JP3241114B2 - Method for producing ferritic stainless steel sheet excellent in ridging property and workability - Google Patents

Method for producing ferritic stainless steel sheet excellent in ridging property and workability

Info

Publication number
JP3241114B2
JP3241114B2 JP21966792A JP21966792A JP3241114B2 JP 3241114 B2 JP3241114 B2 JP 3241114B2 JP 21966792 A JP21966792 A JP 21966792A JP 21966792 A JP21966792 A JP 21966792A JP 3241114 B2 JP3241114 B2 JP 3241114B2
Authority
JP
Japan
Prior art keywords
rolling
less
stainless steel
hot
hot rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21966792A
Other languages
Japanese (ja)
Other versions
JPH0681036A (en
Inventor
克久 宮楠
美博 植松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP21966792A priority Critical patent/JP3241114B2/en
Publication of JPH0681036A publication Critical patent/JPH0681036A/en
Application granted granted Critical
Publication of JP3241114B2 publication Critical patent/JP3241114B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は,プレス成形や曲げ加
工, ロールフォーミングなどの加工に供されるリジング
性および加工性に優れたフエライト系ステンレス鋼板の
製造方法に関する。本発明の鋼は冷延鋼帯もしくは冷延
鋼板の形で市場に供されるが,本明細書においてはこれ
らを鋼板と総称する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a ferritic stainless steel sheet having excellent ridging properties and workability, which is used for press forming, bending, and roll forming. The steel of the present invention is marketed in the form of a cold-rolled steel strip or a cold-rolled steel sheet, and these are collectively referred to as a steel sheet in this specification.

【0002】[0002]

【従来の技術】SUS430に代表されるフエライト系ステン
レス鋼は,良好な耐食性ならびに加工性を有し, また高
価なNiを含有せず,オーステナイト系ステンレス鋼に
比べると経済的な利点も合わせ持つことなどから,耐久
消費財を中心に広く使用されている。しかしフエライト
系ステンレス鋼板ではプレス成形時にリジングと呼ばれ
る独特のシワ状の表面凹凸を生じる現象がある。リジン
グは成形品の美観を損ない商品価値を低下させるばかり
か,これを除去するために研磨負荷の増大を招くなど,
フエライト系ステンレス鋼の加工上の大きな問題であ
る。
[Prior Art] Ferrite stainless steel represented by SUS430 has good corrosion resistance and workability, does not contain expensive Ni, and has economical advantages compared to austenitic stainless steel. It is widely used mainly for durable consumer goods. However, a ferrite stainless steel sheet has a phenomenon in which a unique wrinkle-like surface unevenness called ridging is generated during press forming. Ridging not only impairs the aesthetics of the molded product and lowers its commercial value, but also increases the polishing load to remove it.
This is a major problem in processing ferritic stainless steel.

【0003】リジングの成因については, これまでに数
多くの報告がなされているが,つまるところ, 鋳造組織
や熱延板組織に由来する方位の近い結晶粒の集団からな
る単位領域が冷延焼鈍板においても温存され,プレス成
形などの加工に際してそれぞれの単位領域が異なった変
形挙動を示し, 鋼板の圧延方向にうね状の表面起伏を生
じるものと考えられている。したがって,リジング性の
改善にはこの単位領域を微細化, 粉砕化することが有効
であり, この観点から各種の改善策が提案されている。
[0003] There have been many reports on the origin of ridging, but in the end, a unit region consisting of a group of crystal grains with similar orientations derived from the structure of the cast or hot rolled sheet is formed in the cold rolled annealed sheet. It is thought that each unit area shows different deformation behavior during press forming and other processing, and undulates the surface in the rolling direction of the steel sheet. Therefore, it is effective to refine and pulverize this unit area to improve the ridging property, and various improvement measures have been proposed from this viewpoint.

【0004】従来, フエライト系ステンレス鋼板の製造
は,連続鋳造スラブを熱間圧延により熱延鋼帯とし,箱
型炉もしくは連続焼鈍炉による熱延板焼鈍を行った後,
酸洗し,一回の冷間圧延もしくは中間焼鈍を含む複数回
の冷間圧延を行い, 再結晶焼鈍して製品化するのが一般
的な方法である。ただし,熱延板焼鈍は省略される場合
もあるが,特に深絞り加工などに供されるリジング性お
よび加工性が重要となる薄板のプレス成形用途に対して
は,熱延板焼鈍を行い且つ中間焼鈍を含む2回の冷間圧
延を実施して製造されることが多い。
Conventionally, in the production of ferritic stainless steel sheets, a continuous cast slab is formed into a hot-rolled steel strip by hot rolling, and after performing hot-rolled sheet annealing in a box furnace or a continuous annealing furnace,
It is a common method to pickle, perform cold rolling once or cold rolling several times including intermediate annealing, and recrystallize and annealing to produce a product. However, although hot-rolled sheet annealing may be omitted in some cases, hot-rolled sheet annealing is performed especially for press forming of thin sheets where ridging property and workability are important for deep drawing. It is often manufactured by performing cold rolling twice including intermediate annealing.

【0005】このような従来のフエライト系ステンレス
鋼冷延鋼板の製造において,標準的に採用されている熱
間圧延条件は次の通りである。
[0005] In the production of such conventional ferritic stainless steel cold-rolled steel sheets, the hot rolling conditions that are standardly employed are as follows.

【0006】また,生産能率の上で重要となる圧延速度
については,従来のフエライト系ステンレス鋼では仕上
圧延出側速度で4.0〜6.0m/s程度である。これは, オー
ステナイト系ステンレス鋼の約8m/s以上, 普通鋼の約1
0m/s以上に比べるとかなり遅い。
[0006] The rolling speed, which is important in terms of production efficiency, is approximately 4.0 to 6.0 m / s in the finish rolling exit speed in the conventional ferrite stainless steel. This is about 8m / s or more for austenitic stainless steel and about 1m for ordinary steel.
It is much slower than 0m / s or more.

【0007】熱間圧延におけるリジング改善策として
は,低温圧延が有効であることが知られており, このた
めフエライト系ステンレス鋼は,通常はオーステナイト
系ステンレス鋼より低い温度で熱間圧延が実施されてい
る。加工用途向けなどで特にリジング性が重要視される
場合は,一般のフエライト系ステンレス鋼よりもさらに
仕上熱間圧延終了温度を低く規制することも行われてい
る。
It is known that low-temperature rolling is effective as a ridging improvement measure in hot rolling. For this reason, ferritic stainless steel is usually hot-rolled at a lower temperature than austenitic stainless steel. ing. When ridging property is particularly important for processing applications, the finish hot rolling finish temperature is regulated to be lower than that of general ferritic stainless steel.

