JP2006070306A - HOT WORKING METHOD FOR HIGH Ni ALLOY STEEL - Google Patents
HOT WORKING METHOD FOR HIGH Ni ALLOY STEEL Download PDFInfo
- Publication number
- JP2006070306A JP2006070306A JP2004253061A JP2004253061A JP2006070306A JP 2006070306 A JP2006070306 A JP 2006070306A JP 2004253061 A JP2004253061 A JP 2004253061A JP 2004253061 A JP2004253061 A JP 2004253061A JP 2006070306 A JP2006070306 A JP 2006070306A
- Authority
- JP
- Japan
- Prior art keywords
- cast slab
- continuous cast
- alloy steel
- hot
- slab
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Metal Rolling (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
本発明は、高Ni合金鋼の熱間加工方法に関するものであり、加工するのに先立って加熱する際に、そして加工する際に割れが発生するのを抑制するための高Ni合金鋼の熱間加工方法に関するものである。 The present invention relates to a method for hot working of high Ni alloy steel. The heat of high Ni alloy steel for suppressing the occurrence of cracking during heating prior to processing and during processing. It relates to the inter-machining method.
Niを25.0〜85.0質量%含有する高Ni合金鋼は、室温から 300℃までの温度域における熱膨張が小さい材料として、CRT用シャドウマスクやICリードフレーム等に広く用いられている。従来から高Ni合金鋼は、電気炉で溶解された後、鋳造されてスラブとされ、さらに熱間圧延および冷間圧延を施されて薄鋼板に加工される。高Ni合金鋼を溶解した溶鋼からスラブを製造する方法は、
(A) 溶鋼をインゴットに鋳造し、さらに分塊圧延してスラブを製造する方法、
(B) 溶鋼を連続鋳造してスラブを製造する方法
に大別される。
High Ni alloy steel containing 25.0 to 85.0 mass% of Ni is widely used for shadow masks for CRTs, IC lead frames, and the like as a material having a small thermal expansion in a temperature range from room temperature to 300 ° C. Conventionally, high Ni alloy steel is melted in an electric furnace, cast into a slab, and further subjected to hot rolling and cold rolling to be processed into a thin steel plate. The method of manufacturing slabs from molten steel with high Ni alloy steel melted
(A) A method for producing a slab by casting molten steel into an ingot and further rolling in pieces
(B) Broadly divided into methods for producing slabs by continuously casting molten steel.
近年、高Ni合金鋼の生産性向上の観点から、例えば高Ni合金鋼帯の場合、連続鋳造で製造したスラブ(以下、連鋳スラブという)を、粗圧延機と仕上圧延機が直列に配置された連続式の薄板用熱間圧延ラインで熱間圧延し、さらに冷間圧延する方法が検討されている。しかし高Ni合金鋼の連鋳スラブの金属組織(以下、鋳造組織という)は、連鋳スラブの表層から厚み方向中心部に向かって細長い組織が伸びるように並んだいわゆる柱状組織となっており、その結晶粒界は脆弱であるため、高Ni合金鋼の連鋳スラブを熱間圧延すると、幅方向にも長手方向にも延びて、局部的に変形の大きい幅方向の端部(以下、エッジ部という)には潜在的に割れが発生し易い状況にある。 In recent years, from the viewpoint of improving the productivity of high Ni alloy steel, for example, in the case of high Ni alloy steel strip, a slab manufactured by continuous casting (hereinafter referred to as continuous cast slab) is arranged in series with a roughing mill and a finishing mill. A method of hot rolling in a continuous thin sheet hot rolling line and then cold rolling has been studied. However, the metal structure of the continuous cast slab of high Ni alloy steel (hereinafter referred to as the cast structure) is a so-called columnar structure in which a long and narrow structure extends from the surface layer of the continuous cast slab toward the center in the thickness direction. Because the grain boundaries are fragile, when a continuous cast slab of high-Ni alloy steel is hot-rolled, it extends both in the width direction and in the longitudinal direction, and the end in the width direction (hereinafter referred to as the edge) is locally deformed. (Referred to as part) is in a situation where cracks are likely to occur.
さらに、加熱した後の連鋳スラブの温度が不均一であると、温度差によって生じる熱応力に起因して、エッジ部に限らず割れ(以下、熱応力割れという)が発生し易い状況にある。熱間圧延すると、圧延により加わる力によって、それらの影響が顕在化して、割れが発生するのである。熱応力割れの場合も、圧延により加わる力より顕在化する場合が多いため、エッジ部に特に割れが発生し易い。エッジ部に発生する割れのことを、以下、総称してエッジ割れと称す。 Furthermore, if the temperature of the continuous cast slab after heating is not uniform, cracks (hereinafter referred to as thermal stress cracks) are likely to occur not only at the edge part, but due to thermal stress caused by the temperature difference. . When the hot rolling is performed, the influences of the rolling are manifested, and cracks are generated. In the case of thermal stress cracks, cracks are particularly likely to occur at the edge part because they are often manifested by the force applied by rolling. Hereinafter, the cracks generated at the edge portion are collectively referred to as edge cracks.
