hot rolling in the first pass was performed at T 0 [° C.], T 1 [° C.], H 0 [mm] shown in Table 1. , H 1 [mm], D [mm], r [rpm], and then hot rolling was performed until the rolling reduction was 80% or more.

熱間圧延後、板厚が片面あたり50μm減少するように酸洗処理された熱間圧延板を対象にヘゲ疵の評価を行った。熱間圧延板は、その全長が10m以上(板幅寸法は任意)のサイズを有し、表面全体のヘゲ疵を観察した。おおむね、粒内由来ヘゲ疵の長さは5〜15mm、粒界由来ヘゲ疵の長さは15mm超であることを経験的に確認しているので、長さ5〜15mmのヘゲ疵の数を観察面積[m]で除して(粒内由来)ヘゲ疵の発生頻度とした。ヘゲ疵の発生頻度が0.1[個/m]未満の場合を「A」、0.1[個/m]以上、0.2[個/m]未満の場合を「B」、0.2[個/m]以上、0.3[個/m]未満の場合を「C」、0.3[個/m]以上の場合を「D」とし、A〜Cを合格とした。このヘゲ疵の評価についても、合わせて表1に示した。 After hot rolling, hedging defects were evaluated on the hot rolled plates that had been pickled so that the plate thickness was reduced by 50 μm per side. The hot-rolled plate had a total length of 10 m or more (the plate width dimension was arbitrary), and scabs on the entire surface were observed. Since it has been empirically confirmed that the length of the grain-derived hesitation flaw is 5 to 15 mm and the length of the grain boundary-derived hessian flaw is more than 15 mm, it is 5 to 15 mm in length. The number of scabs was divided by the observation area [m 2 ] to obtain the frequency of occurrence of scabs (derived from the grain). "A" when the frequency of occurrence of baldness is less than 0.1 [pieces / m 2 ], "B" when it is 0.1 [pieces / m 2 ] or more and less than 0.2 [pieces / m 2]. , 0.2 [pieces / m 2 ] or more and less than 0.3 [pieces / m 2 ] is defined as "C", and 0.3 [pieces / m 2 ] or more is designated as "D". C was accepted. The evaluation of this baldness is also shown in Table 1.

Figure 0006897521
Figure 0006897521

表1から明らかなように、Tの値が本発明から外れる比較例1〜6は、多くのヘゲ疵が発生した。一方、Tの値が本発明の範囲内である発明例1〜19においては、十分にヘゲ疵の発生が抑制でき、良好な表面を保つことができた。 As is clear from Table 1, in Comparative Examples 1 to 6 in which the value of T 2 deviated from the present invention, many bald defects occurred. On the other hand, in Invention Examples 1 to 19 in which the value of T 2 is within the range of the present invention, the occurrence of scabs could be sufficiently suppressed and a good surface could be maintained.

本発明により、ヘゲ疵の発生を抑制できるので、熱間圧延後の表面処理工程の負担を軽減できる。表面品質向上による酸洗量の低減によって歩留まりが向上する。また、分解圧延、鍛造等の熱間圧延前の特段の処理も不要となるため、製造コストの削減のみならず、エネルギー効率の向上にも大きな効果があり、特段の産業上の利用性を有する。 According to the present invention, since the occurrence of burr defects can be suppressed, the burden on the surface treatment step after hot rolling can be reduced. Yield is improved by reducing the amount of pickling by improving the surface quality. In addition, since special treatment before hot rolling such as disassembly rolling and forging is not required, it has a great effect not only on reduction of manufacturing cost but also on improvement of energy efficiency, and has special industrial applicability. ..

Claims (4)