【0008】より積極的には,比較的低温で強圧下の圧
延パスを施したり, 圧延中に材料を一時的に待機させて
パス間時間を大きくするいわゆるディレイ圧延がリジン
グ改善に有効であることも知られている。例えば特公昭
45-34016号公報では,熱間圧延の少なくとも50%の圧下
を871℃以下の温度で行なうこと,また, 熱間圧延の途
中で圧延を一時停止し,材料を760〜871℃よりも高くな
い温度に冷却した後に後段の熱間圧延を行なうリジング
改善方法が提案されている。
More positively, so-called delay rolling, in which rolling passes are performed under high pressure at a relatively low temperature and where the material is temporarily on standby during rolling to increase the time between passes, is effective in improving ridging. Is also known. For example,
No. 45-34016 discloses that at least 50% reduction of hot rolling is performed at a temperature of 871 ° C or less, and that rolling is temporarily stopped during hot rolling and the material is not higher than 760 to 871 ° C. A ridging improvement method has been proposed in which hot rolling is performed at a later stage after cooling to a temperature.

【0009】[0009]

【発明が解決しようとする課題】従来の熱間圧延温度の
低温化によるリジング性の改善は,低温化するために必
然的に圧延速度の低減を伴うという問題がある。このた
め生産性の低下が免れ得ない。事実, 先にも述べたよう
にフエライト系ステンレス鋼の仕上圧延速度はオーステ
ナイト系ステンレス鋼に比べてもかなり遅く,生産性に
劣っている。またディレイ圧延についても圧延時間の増
大を招き,生産性の低下をもたらす。したがって,これ
も経済的な方法とは言えない。
The conventional improvement in ridging properties by lowering the hot rolling temperature involves a problem that the lowering of the hot rolling temperature necessarily involves a reduction in the rolling speed. Therefore, a decrease in productivity cannot be avoided. In fact, as mentioned above, the finish rolling speed of ferritic stainless steel is considerably slower than that of austenitic stainless steel, and the productivity is inferior. Delay rolling also causes an increase in the rolling time and a reduction in productivity. Therefore, this is not an economic method.

【0010】加えて,低温熱延は,確かにリジング性の
改善には有効であっても,表面疵を発生しやすく鋼帯の
表面品質の劣化をもたらすという問題がある。これは,
圧延温度が低くなると被圧延材の変形抵抗が上昇するの
で圧延負荷が大きくなり,ロールと被圧延材との焼付き
を生じて被圧延材の一部が凝着物としてロール表面に移
着し,その後の鋼帯表面に転写されることによると考え
られる。また,圧延温度が低いと鋼帯表面に生成される
酸化皮膜も薄くなり,これが焼付けを一層助長すること
も考えられる。このようなことから,低温熱延では,そ
の後の工程で鋼帯の表面研磨を要するなど,工程負荷の
増大をもたらすという問題がある。
[0010] In addition, although low-temperature hot rolling is certainly effective in improving ridging properties, there is a problem that surface flaws are easily generated and the surface quality of the steel strip is deteriorated. this is,
When the rolling temperature is lowered, the deformation resistance of the material to be rolled increases, so that the rolling load increases and seizure occurs between the roll and the material to be rolled, and a part of the material to be rolled is transferred to the roll surface as an adhered substance. It is considered to be due to the subsequent transfer to the steel strip surface. Also, when the rolling temperature is low, the oxide film formed on the steel strip surface becomes thinner, which may further promote baking. For this reason, low-temperature hot rolling has the problem of increasing the process load, such as the need to polish the surface of the steel strip in subsequent steps.

【0011】したがって,熱延鋼帯の生産性や表面品質
を損なうことなく,なおかつ加工用冷延鋼板で必要とさ
れる良好な深絞り性や延性を確保しつつ,リジング性を
改善するフエライト系ステンレス鋼の経済的な工業的熱
間圧延技術は未だ完成されていない。本発明の課題はこ
の点にある。
[0011] Therefore, a ferrite-based steel which improves the ridging property without deteriorating the productivity and surface quality of the hot-rolled steel strip, and securing the good deep drawability and ductility required for the cold-rolled steel sheet for processing. The economical industrial hot rolling technology of stainless steel has not yet been completed. The object of the present invention is in this respect.

【0012】[0012]

【課題を解決するための手段】前記の課題を解決すべ
く,本発明者らはフエライト系ステンレス鋼のリジング
性および加工性に及ぼす合金組成,金属組織および熱延
条件の影響に関し,詳細な検討を行ってきた。
Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors conducted a detailed study on the effects of alloy composition, metal structure and hot rolling conditions on ridging properties and workability of ferritic stainless steel. I went.

【0013】その結果,次のような幾つかの有益な事実
を見出した。高温でのγ相量を増加させる方向で鋼の成
分バランスを厳密に制御し,仕上熱間圧延において多量
のオーステナイト相が共存する状態で高温・高速熱延を
行なうと,フエライト相の細分化並びにひずみ蓄積を図
ることができ,巻取後もしくは熱延焼鈍時にフエライト
相の回復・再結晶が促進され,冷間圧延・焼鈍後に優れ
たリジング性,加工性を具備するフエライト系ステンレ
ス鋼板が得られることがわかった。すなわち,熱延鋼帯
における良好な表面品質と高い生産性が確保できるよう
な高温・高速熱延を採用しても後述のγmax の適正な制
御によって,冷間圧延・焼鈍後に優れたリジング性と加
工性を付与することができる。
As a result, the following several useful facts have been found. If the balance of steel composition is strictly controlled in the direction of increasing the amount of γ phase at high temperature, and high temperature and high speed hot rolling is performed in the finish hot rolling in the presence of a large amount of austenite, ferrite phase fragmentation and Strain accumulation can be achieved, recovery and recrystallization of the ferrite phase is promoted after winding or hot rolling annealing, and a ferritic stainless steel sheet with excellent ridging properties and workability after cold rolling and annealing can be obtained. I understand. In other words, even if high-temperature and high-speed hot rolling is used to ensure good surface quality and high productivity in hot-rolled steel strip, excellent ridging properties after cold rolling and annealing can be achieved by appropriate control of γmax described later. Workability can be imparted.