また、高Ni合金鋼の連鋳スラブを熱間圧延して得られる鋼材のことを、連鋳スラブ,熱間圧延の途中,および熱間圧延後の各場合を総称して被圧延材とも称す。 In addition, steel materials obtained by hot-rolling continuous cast slabs of high-Ni alloy steel are collectively referred to as rolled materials in the cases of continuous cast slabs, during hot rolling, and after hot rolling. .
被圧延材にエッジ割れが発生すると、後工程である冷間圧延にて被圧延材の破断を引き起こす可能性が高くなる。被圧延材の破断が起こると、冷間圧延での生産性が低下するばかりでなく、製品の歩留りも低下する。 When an edge crack occurs in the material to be rolled, there is a high possibility that the material to be rolled will be broken by cold rolling, which is a subsequent process. When the material to be rolled breaks, not only the productivity in cold rolling decreases, but also the product yield decreases.
そこで、高Ni合金鋼のエッジ割れの発生を抑制するために、従来から種々の技術が提案されている。 Thus, various techniques have been proposed in the past to suppress the occurrence of edge cracks in high Ni alloy steel.
たとえば特開昭60-159157 号公報(特許文献1)には、高Ni合金鋼の熱間加工性を向上させる目的でB(硼素)を添加する技術が開示されている。具体的には、高Ni合金鋼の溶製工程でBを 0.001〜0.03質量%添加し、さらに必要に応じてTiを 0.005〜0.3 質量%添加することによって、高Ni合金鋼の熱間加工性を改善する。ところが、この技術は、高価なBを使用するので、高Ni合金鋼の溶製コストの上昇を招く。また、高Ni合金鋼の用途によっては、BやTiの添加が、製品に要求される特性に悪影響を及ぼす可能性がある。 For example, JP-A-60-159157 (Patent Document 1) discloses a technique of adding B (boron) for the purpose of improving the hot workability of high Ni alloy steel. Specifically, in the melting process of high Ni alloy steel, 0.001 to 0.03% by mass of B is added, and 0.005 to 0.3% by mass of Ti is added as necessary, so that hot workability of high Ni alloy steel is improved. To improve. However, since this technique uses expensive B, it causes an increase in the melting cost of high Ni alloy steel. In addition, depending on the application of high Ni alloy steel, the addition of B or Ti may adversely affect the properties required for the product.
特開平5-65607 号公報(特許文献2)には、Niを65〜85質量%含有する合金鋼を熱間圧延する際に、長手方向の両端部を除く4面を金属板で包囲して1回目の熱間圧延を行ない、次いで金属板を取り除いて2回目の熱間圧延を行なう技術が開示されている。ところが、この技術は、熱間圧延を2回行なうので、生産性の低下は避けられず、しかも圧延コストの上昇を招く。 In JP-A-5-65607 (Patent Document 2), when hot rolling an alloy steel containing 65 to 85% by mass of Ni, four surfaces except for both ends in the longitudinal direction are surrounded by a metal plate. A technique is disclosed in which the first hot rolling is performed, the metal plate is then removed, and the second hot rolling is performed. However, since this technique performs hot rolling twice, a decrease in productivity is unavoidable, and the rolling cost increases.
また特許第2751582 号公報(特許文献3)には、Fe−Ni合金の連鋳スラブを加熱炉で加熱する際に、連鋳スラブの表面温度が 600℃から1000℃に至るまで15℃/分以下の昇温速度で加熱し、さらに1000℃から均熱温度に至るまで3℃/分以下の昇温速度で加熱し、かつ熱間圧延における第1パスを表面温度 900℃以下,圧下率15%以上で行なう技術が開示されている。この技術は、不均一加熱による熱応力を低減することによって熱応力割れの発生を抑制するとともに、耳割れ(すなわちエッジ割れ)の発生を抑制し、かつ再結晶による結晶粒の微細化も図るものである。 Japanese Patent No. 2751582 (Patent Document 3) states that when a continuous cast slab of Fe—Ni alloy is heated in a heating furnace, the surface temperature of the continuous cast slab reaches 15 ° C./min from 600 ° C. to 1000 ° C. Heating at the following heating rate, heating at a heating rate of 3 ° C / min or less from 1000 ° C to the soaking temperature, and the first pass in hot rolling at a surface temperature of 900 ° C or less and a reduction rate of 15 % Or more is disclosed. This technology suppresses the occurrence of thermal stress cracks by reducing the thermal stress due to non-uniform heating, suppresses the occurrence of ear cracks (that is, edge cracks), and also attempts to refine crystal grains by recrystallization. It is.