チタン材を熱間圧延温度に加熱して、圧延ロールにより熱間圧延を施すチタン材の熱間圧延方法であって、
熱間圧延中のチタン材の温度は、表面温度でβ変態点以下であり、
熱間圧延においての最初の1パスは、前記最初の1パス前のチタン材表面温度をT[℃]、最初の1パス前の圧延ロールの表面温度をT[℃]、最初の1パス前のチタン材の厚さをh[mm]、最初の1パス後のチタン材の厚さをh[mm]、圧延ロールの直径をD[mm]、圧延ロールの回転速度をr[rpm]としたときに、下記(1)式で計算されるTが、670以上となるように行うことを特徴とするチタン材の熱間圧延方法。
Figure 0006897521
This is a hot rolling method for titanium material, in which the titanium material is heated to a hot rolling temperature and hot rolled by a rolling roll.
The temperature of the titanium material during hot rolling is below the β transformation point at the surface temperature.
In the first 1 pass in hot rolling, the surface temperature of the titanium material one pass before the first pass is T 0 [° C], the surface temperature of the rolling roll one pass before the first pass is T 1 [° C], and the first 1 The thickness of the titanium material before the pass is h 0 [mm], the thickness of the titanium material after the first pass is h 1 [mm], the diameter of the rolling roll is D [mm], and the rotation speed of the rolling roll is r. A method for hot rolling a titanium material, characterized in that T 2 calculated by the following equation (1) is 670 or more when [rpm] is set.
Figure 0006897521
圧延ロールを予め加熱し、その表面温度T[℃]を200℃以上、500℃以下とすることを特徴とする請求項1に記載のチタン材の熱間圧延方法。 The method for hot rolling a titanium material according to claim 1, wherein the rolling roll is preheated and the surface temperature T 1 [° C.] thereof is set to 200 ° C. or higher and 500 ° C. or lower. 前記チタン材が、JIS規格の工業用純チタンであるか、α型チタン合金のチタン材であることを特徴とする請求項1または請求項2に記載のチタン材の熱間圧延方法。 The method for hot rolling a titanium material according to claim 1 or 2, wherein the titanium material is a JIS standard industrial pure titanium or an α-type titanium alloy titanium material. 前記最初の1パスを施す前のチタン材は、その結晶粒径が平均粒径で500μm以上であることを特徴とする請求項1ないし請求項3のいずれか1項に記載のチタン材の熱間圧延方法。 The heat of the titanium material according to any one of claims 1 to 3, wherein the titanium material before the first 1 pass has an average crystal grain size of 500 μm or more. Inter-rolling method.
JP2017226792A 2017-11-27 2017-11-27 Hot rolling method of titanium material Active JP6897521B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017226792A JP6897521B2 (en) 2017-11-27 2017-11-27 Hot rolling method of titanium material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017226792A JP6897521B2 (en) 2017-11-27 2017-11-27 Hot rolling method of titanium material

Publications (2)

Publication Number Publication Date
JP2019093439A JP2019093439A (en) 2019-06-20
JP6897521B2 true JP6897521B2 (en) 2021-06-30

Family

ID=66972504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017226792A Active JP6897521B2 (en) 2017-11-27 2017-11-27 Hot rolling method of titanium material

Country Status (1)

Country Link
JP (1) JP6897521B2 (en)

Also Published As

Publication number Publication date
JP2019093439A (en) 2019-06-20

Similar Documents

Publication Publication Date Title
JP4414983B2 (en) Titanium material manufacturing method and hot rolling material
JP5220115B2 (en) Titanium slab for hot rolling, its melting method and rolling method
JP5754559B2 (en) Titanium cast for hot rolling and method for producing the same
JP5168434B2 (en) Titanium slab for hot rolling and manufacturing method thereof
JP2014233753A (en) Industrial pure titanium ingot excellent in surface properties after hot rolling even if blooming process or fine arrangement process is omitted and method for manufacturing the same
JP2016128172A (en) Titanium hot rolling ingot being hard to cause surface flaw and its manufacturing method
WO2010090310A1 (en) Hot-rolled titanium slab melted by electronbeam melting furnace, method of melting and method of hot-rolling titan slab
KR101953042B1 (en) Cast titanium slab for use in hot rolling and exhibiting excellent surface properties after hot rolling, even when omitting blooming and purifying steps, and method for producing same
JP6897521B2 (en) Hot rolling method of titanium material
JP6075387B2 (en) Titanium slab for hot rolling in which surface flaws are unlikely to occur and method for producing the same
JP4094244B2 (en) Titanium for copper foil production drum excellent in surface layer structure and production method thereof
JP6372373B2 (en) Production method of titanium material mainly containing α phase and titanium hot rolling material
JP6171836B2 (en) Titanium alloy slab for hot rolling and manufacturing method thereof
JP2004237291A (en) Method of manufacturing continuous casting slab and steel material obtained by working the cast slab
JP2002001495A (en) Manufacturing method for austenitic stainless steel sheet iron excellent in surface quality and thin casting slab
JPH02263931A (en) Production of cr-ni stainless steel sheet excellent in surface quality
WO2016051482A1 (en) Titanium cast piece for hot rolling and method for producing same
JP2002066601A (en) Method for preventing surface cracking of continuous cast slab under large reduction of hot rolled width
JPH07251202A (en) Manufacture of hot rolled plate of pure titanium
JP2505188B2 (en) Hot rolling method for stainless steel sheet
JP2006070306A (en) HOT WORKING METHOD FOR HIGH Ni ALLOY STEEL
JP2006070305A (en) HOT WORKING METHOD FOR HIGH Ni ALLOY STEEL
JPH11269542A (en) Production of austenitic stainless steel excellent in surface characteristic
JPH082450B2 (en) Method for manufacturing austenitic stainless thin plate
JPS6056457A (en) Continuous casting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210524

R151 Written notification of patent or utility model registration

Ref document number: 6897521

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151