【0014】加えて, 適正量のBを添加すると,高温・
高速熱延の後にγ相が分散化した分布形態となり,冷間
圧延・焼鈍後にリジング性と加工性がより向上するこ
と, さらにTi,Nb,ZrおよびVの適量の添加によって
加工性は一層向上することがわかった。
In addition, when an appropriate amount of B is added,
After the high-speed hot rolling, the γ phase becomes dispersed, and the ridging property and workability are further improved after cold rolling and annealing, and the workability is further improved by adding appropriate amounts of Ti, Nb, Zr and V. I found out.

【0015】本発明はこのような知見に基づき完成した
ものであり,その要旨とするところは,熱間加工温度域
でフエライト+オーステナイトの2相組織を呈するフエ
ライト系ステンレス鋼を,粗熱間圧延および仕上熱間圧
延を経て熱延鋼帯となし,冷間圧延と焼鈍を組み合わせ
て冷延鋼板または鋼帯を製造するさいに,下記(1)式で
示されるγmaxが35以上で80以下となるように化学
成分をバランスさせたフエライト系ステンレス鋼のスラ
ブを製造し(ただし,この鋼は(1)式中の全ての成分が
添加されていることを意味するものではなく,含有しな
い成分は0%としてγmaxを算出する), このスラブを1
150〜1250℃に加熱して粗熱間圧延を開始し,仕上圧延
出側速度が 7.0 m/s以上でかつ仕上圧延出側温度が 860
℃以上で仕上熱間圧延を終了し,650 ℃以上で巻き取る
ことを特徴とする,リジング性および加工性に優れたフ
エライト系ステンレス鋼板の製造法である。 γmax =420(%C)+470(%N)+23(%Ni)+7(%Mn)−11.5(%Cr) −11.5(%Si)−23(%V)−49(%Ti)−50(%Nb)−50(%Zr) +189 ・・(1)
The present invention has been completed on the basis of these findings, and the gist of the present invention is to provide a ferritic stainless steel exhibiting a two-phase structure of ferrite and austenite in a hot working temperature range by rough hot rolling. And hot-rolled steel strip through finish hot rolling, and when a cold-rolled steel sheet or steel strip is manufactured by combining cold rolling and annealing, the γmax expressed by the following formula (1) must be 35 or more and 80 or less. Manufacture ferrite stainless steel slabs in which the chemical components are balanced as follows (however, this steel does not mean that all the components in the formula (1) have been added, and the components that do not contain Γmax is calculated as 0%),
Rough hot rolling was started by heating to 150 to 1250 ° C, and the finish rolling exit speed was 7.0 m / s or more and the finish rolling exit temperature was 860 m / s.
This is a method for producing ferritic stainless steel sheets with excellent ridging properties and workability, characterized by finishing hot rolling at a temperature of ℃ or higher and winding at 650 ℃ or higher. .gamma.max = 420 (% C) +470 (% N) +23 (% Ni) +7 (% Mn) -11.5 (% Cr) -11.5 (% Si) -23 (% V) -49 (% Ti) -50 (% Nb) -50 (% Zr) +189 (1)

【0016】[0016]

【作用】γmaxは熱間圧延温度域などの高温での最大オ
ーステナイト相量に対応する指標であり, 本発明の対象
とする鋼は,基本的には前記γmaxが35以上80以下のフ
エライト系ステンレス鋼であればよい。本発明が有利に
達成できる好ましいフエライト系ステンレス鋼は,質量
%でC:0.10%以下, Si:0.75%以下, Mn:2.0%以
下, Ni:0.50%以下, Cr:10.00〜20.00%, N:0.04
%以下, B:0.0010〜0.0300%を含有し,必要に応じて
さらにTi:0.01〜0.30%, Nb:0.01〜0.30%, Zr:
0.01〜0.30%またはV:0.01〜0.30%の1種または2種
以上を含有し,残部がFeおよび不可避の不純物からな
り, γmaxが35以上80以下の鋼である。
[Action] γmax is an index corresponding to the maximum austenite phase amount at a high temperature such as a hot rolling temperature range, and the steel targeted by the present invention is basically a ferritic stainless steel having a γmax of 35 to 80. Any steel may be used. Preferred ferritic stainless steels that can be advantageously achieved by the present invention are, by mass%, C: 0.10% or less, Si: 0.75% or less, Mn: 2.0% or less, Ni: 0.50% or less, Cr: 10.00 to 20.00%, N: 0.04
% Or less, B: 0.0010 to 0.0300%, and Ti: 0.01 to 0.30%, Nb: 0.01 to 0.30%, Zr:
0.01 to 0.30% or V: steel containing one or more of 0.01 to 0.30%, the balance being Fe and unavoidable impurities, and γmax of 35 to 80.

【0017】代表的な実験結果を参照しながら以下に本
発明の作用効果を具体的に説明しよう。
The operation and effect of the present invention will be specifically described below with reference to typical experimental results.

【0018】供試鋼の化学成分を表1に示した。A鋼は
SUS430として一般的な化学成分を有するγmaxが17.0の1
7%Cr鋼である。B鋼はγmaxが45.1とA鋼よりも高く,
またC鋼はγmaxが42.1でB (ほう素)を含有する鋼で
ある。これらの鋼は真空高周波溶解炉で溶製し,凝固速
度を遅くし実機スラブに近い鋳造組織を得るために,耐
火物で内張りした鋳型に鋳造し,100kg鋼塊を作製し
た。この鋼塊から40mm厚み×100mm幅×lmm長さの熱間
圧延用試料を採取した。
Table 1 shows the chemical components of the test steels. Steel A
Γmax, which has a common chemical component as SUS430, is 17.0
7% Cr steel. Steel B has a higher γmax of 45.1 than steel A,
C steel has a γmax of 42.1 and contains B (boron). These steels were smelted in a vacuum high-frequency melting furnace and cast into molds lined with refractories to reduce the solidification rate and obtain a cast structure close to that of actual slabs, producing 100 kg ingots. From this steel ingot, a sample for hot rolling of 40 mm thickness × 100 mm width × 1 mm length was collected.

【0019】[0019]

【表1】 [Table 1]

【0020】これらの試料は,表2に示した条件で高温
熱延と低温熱延を行い,板厚3.6mmの熱延鋼板を作製し
た。いずれの場合も熱延速度は変化させず5m/sの一定
とした。この熱延板に850℃×6hの熱延板焼鈍を施
し,デスケール後,板厚0.7mmに冷間圧延し,830℃×1
minの焼鈍を行った。
These samples were subjected to high-temperature hot rolling and low-temperature hot rolling under the conditions shown in Table 2 to produce a hot-rolled steel sheet having a thickness of 3.6 mm. In each case, the hot rolling speed was not changed and was kept constant at 5 m / s. The hot-rolled sheet is annealed at 850 ° C. for 6 hours, descaled, and cold-rolled to a thickness of 0.7 mm.
Min annealing was performed.