しかし連鋳スラブの温度差によって生じる熱応力は、昇温速度のみならず連鋳スラブの寸法等にも依存する。そのため特許文献3に開示された技術は、極めて限定された条件にしか適用できない。また連鋳スラブの表面温度も、測定する部位(たとえば上下面,側面等)によって異なるにも関わらず、表面温度を測定する部位に関して説明されていない。
本発明は、以上のような従来の高Ni合金鋼の熱間加工技術の問題点に鑑みてなされたものであり、高Ni合金鋼の連鋳スラブを簡便な手段で均一に加熱することによって熱応力割れの発生を抑制するとともに、その連鋳スラブを熱間加工する際にエッジ割れが発生するのを抑制できる熱間加工方法を提供することを目的とする。 The present invention has been made in view of the problems of the conventional hot working technology of high Ni alloy steel as described above, and by heating the continuous casting slab of high Ni alloy steel uniformly by simple means. An object of the present invention is to provide a hot working method capable of suppressing the occurrence of edge cracks when hot-working the continuous cast slab while suppressing the occurrence of thermal stress cracks.
本発明は、Niを25.0〜85.0質量%含有する高Ni合金鋼の連鋳スラブを熱間加工する方法であって、前記連鋳スラブを加工するのに先立って加熱する際に、前記連鋳スラブ内温度の最大値と最小値の差を 200℃以内とすることを特徴とする高Ni合金鋼の熱間加工方法である。 The present invention is a method for hot working a continuous cast slab of high Ni alloy steel containing 25.0 to 85.0% by mass of Ni, and when the continuous cast slab is heated before the continuous cast slab is processed, This is a hot working method for high Ni alloy steel characterized in that the difference between the maximum and minimum values of the slab temperature is within 200 ° C.
本発明を適用することによって、高Ni合金鋼の連鋳スラブを熱間加工(たとえば熱間圧延,熱間鍛造等)するのに先立って加熱する際に、あらゆる寸法の連鋳スラブに対して最適な昇温速度を設定することが可能となり、連鋳スラブを可及的均一に加熱できる。その結果、連鋳スラブの加熱で熱応力割れが発生するのを抑制し、熱間加工でエッジ割れが発生するのを抑制できる。 By applying the present invention, when a continuous cast slab of high Ni alloy steel is heated prior to hot working (for example, hot rolling, hot forging, etc.), It is possible to set an optimum temperature rising rate, and the continuous cast slab can be heated as uniformly as possible. As a result, it is possible to suppress the occurrence of thermal stress cracks due to heating of the continuous cast slab and to suppress the occurrence of edge cracks during hot working.
本発明によれば、高Ni合金鋼の連鋳スラブを熱間加工(たとえば熱間圧延,熱間鍛造等)する際に、連鋳スラブを可及的均一に加熱することができるため、それによって熱応力割れの発生を抑制できる。その結果、熱応力割れを起点として発生するエッジ割れの発生も抑制することができる。これによって大幅な設備改造を必要とせず、簡便な手段で製品の歩留りを向上できる。また、熱間加工として熱間圧延を行なう場合には、後工程である冷間圧延にて被圧延材の破断を引き起こすのも抑制できるので、冷間圧延での生産性も向上する。 According to the present invention, when a continuous casting slab of high Ni alloy steel is hot-worked (for example, hot rolling, hot forging, etc.), the continuous casting slab can be heated as uniformly as possible. Can suppress the occurrence of thermal stress cracking. As a result, it is possible to suppress the occurrence of edge cracks that start from thermal stress cracks. As a result, it is possible to improve the product yield by a simple means without requiring a large facility modification. Further, when hot rolling is performed as hot working, it is possible to suppress breakage of the material to be rolled in the subsequent cold rolling, so that productivity in cold rolling is also improved.
以下、本発明の実施の形態について説明する。 Embodiments of the present invention will be described below.