【0021】得られた冷延焼鈍板から, 圧延方向と平行
に平行部35mm幅×120mm長さの引張り試験片を採取し,2
0%の引張りひずみを付与して表面に現れるリジングを
評価した。リジングは表面粗さ計を用いて圧延方向と直
角方向の中心線平均粗さRaを測定することにより評価
した。その結果を図1にまとめて示した。
From the obtained cold-rolled annealed sheet, a tensile test specimen having a parallel part 35 mm wide × 120 mm long was taken in parallel with the rolling direction.
The ridging appearing on the surface with 0% tensile strain applied was evaluated. The ridging was evaluated by measuring the center line average roughness Ra in a direction perpendicular to the rolling direction using a surface roughness meter. The results are summarized in FIG.

【0022】[0022]

【表2】 [Table 2]

【0023】図1は,フエライト系ステンレス鋼のリジ
ング性に対してγmaxおよび熱延温度が非常に興味深い
影響を及ぼすことを示している。すなわちγmaxが低い
鋼Aの場合はRaに対する熱延温度の影響が大きく, 高
温熱延では著しくRaは大きくなってリジング性は劣る
のに対し,γmaxが高い鋼BではRaに及ぼす熱延温度の
影響は比較的小さくなると共に,どの熱延温度ともRa
は小さくなり, 高温熱延であってもリジング性に優れ
る。
FIG. 1 shows that γmax and hot rolling temperature have a very interesting effect on the ridging properties of ferritic stainless steel. In other words, in the case of steel A having a low γmax, the effect of the hot rolling temperature on Ra is large, and in high temperature hot rolling, Ra is significantly increased and the ridging property is inferior. The effect is relatively small and Ra is independent of any hot rolling temperature.
Is small and has excellent ridging properties even at high temperature hot rolling.

【0024】また図1の結果から,従来条件に対応する
鋼Aを低温熱延した場合の冷延焼鈍板と同等以下の中心
線平均粗さは,高温熱延の場合にはγmaxが約35以上で
得られることが分かる。B (ほう素) を含有する鋼Cで
はRaは一層小さくなり, 高温熱延においても非常に優
れたリジング性を示すようになる。
Further, from the results shown in FIG. 1, the center line average roughness equal to or less than that of the cold-rolled annealed sheet when the steel A corresponding to the conventional conditions is hot-rolled at a low temperature is γmax of about 35 in the hot-rolled hot-rolling. It can be seen that the above is obtained. In steel C containing B (boron), Ra becomes even smaller, and very good ridging properties are exhibited even in hot rolling at high temperatures.

【0025】図1の結果は,熱間圧延において圧延速度
を高め熱延温度を上昇させても,γmaxを高めれば良好
なリジング性が確保できる可能性を示すものであり, ま
たBは一層その効果を助長することを示している。
The results in FIG. 1 show that even if the rolling speed is increased and the hot rolling temperature is increased in hot rolling, good ridging properties can be ensured if γmax is increased. It indicates that it promotes the effect.

【0026】γmaxを高めると,高温熱延であっても良
好なリジング特性が得られる理由については,次のよう
に考えられる。
The reason why good ridging characteristics can be obtained even at high temperature hot rolling when γmax is increased is considered as follows.

【0027】γmaxは先にも述べたように高温での最大
オーステナイト量に対応し,オーステナイトの析出ノー
ズは1050〜1100℃にあることから, γmaxを高めること
は粗熱間圧延後半の温度域でのオーステナイト量を増加
させることになる。ただし,フエライト系ステンレス鋼
のように多量のCrを含有する鋼では普通鋼に比べγ→
α変態が遅く, 粗熱間圧延段階で生成したオーステナイ
トは仕上熱間圧延時にもほぼそのまま持ち来される。
As described above, γmax corresponds to the maximum amount of austenite at a high temperature, and since the precipitation nose of austenite is in the range of 1050 to 1100 ° C., increasing γmax cannot be achieved in the temperature range in the latter half of rough hot rolling. Will increase the amount of austenite. However, steel containing a large amount of Cr, such as ferrite stainless steel, has a higher γ →
The α transformation is slow, and austenite formed in the rough hot rolling stage is brought almost as it is during the finish hot rolling.

【0028】従って, γmaxを高めることにより, フエ
ライト相に比べ熱間での変形抵抗の大きいオーステナイ
ト相がより多量にフエライト相と共存する状態で仕上熱
間圧延されることになり, フエライト相の細分化ならび
にひずみ蓄積に寄与し,これが巻取後もしくは熱延板焼
鈍時にフエライト相の回復・再結晶を促進する作用を果
たし, その結果, リジング性が改善されるものと考えら
れる。また高速熱延はひずみ速度を高めるから実質的に
低温で熱延したと同様にフエライト相へひずみ蓄積を促
進する作用を供する。
Therefore, by increasing γmax, the austenite phase, which has a higher hot deformation resistance than the ferrite phase, is subjected to finish hot rolling in a state in which a large amount of the austenite phase coexists with the ferrite phase. It is thought that this contributes to the recovery and recrystallization of the ferrite phase after winding or during annealing of a hot-rolled sheet, and as a result, the ridging property is improved. Further, since high-speed hot rolling increases the strain rate, it provides an effect of accelerating the accumulation of strain in the ferrite phase, similarly to hot rolling at substantially low temperature.

【0029】一方,Bについての作用は次のように考え
ることができる。図2は,前記試験の鋼Aの熱延板の金
属組織を示した写真,図3は同じく鋼C(ほう素Bを含
有する鋼)の熱延板の金属組織を示した写真である。両
図の比較から,B(ほう素)を含有する鋼Cでは熱間圧
延中にオーステナイト相であった変態相が粒状に分散化
して分布しており,帯状で展伸度の高い鋼Aとは金属組
織が大きく異なることが分かる。
On the other hand, the operation for B can be considered as follows. FIG. 2 is a photograph showing the metallographic structure of the hot rolled sheet of steel A in the test, and FIG. 3 is a photograph showing the metallographic structure of the hot rolled sheet of steel C (steel containing boron B). From the comparison of the two figures, it can be seen that in the steel C containing B (boron), the transformation phase, which was the austenite phase during hot rolling, is dispersed and distributed in the form of grains, and the steel A, which is a strip and has a high elongation, It can be seen that the metal structures differ greatly.

【0030】従って,Bはオーステナイト量の多少に影
響するよりは,むしろ,オーステナイト相の大きさや分
布状態を変える役割を供し,前述の熱延中のオーステナ
イト相の効果をより一層高める作用を果たすものと考え
られる。この変態相の分布状態に及ぼすBの影響のメカ
ニズムについては現時点では必ずしも明らかではない
が,おそらくBの関与する析出物がフエライト中に多数
存在し,これが粗熱間圧延中に生成するオーステナイト
の生成サイトとなるのではないかと考えられる。
Therefore, B does not affect the amount of austenite, but rather changes the size and distribution of the austenite phase, and further enhances the effect of the austenite phase during hot rolling. it is conceivable that. The mechanism of the effect of B on the distribution of the transformed phase is not yet clear at this time, but probably there are many precipitates involving B in ferrite, which form It might be a site.

【0031】以下に,本発明で規定する要件の数値の限
定理由について説明する。
The reasons for limiting the numerical values of the requirements specified in the present invention will be described below.

【0032】先にも述べたように,γmaxは熱間圧延温
度域での最大オーステナイト量の指標である。このγma
xの規定は本発明の最も重要な点であって,γmaxが35以
下では高温でのオーステナイト量が少なく, 本発明で規
定する高速・高温熱延を施した場合に十分なリジング特
性が得られない。一方, γmaxを高めるためには,C,
N, Mn,Niなどのオーステナイト生成元素量を高める
必要があるが,これらは材質の硬質化やコスト上昇を招
くためγmaxとして80以下に規定する。
As described above, γmax is an index of the maximum austenite amount in the hot rolling temperature range. This γma
The definition of x is the most important point of the present invention.When γmax is 35 or less, the amount of austenite at high temperatures is small, and sufficient ridging characteristics can be obtained when high-speed and high-temperature hot rolling specified in the present invention is performed. Absent. On the other hand, to increase γmax, C,
It is necessary to increase the amount of austenite forming elements such as N, Mn, and Ni. However, these elements are specified as γmax of 80 or less because they cause hardening of the material and increase in cost.

【0033】粗熱間圧延前のスラブ加熱温度は, 1150℃
未満では高速圧延を行ったとしても従来の熱間圧延で問
題となっている生産性の低下や表面疵発生の問題が完全
には解決され得ない。一方, 1250℃を超えるスラブ加熱
温度を採用することはエネルギーコストの上昇を招いて
不利となる。このため, スラブ加熱温度は1150〜1250℃
の範囲とする。
The slab heating temperature before rough hot rolling is 1150 ° C.
If it is less than 1, even if high-speed rolling is performed, the problems of productivity reduction and surface flaw generation, which are problems in conventional hot rolling, cannot be completely solved. On the other hand, adopting a slab heating temperature exceeding 1250 ° C is disadvantageous because it raises energy costs. Therefore, the slab heating temperature is 1150-1250 ° C
Range.

【0034】仕上圧延速度の規制は本発明の重要な点で
あって, 生産性を高めかつ圧延温度を確保し表面品質の
良好な熱延鋼帯を得るため7.0m/s以上に規定する。仕上
圧延終了温度については,前記の1150℃以上のスラブ加
熱温度を採用する場合にこの終了温度を860℃未満とす
るには,圧延速度を規制したり熱延中のストリップの冷
却強化を図ることか必要となり,またロールとの焼付き
に起因する表面疵発生の危険性も高まる。このような理
由から仕上圧延終了温度は 860℃以上とする。
The regulation of the finish rolling speed is an important point of the present invention, and is regulated to 7.0 m / s or more in order to increase the productivity, secure the rolling temperature, and obtain a hot-rolled steel strip having good surface quality. Regarding the finish rolling end temperature, if the above slab heating temperature of 1150 ° C or higher is used, the finishing temperature should be set to less than 860 ° C by controlling the rolling speed or strengthening the cooling of the strip during hot rolling. In addition, the risk of surface flaws caused by seizure with the roll increases. For this reason, the finish rolling finish temperature should be 860 ° C or higher.

【0035】巻取温度を低くするためには,仕上圧延機
出側から巻取機までの間で積極的な水冷を行なうなどの
処置が必要であり, 鋼帯の形状不良を招く。逆に高温巻
取を行なうには, 必要以上の高温熱延を行なう必要があ
る。そこで, 本発明で規定する前記スラブ加熱温度なら
びに仕上圧延終了温度を採用し,特段の水冷却などを行
なう必要のない巻取温度として, 650℃以上に規定す
る。
In order to lower the winding temperature, it is necessary to take measures such as aggressive water cooling from the finish rolling mill outlet to the winding machine, resulting in a defective shape of the steel strip. Conversely, in order to perform high temperature winding, it is necessary to perform hot rolling more than necessary. Therefore, the slab heating temperature and the finish rolling end temperature specified in the present invention are adopted, and the winding temperature that does not require special water cooling or the like is specified as 650 ° C. or higher.

【0036】本発明で対象とする鋼は,基本的には前記
γmaxが35以上で80以下のフエライト系ステンレス
鋼であればよいが,本発明の課題が有利に達成できるフ
エライト系ステンレス鋼としては,質量%でC:0.10%
以下, Si:0.75%以下, Mn:2.0%以下, Ni:0.50%
以下, Cr:10.00〜20.00%, N:0.04%以下,B:0.00
10〜0.0300%を含有し,必要に応じてさらにTi:0.01
〜0.30%, Nb:0.01〜0.30%, Zr:0.01〜0.30%また
はV:0.01〜0.30%の1種または2種以上を含有し,残
部がFeおよび不可避の不純物からなり, γmaxが35以上
80以下の鋼である。この鋼の各成分の含有量限定理由は
次のとおりである。
The steel targeted in the present invention may be basically a ferritic stainless steel in which the above-mentioned γmax is 35 or more and 80 or less, but as the ferrite stainless steel in which the object of the present invention can be advantageously achieved. ,% By mass C: 0.10%
Or less, Si: 0.75% or less, Mn: 2.0% or less, Ni: 0.50%
Below, Cr: 10.00-20.00%, N: 0.04% or less, B: 0.00
Contains 10 to 0.0300%, and additional Ti: 0.01 if necessary
~ 0.30%, Nb: 0.01 ~ 0.30%, Zr: 0.01 ~ 0.30% or V: 0.01 ~ 0.30%, the balance consists of Fe and unavoidable impurities, γmax is 35 or more
80 or less steel. The reasons for limiting the content of each component of the steel are as follows.