背景技術の項にて述べた如く、高Ni合金鋼の連鋳スラブは、熱間加工(たとえば熱間圧延,熱間鍛造等)の際に連鋳スラブ(被圧延材)のエッジ部にエッジ割れが発生し易いが、これは、電気炉で溶解して鋳造した高Ni合金鋼スラブの鋳造組織は結晶粒界が炭素鋼のような普通鋼に比べて脆弱であるため、熱間加工による力が加わったときに、幅方向にも長手方向にも延びて局部的に変形の大きいエッジ部において、特にその結晶粒界に沿って亀裂が発生し易いことに原初的に起因している。鋳造時の冷却速度の大きい連鋳スラブでは、一層この傾向が強い。 As described in the background section, the continuous cast slab of high Ni alloy steel is edged at the edge of the continuous cast slab (rolled material) during hot working (for example, hot rolling, hot forging, etc.). Although cracking is likely to occur, this is due to hot working because the grain structure of the high Ni alloy steel slab, which is melted and cast in an electric furnace, is weaker than that of ordinary steel such as carbon steel. This is primarily due to the fact that when a force is applied, cracks are likely to occur, particularly along the grain boundaries, at edge portions that extend both in the width direction and in the longitudinal direction and are locally deformed. This tendency is stronger in continuous cast slabs with a high cooling rate during casting.
そして、熱間加工に先立って高Ni合金鋼の連鋳スラブを加熱する際、加熱後の連鋳スラブの温度が不均一であると、熱応力割れが発生し易い状況になり、熱間加工により加わる力によって、それらの影響が顕在化して、エッジ割れが一層発生し易くなる。 And, when heating the continuous cast slab of high Ni alloy steel prior to hot working, if the temperature of the continuous cast slab after heating is not uniform, thermal stress cracking is likely to occur, Due to the force applied, the influence becomes obvious, and edge cracks are more likely to occur.
発明者らは、高Ni合金鋼の連鋳スラブの熱間加工にてエッジ割れの発生を抑制する技術を研究した結果、熱間加工に先立って連鋳スラブを可及的均一に加熱することによって熱応力割れの発生を抑制することが極めて有効であるとを気付いた。本発明は、このような知見に基づいて完成されたものである。 The inventors have studied the technology to suppress the occurrence of edge cracking in the hot working of continuous cast slabs of high Ni alloy steel. As a result, the continuous cast slabs are heated as uniformly as possible prior to hot working. It has been found that suppressing the occurrence of thermal stress cracking is extremely effective. The present invention has been completed based on such findings.
発明者らは、表1に示すようなNiを36質量%含有する高Ni合金鋼を溶製した後、連続鋳造を行なって製造した連鋳スラブ(厚さ150mm ,幅1000mm,長さ7000mm)を加熱する過程で、連鋳スラブの表面温度(上面,側面)と内部温度の推移を調査した。すなわち、連鋳スラブを20℃まで冷却した後、加熱炉に装入して1200℃まで昇温しながら連鋳スラブの温度を測定した。その結果は図2に示す通りである。 The inventors have produced a continuous cast slab (150 mm thick, 1000 mm wide, 7000 mm long) produced by continuous casting after melting a high Ni alloy steel containing 36% by mass of Ni as shown in Table 1. During the process of heating, the transition of the surface temperature (upper surface, side surface) and internal temperature of the continuous cast slab was investigated. That is, after the continuous cast slab was cooled to 20 ° C., the temperature of the continuous cast slab was measured while being charged into a heating furnace and heated to 1200 ° C. The result is as shown in FIG.
連鋳スラブの表面温度は、連鋳スラブの上面と側面に熱電対を取り付けて測定した。連鋳スラブの内部温度は、連鋳スラブの厚さ方向中央に直径4mm,深さ100mmの孔を幅方向に向けあけて熱電対を埋め込んで測定した。加熱炉における昇温速度は、連鋳スラブ上面の表面温度が1分あたり11℃上昇(11℃/分と表記する)するように設定した。 The surface temperature of the continuous cast slab was measured by attaching thermocouples to the top and side surfaces of the continuous cast slab. The internal temperature of the continuous cast slab was measured by opening a hole with a diameter of 4 mm and a depth of 100 mm in the center in the thickness direction of the continuous cast slab and embedding a thermocouple. The heating rate in the heating furnace was set so that the surface temperature of the upper surface of the continuous cast slab increased by 11 ° C. per minute (expressed as 11 ° C./min).
図2から明らかなように、加熱炉に装入した連鋳スラブが1200℃に到達するまで、常に内部温度が低く、表面温度が高くなっている。加熱炉内で連鋳スラブの表面から入熱した熱が内部へ向け熱伝導するという昇温過程を考慮すると、図2に示される現象は当然といえる。また、上面の表面温度が側面の表面温度に比べてやや高いのは、加熱炉内では、加熱炉の天井と、それに炉壁からの輻射により連鋳スラブが加熱されるものであるところ、複数の連鋳スラブが幅方向に間隔50mm内外で並んでいるので、連鋳スラブの上下面からの入熱が主体になり、側面からの入熱は隣の連鋳スラブの影に入る分、若干少なくなるからである。 As is apparent from FIG. 2, the internal temperature is always low and the surface temperature is high until the continuous cast slab charged in the heating furnace reaches 1200 ° C. The phenomenon shown in FIG. 2 can be taken into consideration when considering the temperature rising process in which heat input from the surface of the continuous cast slab in the heating furnace conducts heat toward the inside. Moreover, the surface temperature of the upper surface is slightly higher than the surface temperature of the side surface. In the heating furnace, the continuous casting slab is heated by radiation from the ceiling of the heating furnace and the furnace wall. Since the continuous cast slabs are lined up in the width direction at intervals of 50 mm, the heat input from the upper and lower surfaces of the continuous cast slab is the main, and the heat input from the side is slightly in the shadow of the adjacent continuous cast slab Because it will decrease.
図2のデータの測定に用いた高Ni合金鋼(Ni含有量:36質量%)の熱膨張係数と温度との関係を図3に示す。図3から明らかなように、この高Ni合金鋼は、温度が高くなると熱膨張係数が大きくなる性質を有している。連鋳スラブ内で温度差が生じた場合に熱膨張量の差によって熱応力が発生し、その熱応力により連鋳スラブの鋳造組織の結晶粒界に沿って割れ(すなわち熱応力割れ)が発生する。実際に割れが発生しないまでも、熱間加工すると割れとなって顕在化するような、割れの発生し易い状況となる。 FIG. 3 shows the relationship between the thermal expansion coefficient and the temperature of the high Ni alloy steel (Ni content: 36 mass%) used for the measurement of the data in FIG. As is apparent from FIG. 3, this high Ni alloy steel has the property that the coefficient of thermal expansion increases as the temperature increases. When a temperature difference occurs in the continuous cast slab, thermal stress is generated due to the difference in thermal expansion, and the thermal stress causes cracks (ie, thermal stress cracks) along the grain boundaries of the cast structure of the continuous cast slab. To do. Even if cracks do not actually occur, cracks are likely to occur as they become apparent when cracked hot.
加熱することによって熱応力割れが発生した連鋳スラブを熱間加工すると、熱応力割れが起点となって割れがさら拡大して、エッジ割れとなる。この他、熱間加工により、割れの発生し易い状況になっている部位にて割れが顕在化して発生する場合もある。したがって、エッジ割れの発生を抑制するためには、不均一加熱に起因する熱応力割れの発生を抑制することが極めて有効である。 When a continuous cast slab in which thermal stress cracking has occurred by heating is hot-worked, the thermal stress cracking becomes the starting point, and the cracks further expand to form edge cracks. In addition, there is a case where cracks are manifested and generated at a site where cracks are likely to occur due to hot working. Therefore, in order to suppress the occurrence of edge cracks, it is extremely effective to suppress the occurrence of thermal stress cracks due to non-uniform heating.
しかしながら、加熱中の連鋳スラブ内で生じる温度差は、必ずしも一定ではなく、連鋳スラブの寸法や昇温速度等に依存する。図2に示した連鋳スラブ(厚さ150mm ,幅1000mm,長さ7000mm)の内部温度と表面温度(上面)の温度差の推移は図4に示す通りである。なお、同材質で厚さの異なる連鋳スラブ(厚さ250mm ,幅1000mm,長さ7000mm)の内部温度と表面温度(上面)の温度差の推移を同様(昇温速度:11℃/分)に測定したものも図4に併せて示す。
However, the temperature difference generated in the continuous cast slab during heating is not necessarily constant, and depends on the dimensions of the continuous cast slab, the temperature increase rate, and the like. The transition of the temperature difference between the internal temperature and the surface temperature (upper surface) of the continuous cast slab (
図4から明らかなように、同じ条件で加熱しても、連鋳スラブの寸法が異なると、連鋳スラブの温度差も変化する。つまり連鋳スラブの厚さが厚い方が、温度差が大きくなっている。これは、連鋳スラブの厚さが厚い方が、表面からの入熱が内部へ熱伝導するのに長時間を要するからである。 As is apparent from FIG. 4, even when heated under the same conditions, if the dimensions of the continuous cast slab differ, the temperature difference of the continuous cast slab also changes. That is, the temperature difference is larger when the continuous cast slab is thicker. This is because a thicker continuous cast slab requires a longer time for heat input from the surface to conduct heat to the inside.
次に、図4に示した2種類の連鋳スラブを1200℃に加熱した後、熱間圧延(圧下率:20%,圧延用ロール直径:上下共850mm )を行ない、連鋳スラブに発生したエッジ割れの深さを調査した。連鋳スラブの最大温度差とエッジ割れの深さとの関係を図1に示す。なお図1中の連鋳スラブの最大温度差は、図4中の温度差の最大値を指す。つまり最大温度差は、加熱の開始から終了までの間に生ずる連鋳スラブ内温度の最大値と最小値の差である。また、エッジ割れの深さは、連鋳スラブの表面から内部に向かって生じた亀裂の最大深さを指す。 Next, after heating the two types of continuous cast slabs shown in FIG. 4 to 1200 ° C., hot rolling (rolling rate: 20%, rolling roll diameter: 850 mm in both upper and lower sides) occurred in the continuous cast slab. The depth of edge cracking was investigated. The relationship between the maximum temperature difference of continuous cast slab and the depth of edge cracking is shown in FIG. In addition, the maximum temperature difference of the continuous cast slab in FIG. 1 points out the maximum value of the temperature difference in FIG. That is, the maximum temperature difference is the difference between the maximum value and the minimum value of the continuous cast slab temperature that occurs between the start and end of heating. Moreover, the depth of an edge crack points out the maximum depth of the crack produced toward the inside from the surface of the continuous casting slab.
図1から明らかなように、厚さ150mm の連鋳スラブでは、エッジ割れはほとんど認められない。しかし、厚さ250mm の連鋳スラブでは、約60mmのエッジ割れが発生している。 As is apparent from FIG. 1, edge cracks are hardly observed in a continuous cast slab having a thickness of 150 mm. However, in a continuous cast slab with a thickness of 250 mm, an edge crack of about 60 mm has occurred.
発明者らは、さらに、連鋳スラブの寸法や加熱炉の昇温速度を種々変化させて同様の測定を行ない、連鋳スラブの最大温度差を求めた。その後、同様の熱間圧延を行ない、エッジ割れの深さを調査した。その結果も併せて図1に示す。 The inventors further performed the same measurement by changing various dimensions of the continuous cast slab and the heating rate of the heating furnace, and determined the maximum temperature difference of the continuous cast slab. Then, the same hot rolling was performed and the depth of the edge crack was investigated. The results are also shown in FIG.
図1から明らかなように、連鋳スラブの最大温度差が200℃以下ではエッジ割れの深さは最大5mmであったのに対して、最大温度差が 200℃を超えるとエッジ割れの深さが急激に増加する。したがってエッジ割れの発生を抑制するためには、連鋳スラブの最大温度差を 200℃以下にする必要がある。 As is clear from Fig. 1, when the maximum temperature difference of continuous cast slabs is 200 ° C or less, the depth of edge cracking was 5 mm at maximum, whereas when the maximum temperature difference exceeds 200 ° C, the depth of edge cracking Increases rapidly. Therefore, in order to suppress the occurrence of edge cracks, the maximum temperature difference of continuous cast slabs must be 200 ° C or less.
図1には、熱間圧延を圧下率:20%,圧延用ロール直径:上下共850mm に統一して行なったデータを示したが、発明者らの研究によれば、圧下率や圧延用ロール直径を変更しても、連鋳スラブの最大温度差を 200℃以下にすれば同様にエッジ割れの発生を抑制できる。また、熱間圧延のみならず、他の熱間加工技術(たとえば熱間鍛造等)においても、同様に連鋳スラブの最大温度差を 200℃以下にすればエッジ割れの発生を抑制できることが確認された。 Fig. 1 shows data obtained by unifying hot rolling at a rolling reduction of 20% and rolling roll diameter: 850 mm in both the upper and lower sides. According to the inventors' research, the rolling reduction and rolling roll are shown. Even if the diameter is changed, edge cracking can be similarly suppressed if the maximum temperature difference of the continuous slab is set to 200 ° C or less. In addition to hot rolling, other hot working techniques (for example, hot forging, etc.) have also been confirmed that edge cracking can be suppressed if the maximum temperature difference of continuous cast slabs is reduced to 200 ° C or less. It was done.
ここでは熱電対を用いて測定した連鋳スラブの温度に基づいて説明したが、加熱炉側に放射温度計等の温度計を取り付けて測定するようにしても良いし、あるいは連鋳スラブの加熱条件(すなわち加熱炉内各帯の設定温度と在帯時間)が与えられれば、熱伝導方程式を差分法等で解くことによって連鋳スラブの温度の時間的推移を計算できることは周知である。したがって、本発明を実施するにあたっては、予め加熱の開始から終了までの間に生ずる連鋳スラブの最大温度差が 200℃以内になるような加熱炉の各加熱帯設定温度等の最適な昇温パターンを設定しておくようにするのが好ましい。 Here, the description is based on the temperature of the continuous cast slab measured using a thermocouple. However, the measurement may be performed by attaching a thermometer such as a radiation thermometer on the heating furnace side, or heating the continuous cast slab. It is well known that given the conditions (that is, the set temperature of each zone in the heating furnace and the duration of time), the temporal transition of the temperature of the continuous cast slab can be calculated by solving the heat conduction equation by the difference method or the like. Therefore, in carrying out the present invention, the optimum temperature rise such as the set temperature of each heating zone of the heating furnace in which the maximum temperature difference of the continuous cast slab generated between the start and the end of heating is within 200 ° C in advance. It is preferable to set a pattern.
発明者らの研究によれば、図1に示す関係は、Ni含有量が36質量%の高Ni合金鋼に限らず、Niを25.0〜85.0質量%含有する高Ni合金鋼についても成り立つことが確かめられた。それらの高Ni合金鋼は、例えば表2に示すようなICリードフレームに用いられる高Ni合金鋼(Ni含有量:42質量%),表3に示すようなバイメタルに用いられる高Ni合金鋼(Ni含有量:20質量%),表4に示すような磁気シールド等の電子材料に用いられる高Ni合金鋼(Ni含有量:85質量%)等である。 According to the study by the inventors, the relationship shown in FIG. 1 is not limited to high Ni alloy steel having a Ni content of 36% by mass, but also holds for high Ni alloy steels containing 25.0 to 85.0% by mass of Ni. It was confirmed. These high Ni alloy steels are, for example, high Ni alloy steels (Ni content: 42% by mass) used in IC lead frames as shown in Table 2, high Ni alloy steels used in bimetals as shown in Table 3 ( Ni content: 20% by mass) and high Ni alloy steel (Ni content: 85% by mass) used for electronic materials such as magnetic shields as shown in Table 4.
第1〜3加熱帯および均熱帯の4帯で構成される加熱炉を用いて、表4に示す組成の高Ni合金鋼の連鋳スラブを加熱した。連鋳スラブの寸法,加熱炉での加熱条件(各帯設定温度,在帯時間)は表5に示す通りである。ただし、加熱炉から抽出したときの連鋳スラブの温度を同一にするために、均熱帯は全て設定温度1200℃,在炉時間60分とした。表5中の発明例は、最大温度差が本発明の範囲である 200℃以内の条件を満足する例であり、比較例は、最大温度差が 200℃を超える例である。なお、表5に示した連鋳スラブの最大温度差は、連鋳スラブの寸法や加熱炉での加熱条件から熱伝導方程式を差分法で解くことによって得た値である。 The continuous cast slab of high Ni alloy steel having the composition shown in Table 4 was heated using a heating furnace composed of the first to third heating zones and the four soaking zones. Table 5 shows the dimensions of the continuous cast slab and the heating conditions in the furnace (each set temperature and time). However, in order to make the temperature of the continuous casting slab when extracted from the heating furnace the same, all the soaking zones were set at 1200 ° C and the in-furnace time was 60 minutes. The invention examples in Table 5 are examples where the maximum temperature difference satisfies the conditions within 200 ° C., which is the range of the present invention, and the comparative example is an example where the maximum temperature difference exceeds 200 ° C. In addition, the maximum temperature difference of the continuous cast slab shown in Table 5 is a value obtained by solving the heat conduction equation by the difference method from the dimensions of the continuous cast slab and the heating conditions in the heating furnace.
連鋳スラブを加熱炉から抽出した後、粗圧延機および仕上圧延機を備えた連続式の薄板用熱間圧延ラインで熱間圧延(総圧下率:98%)を行ない、高Ni合金鋼帯を製造した。高Ni合金鋼帯の厚さは表5に示す通りである。 After the continuous cast slab is extracted from the heating furnace, it is hot rolled (total rolling reduction: 98%) in a continuous thin sheet hot rolling line equipped with a roughing mill and a finish rolling mill. Manufactured. Table 5 shows the thickness of the high Ni alloy steel strip.
次いで、高Ni合金鋼帯を仕上圧延機の出側で高Ni合金熱延鋼帯としてコイル状に巻き取り、高Ni合金鋼帯の長手方向全長にわたってエッジ割れの発生の有無を目視で観察した。エッジ割れの発生が顕著に認められた部分では、高Ni合金鋼帯の幅端からエッジ割れの先端までの距離(すなわちエッジ割れの深さ)を測定した。エッジ割れの深さが10mm未満のものを良好(○),10mm以上のものを不良(×)として評価した。その結果は表5に示す通りである。 Next, the high Ni alloy steel strip was wound into a coil as a high Ni alloy hot rolled steel strip on the exit side of the finish rolling mill, and the presence or absence of edge cracking was visually observed over the entire length in the longitudinal direction of the high Ni alloy steel strip. . In the portion where the occurrence of edge cracks was remarkably recognized, the distance from the width edge of the high Ni alloy steel strip to the edge crack edge (that is, the depth of the edge crack) was measured. Edge cracks with a depth of less than 10 mm were evaluated as good (◯) and those with a depth of 10 mm or more were evaluated as defective (×). The results are as shown in Table 5.
発明例は、エッジ割れの評価がいずれも良好(○)であったが、比較例は不良(×)であった。 In all of the inventive examples, the evaluation of edge cracking was good (◯), but the comparative example was bad (x).
Claims (1)
A method of hot-working a continuous cast slab of high Ni alloy steel containing 25.0 to 85.0% by mass of Ni, wherein when the continuous cast slab is heated prior to processing the continuous cast slab, A hot working method for high Ni alloy steel, characterized in that the difference between the maximum and minimum values is within 200 ° C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004253061A JP2006070306A (en) | 2004-08-31 | 2004-08-31 | HOT WORKING METHOD FOR HIGH Ni ALLOY STEEL |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004253061A JP2006070306A (en) | 2004-08-31 | 2004-08-31 | HOT WORKING METHOD FOR HIGH Ni ALLOY STEEL |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006070306A true JP2006070306A (en) | 2006-03-16 |
Family
ID=36151239
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004253061A Pending JP2006070306A (en) | 2004-08-31 | 2004-08-31 | HOT WORKING METHOD FOR HIGH Ni ALLOY STEEL |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006070306A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113492151A (en) * | 2021-07-16 | 2021-10-12 | 山西太钢不锈钢股份有限公司 | Manufacturing method of iron-nickel-based alloy hot-rolled coil |
-
2004
- 2004-08-31 JP JP2004253061A patent/JP2006070306A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113492151A (en) * | 2021-07-16 | 2021-10-12 | 山西太钢不锈钢股份有限公司 | Manufacturing method of iron-nickel-based alloy hot-rolled coil |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3575431B1 (en) | Non-oriented electrical steel sheet and manufacturing method thereof | |
EP2394756B1 (en) | Titanium slab for hot-rolling, and smelting method and rolling method therefor | |
JP6082451B2 (en) | Steel sheet for hot pressing and manufacturing method thereof | |
JP2014233753A (en) | Industrial pure titanium ingot excellent in surface properties after hot rolling even if blooming process or fine arrangement process is omitted and method for manufacturing the same | |
TWI395822B (en) | Cold rolled steel sheet and manufacturing method thereof | |
KR102001755B1 (en) | METHOD FOR MANUFACTURING ROLLED CRANE PLATE AND METHOD FOR MANUFACTURING PURITY | |
JP5974671B2 (en) | Ultra-thin electrical steel sheet | |
WO2016148045A1 (en) | Steel sheet for hot pressing and method for producing same | |
JP2007211313A (en) | Ferritic stainless steel having excellent ridging resistance and its production method | |
EP2737961B1 (en) | Method for producing austenitic stainless steel | |
JP5155739B2 (en) | Steel bar manufacturing method | |
JP3241114B2 (en) | Method for producing ferritic stainless steel sheet excellent in ridging property and workability | |
JP2007245232A (en) | Method for preventing surface crack of continuously cast slab | |
JP2006070306A (en) | HOT WORKING METHOD FOR HIGH Ni ALLOY STEEL | |
JP6324549B2 (en) | Titanium slab for surface melting treatment | |
JP2006070305A (en) | HOT WORKING METHOD FOR HIGH Ni ALLOY STEEL | |
JP6171836B2 (en) | Titanium alloy slab for hot rolling and manufacturing method thereof | |
JP2005271000A (en) | Method for producing high nickel alloy steel plate | |
JP2009012033A (en) | Method for manufacturing hot-rolled steel strip for grain oriented silicon steel sheet, and method for manufacturing grain oriented silicon steel sheet | |
JPH0860317A (en) | Production of titanium material | |
JP5167314B2 (en) | Method for producing ferritic stainless steel with excellent ridging resistance | |
JP3345540B2 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
JP6897521B2 (en) | Hot rolling method of titanium material | |
JP3399838B2 (en) | Manufacturing method of hot rolled alloy material | |
RU2650651C1 (en) | Method of austenitic anticorrosion steel section hot rolled plates production |