【0037】Cはγmaxを高める元素である。このため
熱間圧延温度域でのオーステナイトを増加させて組織微
細化に有利に働き,リジング性の向上に好ましい。しか
しCは冷延焼鈍後の強度を上昇させる元素でもあり, あ
まり高いと延性の低下を招くため,0.10%を上限とす
る。
C is an element that increases γmax. For this reason, austenite in the hot rolling temperature range is increased, which works advantageously for microstructural refinement, and is preferable for improving ridging properties. However, C is also an element that increases the strength after cold-rolling annealing. If it is too high, ductility is reduced, so the upper limit is 0.10%.

【0038】Siは脱酸に有効な元素であるが,固溶強
化能が大きく, あまりその含有量が高いと材質が硬化し
延性の低下を招くので0.75%以下とする。
Although Si is an effective element for deoxidation, it has a large solid solution strengthening ability, and if its content is too high, the material is hardened and ductility is reduced.

【0039】Mnはオーステナイト生成元素でありγmax
の制御に有効利用できると共に,固溶強化能が小さく材
質への悪影響が少ない。しかし2.0%を超える添加は耐
食性の劣化やコスト上昇を招くため2.0%を上限とす
る。
Mn is an austenite forming element and γmax
Effective in controlling the temperature and the solid solution strengthening ability is small, and the adverse effect on the material is small. However, addition exceeding 2.0% causes deterioration of corrosion resistance and cost increase, so the upper limit is 2.0%.

【0040】NiはMnと同様にオーステナイト生成元素
でありγmaxの制御に有効な元素である。しかし0.50%
を超える添加は硬質化やコスト上昇を招くため0.50%を
上限とする。
Ni, like Mn, is an austenite forming element and is an element effective for controlling γmax. But 0.50%
Addition exceeding 0.5% leads to hardening and cost increase, so the upper limit is 0.50%.

【0041】Crの下限10.00%は,ステンレス鋼として
の耐食性を保持するに必要最低限の量である。他方,多
量の含有は加工性の低下を招くため,20.00%を上限と
する。
The lower limit of 10.00% of Cr is the minimum necessary for maintaining the corrosion resistance of stainless steel. On the other hand, a large amount causes deterioration in workability, so the upper limit is 20.00%.

【0042】NはCと同様にγmaxを高める元素であり,
リジング性の改善に好ましい。しかし多量の添加は硬
質化による延性低下や表面疵の発生を招くため,0.04%
を上限とする。
N is an element that increases γmax similarly to C,
It is preferable for improving ridging properties. However, a large amount of addition causes a decrease in ductility and surface flaws due to hardening.
Is the upper limit.

【0043】Bは先にも述べたように熱延板の変態相分
布を均一分散化させ, リジングの原因となる単位領域を
微細化, 分断化する効果を有する。その効果は0.0010%
未満では十分ではない。一方, 0.0300%を超えるとスラ
ブ鋳造欠陥の増加や溶接性の低下を招くため,適正含有
量として0.0010%〜0.0300%に規定する。
As described above, B has the effect of uniformly dispersing the transformed phase distribution of the hot-rolled sheet, miniaturizing and dividing the unit region that causes ridging. The effect is 0.0010%
Less than is not enough. On the other hand, if it exceeds 0.0300%, slab casting defects will increase and weldability will decrease, so the appropriate content is specified as 0.0010% to 0.0300%.

【0044】Ti,Nb,ZrまたはVは,いずれもr値を
上昇させ, 深絞り性改善に有効な元素である。一方では
フエライト生成元素でありγmaxを低下させる。そこ
で,それぞれの適正含有量範囲として, それぞれ0.01〜
0.30%に規制する。
Ti, Nb, Zr or V is an element effective for increasing the r value and improving the deep drawability. On the other hand, it is a ferrite-forming element and lowers γmax. Therefore, each of the appropriate content ranges is 0.01 to
Restrict to 0.30%.

【0045】なお,前記の成分のほか,MoやCu, Al
などのその他の元素についても, 耐食性や耐酸化性など
の諸特性の向上を目的に適宜添加するこは許容され得
る。
In addition to the above components, Mo, Cu, Al
It is permissible to appropriately add other elements such as for the purpose of improving various properties such as corrosion resistance and oxidation resistance.

【0046】[0046]

【実施例】表3に示す化学成分を有する鋼を溶製し,各
鋼を表4に示すスラブ加熱温度,仕上圧延速度および仕
上圧延温度の条件に従って熱間圧延を行い,いずれも板
厚3.6mmの熱延鋼帯とした。各熱延鋼帯について,圧延
ロールとの焼付きによる表面疵発生の有無を確認した
後, 850℃×6hの焼鈍を施し,デスケール後,板厚0.7
mmに冷間圧延し,830℃×1minの焼鈍を行った。
EXAMPLE Steels having the chemical components shown in Table 3 were melted, and each steel was hot-rolled in accordance with the conditions of the slab heating temperature, the finish rolling speed and the finish rolling temperature shown in Table 4, and each had a sheet thickness of 3.6. mm hot-rolled steel strip. Each hot-rolled steel strip was checked for surface flaws caused by seizure with the rolling rolls, and then annealed at 850 ° C for 6 hours.
mm, and annealed at 830 ° C. × 1 min.

【0047】得られた各冷延鋼帯について,リジング
性, 引張特性およびr値を調査した。リジング性は圧延
方向と平行に平行部35mm幅×120mm長さの引張り試験片
を採取し,20%の引張ひずみを付与した後に表面粗さ計
を用いて圧延方向と直角方向の中心線平均粗さRaを測
定し,次に示す5段階で評価した。
With respect to each of the obtained cold rolled steel strips, ridging properties, tensile properties, and r values were examined. The ridging property was determined by taking a tensile test specimen 35 mm wide x 120 mm length parallel to the rolling direction, applying a 20% tensile strain, and using a surface roughness meter to measure the center line average roughness in the direction perpendicular to the rolling direction. The Ra was measured and evaluated according to the following five grades.

【0048】 [0048]

【0049】引張特性およびr値は,JIS 13B号試験片
を用いて圧延方向, 圧延方向と45o方向, 圧延方向と90o
方向の3方向について測定し,その平均を求めた。得ら
れた結果を表4に合わせて示した。
The tensile properties and r-values were measured using a JIS No. 13B test piece in the rolling direction, the rolling direction in the 45 ° direction, and the rolling direction in the 90 ° direction.
The measurement was performed in three directions, and the average was obtained. The results obtained are shown in Table 4.

【0050】[0050]

【表3】 [Table 3]

【0051】[0051]

【表4】 [Table 4]

【0052】表4から明らかなように,本発明例No.a
〜gに従う鋼はいずれも熱延鋼帯での表面疵の発生もな
く,優れたリジング性ならびに加工性を有している。
As is clear from Table 4, the present invention example No. a
All of the steels according to (1) to (4) have excellent surface ridging and workability without any surface flaws in the hot-rolled steel strip.

【0053】これに対し,比較例No.hは,使用した鋼N
o.8のγmaxが22.8である(本発明で規定する範囲より
小さい)ためリジング性が劣っている。また,伸びおよ
びr値も低く加工性も劣っている。
On the other hand, Comparative Example No. h
Since γmax of o.8 was 22.8 (smaller than the range specified in the present invention), the ridging property was inferior. Also, the elongation and the r value are low and the workability is inferior.

【0054】低温・低速熱延を行った比較例No.i〜l
はリジングならびに加工性は比較的良好であるものの,
熱延鋼帯にステンレス鋼との焼付きに起因する表面疵が
多発した。このため,製品化には後工程での表面研磨を
要した。
Comparative Examples No. i-l Performed at Low Temperature and Low Speed Hot Rolling
Has relatively good ridging and processability,
Surface flaws caused by seizure with stainless steel occurred frequently in the hot-rolled steel strip. For this reason, product polishing required surface polishing in a later step.

【0055】本実施例は,長時間の熱延板焼鈍を行い,
中間焼鈍を行わない一回冷延法の例を示したが,熱延焼
鈍の有無,熱延板焼鈍の方法および中間焼鈍の有無によ
らず同様の効果が奏される。
In this embodiment, a long-time hot-rolled sheet annealing is performed.
Although the example of the single cold rolling method without intermediate annealing is shown, the same effect is obtained regardless of the presence or absence of hot rolling annealing, the method of hot rolled sheet annealing, and the presence or absence of intermediate annealing.

【0056】[0056]

【発明の効果】以上のように,本発明によれば生産性の
低下やコスト上昇を招くことなく,良好な表面性状を有
し,リジング性および加工性に優れたフエライト系ステ
ンレス鋼板が得られる。
As described above, according to the present invention, it is possible to obtain a ferritic stainless steel sheet having good surface properties, excellent ridging property and workability without causing a decrease in productivity and a rise in cost. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】リジング評価のための中心線平均粗さRa に及
ぼすγmax と熱延温度の影響を示す図である。
FIG. 1 is a diagram showing the influence of γmax and hot rolling temperature on center line average roughness Ra for ridging evaluation.

【図2】実施例中の鋼Aの熱延板の金属組織を示す写真
である。
FIG. 2 is a photograph showing a metal structure of a hot-rolled steel A sheet in Examples.

【図3】実施例中の鋼Cの熱延板の金属組織を示す写真
である。
FIG. 3 is a photograph showing a metal structure of a hot rolled sheet of steel C in an example.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 熱間加工温度域でフエライト+オーステ
ナイトの2相組織を呈するフエライト系ステンレス鋼
を,粗熱間圧延および仕上熱間圧延を経て熱延鋼帯とな
し,冷間圧延と焼鈍を組み合わせて冷延鋼板または鋼帯
を製造するさいに,下記の(1)式で示されるγmaxが35
以上で80以下となるように化学成分をバランスさせた
フエライト系ステンレス鋼のスラブを製造し,このスラ
ブを1150〜1250℃に加熱して粗熱間圧延を開始し,仕上
圧延出側速度が 7.0 m/s以上でかつ仕上圧延出側温度が
860℃以上で仕上熱間圧延を終了し,650 ℃以上で巻き
取ることを特徴とするリジング性および加工性に優れた
フエライト系ステンレス鋼板の製造法。 γmax =420(%C)+470(%N)+23(%Ni)+7(%Mn)−11.5(%Cr) −11.5(%Si)−23(%V)−49(%Ti)−50(%Nb)−50(%Zr) +189 ・・(1)
1. A ferritic stainless steel exhibiting a two-phase structure of ferrite and austenite in a hot working temperature range is formed into a hot-rolled steel strip through rough hot rolling and finish hot rolling, and is subjected to cold rolling and annealing. When a cold-rolled steel sheet or steel strip is manufactured in combination, the γmax expressed by the following equation (1) is 35.
A slab of ferritic stainless steel having a chemical composition balanced so as to be 80 or less was manufactured, and this slab was heated to 1150 to 1250 ° C to start rough hot rolling, and the finish-rolling exit speed was 7.0. m / s or more and the finish-rolling exit temperature is
A method for producing a ferritic stainless steel sheet with excellent ridging properties and workability, characterized by finishing hot rolling at 860 ° C or higher and winding at 650 ° C or higher. .gamma.max = 420 (% C) +470 (% N) +23 (% Ni) +7 (% Mn) -11.5 (% Cr) -11.5 (% Si) -23 (% V) -49 (% Ti) -50 (% Nb) -50 (% Zr) +189 (1)
【請求項2】 フエライト系ステンレス鋼は,質量%
で,C:0.10%以下,Si:0.75%以下, Mn:2.0%以
下, Ni:0.50%以下, Cr:10.00〜20.00%, N:0.04
%以下, B:0.0010〜0.0300%を含有し,残部がFeお
よび不可避の不純物からなり, かつγmaxが35以上で
80以下である請求項1に記載の製造法。
2. The ferrite stainless steel has a mass% of
, C: 0.10% or less, Si: 0.75% or less, Mn: 2.0% or less, Ni: 0.50% or less, Cr: 10.00 to 20.00%, N: 0.04
%, B: 0.0010 to 0.0300%, the balance consists of Fe and unavoidable impurities, and γmax is 35 or more and 80 or less.
【請求項3】 フエライト系ステンレス鋼は,質量%
で,C:0.10%以下,Si:0.75%以下, Mn:2.0%以
下, Ni:0.50%以下, Cr:10.00〜20.00%, N:0.04
%以下, B:0.0010〜0.0300%を含有し,さらにTi:
0.01〜0.30%, Nb:0.01〜0.30%, Zr:0.01〜0.30%
またはV:0.01〜0.30%の1種または2種以上を含有
し,残部がFeおよび不可避の不純物からなり, かつγm
axが35以上で80以下である請求項1に記載の製造
法。
3. The ferrite stainless steel has a mass% of
, C: 0.10% or less, Si: 0.75% or less, Mn: 2.0% or less, Ni: 0.50% or less, Cr: 10.00 to 20.00%, N: 0.04
%, B: 0.0010 to 0.0300%, and Ti:
0.01 to 0.30%, Nb: 0.01 to 0.30%, Zr: 0.01 to 0.30%
Or V: contains 0.01 to 0.30% of one or more kinds, the balance being Fe and unavoidable impurities, and γm
The method according to claim 1, wherein ax is 35 or more and 80 or less.
JP21966792A 1992-07-14 1992-07-27 Method for producing ferritic stainless steel sheet excellent in ridging property and workability Expired - Fee Related JP3241114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21966792A JP3241114B2 (en) 1992-07-14 1992-07-27 Method for producing ferritic stainless steel sheet excellent in ridging property and workability

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-208585 1992-07-14
JP20858592 1992-07-14
JP21966792A JP3241114B2 (en) 1992-07-14 1992-07-27 Method for producing ferritic stainless steel sheet excellent in ridging property and workability

Publications (2)

Publication Number Publication Date
JPH0681036A JPH0681036A (en) 1994-03-22
JP3241114B2 true JP3241114B2 (en) 2001-12-25

Family

ID=26516911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21966792A Expired - Fee Related JP3241114B2 (en) 1992-07-14 1992-07-27 Method for producing ferritic stainless steel sheet excellent in ridging property and workability

Country Status (1)

Country Link
JP (1) JP3241114B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019065508A1 (en) 2017-09-29 2019-04-04 Jfeスチール株式会社 Annealed hot-rolled ferritic stainless steel sheet and method for producing same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW452599B (en) * 1997-08-05 2001-09-01 Kawasaki Steel Co Ferritic stainless steel plate excellent in deep drawability and anti-ridging property and production method thereof
JP3309386B2 (en) * 1997-09-24 2002-07-29 住友金属工業株式会社 Method of manufacturing cold rolled ferritic stainless steel sheet
KR100347572B1 (en) * 1997-12-27 2002-10-25 주식회사 포스코 Method for preparing stainless cold rolled steel by using hot rolled non-annealing materials
KR100598576B1 (en) * 1999-09-01 2006-07-13 주식회사 포스코 Method for producing ferritic stainless steel sheets having excellent press formability and ridging properity
KR20020045323A (en) * 2000-12-08 2002-06-19 이구택 Method of producing ferritic stainless steel sheets having excellent spinning formability
KR100958025B1 (en) * 2002-11-07 2010-05-17 주식회사 포스코 Method for manufacturing ferrite type stainless steel improved ridging property
JP5045051B2 (en) * 2006-10-05 2012-10-10 Jfeスチール株式会社 Ferritic stainless hot rolled steel sheet for cold rolling and method for producing the same
JP5045050B2 (en) * 2006-10-05 2012-10-10 Jfeスチール株式会社 Ferritic stainless hot rolled steel sheet for cold rolling and method for producing the same
WO2012173272A1 (en) 2011-06-16 2012-12-20 新日鐵住金ステンレス株式会社 Ferritic stainless-steel sheet with excellent non-ridging property and process for producing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019065508A1 (en) 2017-09-29 2019-04-04 Jfeスチール株式会社 Annealed hot-rolled ferritic stainless steel sheet and method for producing same
KR20200026952A (en) 2017-09-29 2020-03-11 제이에프이 스틸 가부시키가이샤 Ferritic stainless steel hot rolled annealing steel sheet and manufacturing method thereof
US11174540B2 (en) 2017-09-29 2021-11-16 Jfe Steel Corporation Hot-rolled and annealed ferritic stainless steel sheet and method for manufacturing the same

Also Published As

Publication number Publication date
JPH0681036A (en) 1994-03-22

Similar Documents

Publication Publication Date Title
EP1099773B1 (en) Ferritic stainless steel plate
US6500280B2 (en) Ferritic Cr-containing steel sheet having excellent ductility, formability, and anti-ridging properties
JPH01172524A (en) Production of complex phase structure chromium stainless strip having excellent corrosion resistance and high ductility and strength
JP3241114B2 (en) Method for producing ferritic stainless steel sheet excellent in ridging property and workability
JP2007211313A (en) Ferritic stainless steel having excellent ridging resistance and its production method
JP2002105605A (en) Ferritic stainless steel sheet having excellent cold workability and high temperature mechanical property, and its production method
JP2001316775A (en) Ferritic stainless steel sheet excellent in ridging resistance and formability and its production method
JP2002275595A (en) Ferritic stainless steel sheet having excellent ridging resistance and deep drawability and method of manufacturing for the same
JP2001192735A (en) FERRITIC Cr-CONTAINING COLD ROLLED STEEL SHEET EXCELLENT IN DUCTILITY, WORKABILITY AND RIDGING RESISTANCE AND PRODUCING METHOD THEREFOR
JP3270137B2 (en) Method for producing ferritic stainless steel sheet excellent in surface properties, ridging property and workability
JP3941363B2 (en) Ferritic stainless cold-rolled steel sheet excellent in ductility, workability and ridging resistance, and method for producing the same
JP2001089815A (en) Method of manufacturing ferritic stainless steel sheet excellent in ductility, workability and ridging resistance
JP3857807B2 (en) Method for producing ferritic stainless steel with excellent surface properties and low anisotropy
JP2001098328A (en) Method of producing ferritic stainless steel sheet excellent in ductility, workability and ridging resistance
JP5167314B2 (en) Method for producing ferritic stainless steel with excellent ridging resistance
JP2001089814A (en) Method of manufacturing ferritic stainless steel sheet excellent in ductility, workability and ridging resistance
JP3455047B2 (en) Ferritic stainless steel sheet excellent in workability and roping properties and method for producing the same
JP3067892B2 (en) Manufacturing method of ferritic stainless steel sheet with excellent surface properties and deep drawability
JPH07126758A (en) Manufacture of ferritic stainless steel sheet excellent in bendability
JP3379826B2 (en) Ferritic stainless steel sheet with small in-plane anisotropy and method for producing the same
JP2001098327A (en) Method of producing ferritic stainless steel excellent in ductility, workability and ridging resistance
JP2000256750A (en) Manufacture of ferritic stainless steel sheet excellent in ridging resistance
KR20110075408A (en) Ferritic stainless steel and method for manufacturing the same
JP2001107149A (en) Method for producing ferritic stainless steel sheet excellent in ductility, workability and ridging resistance
JP3593728B2 (en) Manufacturing method of ultra low carbon cold rolled steel sheet with excellent formability

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011002

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081019

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091019

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees