JP4414983B2 - Titanium material manufacturing method and hot rolling material - Google Patents

Titanium material manufacturing method and hot rolling material Download PDF

Info

Publication number
JP4414983B2
JP4414983B2 JP2006165720A JP2006165720A JP4414983B2 JP 4414983 B2 JP4414983 B2 JP 4414983B2 JP 2006165720 A JP2006165720 A JP 2006165720A JP 2006165720 A JP2006165720 A JP 2006165720A JP 4414983 B2 JP4414983 B2 JP 4414983B2
Authority
JP
Japan
Prior art keywords
ingot
heating
melting
layer
titanium material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006165720A
Other languages
Japanese (ja)
Other versions
JP2007332420A (en
Inventor
健一 森
秀樹 藤井
一浩 高橋
高士 小田
義正 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006165720A priority Critical patent/JP4414983B2/en
Publication of JP2007332420A publication Critical patent/JP2007332420A/en
Application granted granted Critical
Publication of JP4414983B2 publication Critical patent/JP4414983B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Metal Rolling (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Continuous Casting (AREA)

Description

本発明は、チタン材の製造方法および熱間圧延用素材に関するものであり、特に、分塊工程を省略しても熱間圧延後の表面性状を良好に保つチタン材の製造方法および熱間圧延用素材に関するものである。   TECHNICAL FIELD The present invention relates to a titanium material manufacturing method and a hot rolling material, and in particular, a titanium material manufacturing method and hot rolling that keeps the surface properties after hot rolling well even if the bundling step is omitted. It is related to the material.

チタン材は、一般に、溶解工程から得られるインゴットを、分塊工程でスラブまたはビレット形状にして、表面を手入れした後、熱間圧延し、さらに焼鈍や冷間加工を施して製造される。溶解工程には、広く用いられている真空アーク溶解(VAR:Vacuum Arc Remelting)法のほか、鋳型とは別の場所で溶解を行い鋳型に流し込む電子ビーム溶解法やプラズマ溶解法等がある。前者では、鋳型が円筒型に限定されるため板材の製造には分塊工程が必須である。後者は、鋳型形状の自由度が高く、円筒型のほか角型の鋳型を使用できる。角型インゴットから板材を製造する場合や、円柱型インゴットから棒材や線材を製造する場合には、インゴット形状の点からは分塊工程を省略することができる。   In general, a titanium material is manufactured by making an ingot obtained from a melting step into a slab or billet shape in a lump step, cleaning the surface, hot rolling, and further annealing and cold working. In addition to the widely used vacuum arc melting (VAR) method, the melting process includes an electron beam melting method and a plasma melting method in which melting is performed at a location different from the mold and poured into the mold. In the former, since the casting mold is limited to a cylindrical mold, a bundling process is essential for the production of the plate material. The latter has a high degree of freedom in the shape of the mold, and a cylindrical mold as well as a square mold can be used. In the case of producing a plate material from a square ingot or in the case of producing a bar or wire from a cylindrical ingot, the bundling process can be omitted from the point of the ingot shape.

しかし、工業的に用いられる大型インゴットの鋳造まま組織には、図1に示すように幅が数十mmに及ぶ粗大粒が形成される。このインゴットを、分塊工程を経ないで直接熱間圧延する場合には、粗大な結晶粒に起因して粒内および各結晶粒間の変形異方性の影響により、表面に凹凸を生じて表面疵となる。表面疵を取り除くには、酸洗工程での表面溶削量を増やす必要があり、コスト、歩留を悪化させる問題が生じる。このような問題に対し、熱間圧延用素材に加工や熱処理を施すことによって表面疵を低減する方法が提案されている。   However, coarse grains having a width of several tens of millimeters are formed in the as-cast structure of a large ingot used industrially, as shown in FIG. When this ingot is directly hot-rolled without going through the lump process, irregularities are generated on the surface due to the influence of deformation anisotropy within the grains and between the grains due to the coarse grains. It becomes a surface flaw. In order to remove the surface flaws, it is necessary to increase the amount of surface cutting in the pickling process, which causes a problem of deteriorating cost and yield. In order to solve such a problem, a method of reducing surface flaws by subjecting a hot rolling material to processing or heat treatment has been proposed.

特許文献1では、チタン材のインゴットを、分塊工程を省略して直接熱間加工する場合に、表層付近の結晶粒を細粒化するために、表面層にひずみを付与した後、再結晶温度以上に加熱して表面から深さ2mm以上を再結晶させる方法が提案されている。ひずみを付与する手段としては、鍛造、ロール圧下、ショットブラスト等が挙げられている。   In Patent Document 1, in the case where a titanium material ingot is directly hot-worked by omitting the lump process, in order to refine the crystal grains in the vicinity of the surface layer, the surface layer is strained and then recrystallized. There has been proposed a method of recrystallizing at a depth of 2 mm or more from the surface by heating above the temperature. Examples of means for imparting strain include forging, roll reduction, and shot blasting.

特許文献2では、チタン材のインゴットを、Tβ+50℃以上に加熱後、Tβ−50℃以下に冷却した後に熱間圧延することで、粗大な結晶粒の変形異方性によって圧延中に形成される表面の波打ちやシワを低減し、表面疵を低減する方法が提案されている。   In Patent Document 2, a titanium material ingot is heated to Tβ + 50 ° C. or higher, and then cooled to Tβ−50 ° C. or lower and then hot-rolled, so that it is formed during rolling by deformation anisotropy of coarse crystal grains. A method of reducing surface waviness and wrinkles and reducing surface wrinkles has been proposed.

特許文献3では、チタン材において、分塊工程を経る場合の圧延製品の表面疵低減方法として、分塊工程終了時の温度をα域にする、あるいは、さらに熱間圧延前の加熱をα域で行うことにより、表面から60μm以上を等軸晶とする方法が提案されている。これにより、酸素リッチ層が部分的に深くなることを避けることができ、脱スケール工程で酸素リッチ層を除去できるようになり、硬度・延性の不均一な部分がなくなるため、冷間加工後の表面性状が改善するとしている。   In Patent Document 3, as a method for reducing surface flaws of a rolled product in a titanium material through a bundling process, the temperature at the end of the bundling process is set to the α range, or further, heating before hot rolling is performed in the α range. By carrying out the above, there has been proposed a method in which 60 μm or more is equiaxed from the surface. As a result, it is possible to avoid partial deepening of the oxygen-rich layer, and it becomes possible to remove the oxygen-rich layer in the descaling process, and there is no portion with non-uniform hardness and ductility. The surface properties are supposed to improve.

特開平01−156456号公報Japanese Patent Laid-Open No. 01-156456 特開平08−060317号公報Japanese Patent Laid-Open No. 08-060317 特開平07−102351号公報Japanese Patent Laid-Open No. 07-102351

しかしながら特許文献1に記載の方法では、ひずみを付与する手段にショットブラストが挙げられているが、一般的なショットブラストで形成されるひずみの深さは300〜500μm程度以下であり、品質を改善するために必要としている深さ2mm以上の再結晶層を形成するには不充分である。したがって、実質的には、鍛造もしくはロール圧下により深い位置までひずみを与えることが必要であるが、鍛造もしくはロール圧下を、熱間圧延用の大型インゴットに対して行うには大きな設備が必要で、通常の分塊工程と比較してコスト低下になるものではない。   However, in the method described in Patent Document 1, shot blasting is mentioned as a means for imparting strain. However, the depth of strain formed by general shot blasting is about 300 to 500 μm or less, which improves quality. This is insufficient to form a recrystallized layer having a depth of 2 mm or more, which is necessary for the purpose. Therefore, it is substantially necessary to give strain to a deeper position by forging or roll reduction, but large equipment is required to perform forging or roll reduction on a large ingot for hot rolling, The cost is not reduced as compared with a normal lump process.

また、特許文献2に記載の方法は、β域への加熱により粗大な結晶粒が再結晶して細粒化する効果がある。しかし、分塊工程を経ない場合には加工ひずみが与えられていないため再結晶核が少ないことや、インゴット全体を加熱するため加熱後の冷却速度が遅く結晶粒が粗大化することにより、再結晶による細粒化の効果は限定され、変形異方性の低減は充分ではない。また、再結晶しても元の粗大粒の結晶方位の影響を受けることも、変形異方性の解消に至らない要因である。逆に、中程度の細粒化によって表面の凹凸の元となる粒界は増加する結果となり、表面疵の発生が増加する結果になり得る。   In addition, the method described in Patent Document 2 has an effect that coarse crystal grains are recrystallized and refined by heating to the β region. However, without passing through the lump process, processing strain is not applied, so there are few recrystallization nuclei, and because the entire ingot is heated, the cooling rate after heating is slow and the crystal grains become coarse. The effect of refining with crystals is limited, and the deformation anisotropy is not sufficiently reduced. Further, even if recrystallization is affected by the crystal orientation of the original coarse grains, it is a factor that does not lead to the elimination of deformation anisotropy. On the other hand, moderate grain refinement may result in an increase in the grain boundary that is the source of surface irregularities, resulting in an increase in the occurrence of surface defects.

また、特許文献3に記載の方法は、分塊工程を経ることによって鋳造組織が壊されて細粒化および等軸化することを前提としており、分塊工程を省略する場合には意味をなさない。仮に分塊工程を省略して熱処理のみによって、表面から60μm以上の等軸粒を形成しても、単なる再結晶でありその結晶方位は元の結晶方位の影響を受ける。したがって、鋳造まま組織の粗大粒による変形異方性に起因する凹凸を防止するには不十分であり、表面疵による問題が生じることは明らかである。   In addition, the method described in Patent Document 3 is based on the premise that the cast structure is broken through the lump process and is made finer and equiaxed. Absent. Even if an equiaxed grain of 60 μm or more is formed from the surface only by heat treatment without the lump process, the crystal orientation is simply affected by the original crystal orientation. Therefore, it is not sufficient to prevent unevenness due to deformation anisotropy due to coarse grains of the structure as cast, and it is clear that problems due to surface flaws arise.

そこで、本発明は、分塊工程を省略しても熱間圧延後の表面性状を良好に保つことのできる、チタン材の製造方法および熱間圧延用素材を提供することを目的とするものである。   Then, this invention aims at providing the manufacturing method of a titanium material, and the raw material for hot rolling which can maintain the surface property after hot rolling favorable even if a bundling process is abbreviate | omitted. is there.

本発明者らは、上記目的を達成するために鋭意検討した結果、インゴットから分塊工程を省略して熱間圧延を行ってチタン材を製造するに際し、インゴットの表層を一旦溶融して凝固させることで、表層部分に図2に示すような微細で不規則な方位を有する凝固組織を効率的に形成させたることができ、その結果、元の粗大な凝固組織の変形異方性の影響による表面疵が低減して、分塊工程を経る場合と同等な表面性状を得ることができることを見出した。   As a result of intensive studies to achieve the above-mentioned object, the present inventors have melted and solidified the surface layer of the ingot once when the titanium material is manufactured by performing the hot rolling while omitting the lump process from the ingot. As a result, a solidified structure having a fine and irregular orientation as shown in FIG. 2 can be efficiently formed on the surface layer portion, and as a result, due to the influence of deformation anisotropy of the original coarse solidified structure. It was found that surface wrinkles were reduced, and surface properties equivalent to those obtained through the bulking process could be obtained.

本発明の要旨とするところは、以下のとおりである。
(1) インゴットの少なくとも圧延面にあたる面の表層を溶融再凝固させた後、熱間圧延を行うことを特徴とする、チタン材の製造方法。
(2) 表層の溶融再凝固層の深さが、インゴット最表面から1mm以上であることを特徴とする、上記(1)に記載のチタン材の製造方法。
(3) 表層の溶融を、誘導加熱、アーク加熱、プラズマ加熱、電子ビーム加熱、およびレーザ加熱のうちの一種または二種以上を組み合わせて行うことを特徴とする、上記(1)または(2)に記載のチタン材の製造方法。
(4) 溶融部を真空もしくは不活性ガス雰囲気とすることを特徴とする、上記(1)ないし(3)のいずれか1項に記載のチタン材の製造方法。
(5) β変態点超から融点未満の温度に加熱後に空冷以上の冷却速度で冷却したインゴットを用いることを特徴とする、上記(1)ないし(4)のいずれか1項に記載のチタン材の製造方法。
(6) 少なくとも圧延面にあたる面の表層から深さ1mm以上が溶融再凝固した組織であり、下部が鋳造まま組織あるいは鋳造後β域に加熱後に冷却された組織であることを特徴とする、チタンの熱間圧延用素材。
The gist of the present invention is as follows.
(1) A method for producing a titanium material, wherein hot rolling is performed after melting and re-solidifying the surface layer of at least the rolling surface of the ingot.
(2) The method for producing a titanium material according to (1) above, wherein the depth of the melt-resolidified layer on the surface layer is 1 mm or more from the outermost surface of the ingot.
(3) The above (1) or (2), wherein the surface layer is melted by one or a combination of two or more of induction heating, arc heating, plasma heating, electron beam heating, and laser heating. The manufacturing method of the titanium material as described in any one of.
(4) The method for producing a titanium material according to any one of the above (1) to (3), wherein the molten part is set to a vacuum or an inert gas atmosphere.
(5) The titanium material according to any one of (1) to (4) above, wherein an ingot that is heated to a temperature lower than the melting point from the β transformation point and then cooled at a cooling rate equal to or higher than air cooling is used. Manufacturing method.
(6) Titanium characterized in that at least a depth of 1 mm or more from the surface layer corresponding to the rolling surface is a melted and re-solidified structure, and the lower part is a structure as cast or a structure cooled after heating to a β region after casting. Material for hot rolling.

本発明は、チタン材の製造に際し従来必要であった分塊工程を省略しても、分塊工程を経る場合と同等な表面性状を有するチタン材の製造を可能にするものであり、分塊工程省略による加熱時間の低減や表面品質向上による酸洗量の低減によって歩留の向上がはかられることから、製造コストの削減のみならず、エネルギー効率の向上にも大きな効果があり、産業上の効果は計り知れない。   The present invention makes it possible to produce a titanium material having a surface property equivalent to that in the case of undergoing the bundling step, even if the bundling step conventionally required in the production of the titanium material is omitted. The yield can be improved by reducing the heating time by omitting the process and reducing the pickling amount by improving the surface quality, which has a great effect not only in reducing the manufacturing cost but also in improving the energy efficiency. The effect of is immeasurable.

以下、本発明について詳しく説明する。   The present invention will be described in detail below.

請求項1に記載の本発明は、インゴットの表層部分のみを加熱することにより溶融後に急冷されて凝固するため、鋳込みままの粗大凝固組織にくらべて、極めて微細で不規則な方位を有する凝固組織を得ることができる。その結果、元の粗大な凝固組織の変形異方性の影響による表面疵を低減して表面性状に優れたチタン材が得られる。角型インゴットを使用する場合、インゴットの圧延面の他、側面に対して溶融再凝固を施しても表面性状の改善に効果がある。これは、熱間圧延中のメタルフローによって、圧延前に側面であった部位が圧延面に現れるためである。なお、表層に未溶融の部分があったとしても直ちに疵が発生するというものではなく、隙間なく行うことが必須の条件ではない。表層溶融処理中に、溶融のため加熱している部位以外を、送風による空冷や水冷によって冷却する場合もある。表層溶融再凝固の前後には、必要に応じて表面手入れを行う場合もある。熱間圧延前の加熱や圧延の条件は、従来と同じでよい。   In the present invention according to claim 1, since only the surface layer portion of the ingot is heated to be rapidly cooled and solidified after melting, the solidified structure having a very fine and irregular orientation as compared with a coarse solid structure as cast. Can be obtained. As a result, a titanium material having excellent surface properties can be obtained by reducing surface wrinkles due to the deformation anisotropy of the original coarse solidified structure. When a square ingot is used, it is effective in improving the surface properties even if the side surface is melted and re-solidified in addition to the rolled surface of the ingot. This is because a portion that was a side surface before rolling appears on the rolled surface due to the metal flow during hot rolling. It should be noted that even if there is an unmelted portion on the surface layer, it does not immediately generate wrinkles, and it is not an essential condition to carry out without gaps. During the surface layer melting treatment, there may be a case where the part other than the part heated for melting is cooled by air cooling or air cooling. Before and after the surface layer melt resolidification, surface care may be performed as necessary. The conditions for heating and rolling before hot rolling may be the same as those in the prior art.

請求項2に記載の本発明は、溶融再凝固層の厚みを1mm以上としている。これは、作業のばらつきなどによって未溶融の部分が残る可能性を抑制するためには、1mm以上とするのが望ましいためである。   According to the second aspect of the present invention, the thickness of the melted / resolidified layer is 1 mm or more. This is because, in order to suppress the possibility that an unmelted portion remains due to work variation or the like, it is desirable that the thickness is 1 mm or more.

請求項3に記載の本発明は、溶融の方法として、誘導加熱、アーク加熱、プラズマ加熱、電子ビーム加熱、およびレーザ加熱のうちの一種又は二種以上を組み合わせて用いるとしている。   According to the third aspect of the present invention, one or two or more of induction heating, arc heating, plasma heating, electron beam heating, and laser heating are used as a melting method.

誘導加熱は、インゴットを周回するように配置されたコイルによって加熱される。高周波誘導加熱では表皮効果によって、特にインゴット表層部が加熱され溶融する。処理時間は比較的短いが、設備費が高い特徴がある。アーク加熱は、溶接の方法として工業的にTIG(Tungsten Inert Gas)溶接が行われており、その方法や設備を用いれば良く、安価な方法である。TIG溶接は最大出力6kWで5mm程度の溶融層を得られる。プラズマ加熱は、最大出力15kWで10mm程度の溶融層を得ることができる。電子ビーム加熱は、高密度のエネルギーを付加することができ、最大100kWで200mm程度の溶融層を得ることもできる。一方で、通常10-5Torr程度の真空容器内で行う必要があり、設備の制約を受ける。レーザ加熱では、最大15kWで20mm程度までの溶融層を得ることができ、大気中での処理が可能である。 Induction heating is heated by a coil arranged to go around the ingot. In the high frequency induction heating, the ingot surface layer is heated and melted by the skin effect. The processing time is relatively short, but the equipment cost is high. As for the arc heating, TIG (Tungsten Inert Gas) welding is industrially performed as a welding method, and the method and equipment may be used, and it is an inexpensive method. TIG welding can obtain a molten layer of about 5 mm at a maximum output of 6 kW. Plasma heating can obtain a molten layer of about 10 mm at a maximum output of 15 kW. Electron beam heating can add high-density energy, and a molten layer of about 200 mm can be obtained at a maximum of 100 kW. On the other hand, it is usually necessary to carry out in a vacuum vessel of about 10 −5 Torr, which is subject to equipment restrictions. With laser heating, a molten layer of up to about 20 mm can be obtained at a maximum of 15 kW, and processing in the atmosphere is possible.

上記の方法を組み合わせて用いる場合、例えば、誘導加熱で予熱した後、レーザ加熱によって表層溶融することができる。これらの中から、コスト、インゴットのサイズ、処理時間などの条件を考慮して採用すればよい。   When the above methods are used in combination, for example, after preheating by induction heating, the surface layer can be melted by laser heating. Among these, it may be adopted in consideration of conditions such as cost, ingot size, and processing time.

請求項4に記載の本発明は、溶融部を真空もしくは不活性ガス雰囲気とすることとしている。真空あるいは不活性ガス雰囲気とした容器内で行うか、溶融部に不活性ガスを吹き付けながら表層の溶融を行ってもよい。これによって溶融層内に酸素や窒素が浸入して品質が変化することを抑制できる。また、不活性ガスの吹き付けは、冷却速度を高めて再凝固組織をより微細にする効果もある。本発明でいう不活性ガスとは、アルゴン及びヘリウムを指し、チタンと反応する窒素は含まない。真空容器内で行う場合の真空度は、5×10-5Torr程度以上が望ましい。 According to the fourth aspect of the present invention, the melting part is set to a vacuum or an inert gas atmosphere. The surface layer may be melted in a vacuum or in an inert gas atmosphere or by spraying an inert gas on the melting portion. As a result, it is possible to prevent oxygen and nitrogen from entering the molten layer and changing the quality. In addition, the blowing of the inert gas also has an effect of increasing the cooling rate and making the re-solidified structure finer. The inert gas referred to in the present invention refers to argon and helium, and does not include nitrogen that reacts with titanium. The degree of vacuum when performing in a vacuum vessel is preferably about 5 × 10 −5 Torr or more.

請求項5に記載の本発明は、β変態点超から融点未満の温度に加熱後に空冷以上の冷却速度で冷却する熱処理を施して、鋳込み凝固ままの粗大凝固組織を細粒化した後、さらに表層の溶融再凝固を行うこととしている。この方法によって、より変形異方性の小さい凝固組織が得られ、表面疵の発生を低減させることができる。   The present invention according to claim 5 is a method in which a heat treatment is performed by heating at a cooling rate equal to or higher than air cooling after heating to a temperature lower than the melting point from the β transformation point to further refine the coarse solidified structure as cast solidified, The surface layer is melted and re-solidified. By this method, a solidified structure with smaller deformation anisotropy can be obtained, and the occurrence of surface defects can be reduced.

請求項6に記載の本発明は、表層に深さ1mm以上の溶融再凝固層を有し、その他の部分が鋳造まま組織あるいは鋳造後β域に加熱後に冷却する熱処理を施された組織である、チタン材の熱間圧延用素材である。この素材を用いることで、分塊工程を省略した場合でも、通常の分塊工程を経る場合と同等の表面品質を有するチタン材を得ることができる。   The present invention according to claim 6 has a melt-resolidified layer having a depth of 1 mm or more in the surface layer, and the other part is a structure subjected to a heat treatment for cooling after heating to a β region after casting or to a β region after casting. It is a material for hot rolling of titanium material. By using this material, it is possible to obtain a titanium material having a surface quality equivalent to that when the normal block process is performed even when the block process is omitted.

なお、本発明において分塊とは、インゴットを圧延用素材形状に加工する方法全般を指し、圧延のほか、鍛造やプレスを含む。   In the present invention, the term “shard” refers to all methods of processing an ingot into a rolling material shape, and includes forging and pressing in addition to rolling.

以下、実施例により本発明を更に具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples.

Figure 0004414983
Figure 0004414983

表1のNo.1から13に示す実施例および比較例において、チタンインゴットの製造は、電子ビーム溶解法で行い、角型鋳型にて鋳造した。厚さ200mm×幅1000mm×長さ4500mmのインゴットから、熱間圧延により厚さ4mmの板を製造した。酸洗後、目視にて表面疵の評価を行った。TIG溶接による表層溶融は、200Aで溶加材を用いないで行った。電子ビームによる表層溶融は、定格出力30kWの電子ビーム溶接装置を使用した。以下の実施例で特に記載しない場合は、TIG溶接により表層溶融を行った。   No. in Table 1 In the examples and comparative examples shown in 1 to 13, the titanium ingot was manufactured by an electron beam melting method and cast in a square mold. A plate having a thickness of 4 mm was produced from an ingot having a thickness of 200 mm, a width of 1000 mm, and a length of 4500 mm by hot rolling. After pickling, surface defects were visually evaluated. Surface melting by TIG welding was performed at 200 A without using a filler material. For surface layer melting by an electron beam, an electron beam welding apparatus having a rated output of 30 kW was used. Unless otherwise specified in the following examples, surface layer melting was performed by TIG welding.

なお、No.1から13の実施例及び比較例のいずれも、インゴット製造後にインゴットの鋳肌を切削除去し、あるいはインゴットを加熱冷却後に表層スケール層を切削除去している。後述のNo.14から20についても同様である。   In addition, No. In any of Examples 1 to 13 and Comparative Example, the cast surface of the ingot is cut off after the ingot is manufactured, or the surface scale layer is cut off after the ingot is heated and cooled. No. described later. The same applies to 14 to 20.

No.1の比較例は、工業用純チタン2種材を用いて、従来の分塊工程を経る方法で製造した場合である。   No. The comparative example 1 is a case where it is manufactured by a method through a conventional lump process using two types of industrial pure titanium.

No.2の比較例は、工業用純チタン2種材を用いて、分塊工程を省略して熱間圧延を行った場合であり、熱延後酸洗を行った板には粗大な表面疵が観察された。   No. The comparative example 2 is a case where hot rolling is performed by using the industrially pure two kinds of titanium material, omitting the lumping process, and the plate subjected to pickling after hot rolling has coarse surface defects. Observed.

No.3の比較例は、工業用純チタン2種材を用いて、分塊工程を省略して、インゴットをβ域に加熱し30分保持後に冷却した後、熱間圧延を行ったものであるが、熱延酸洗板の表面疵は粗大で、疵頻度はNo.2よりも増加した。これは、β域加熱によってインゴットの粗大な結晶粒が中程度の粒径を有する多数の結晶粒に変わり、表面の凹凸の元となる粒界が増加したためと考えられる。   No. The comparative example 3 was obtained by performing hot rolling after heating the ingot to the β region and holding it for 30 minutes after cooling using an industrial pure titanium type 2 material, omitting the lump process. The surface wrinkle of the hot-rolled pickled plate is coarse, and the wrinkle frequency is no. More than 2. This is presumably because the coarse crystal grains of the ingot were changed to a large number of crystal grains having a medium grain size by the β-region heating, and the grain boundaries that caused the surface irregularities increased.

No.4の実施例は、工業用純チタン2種材を用いて、インゴットの鋳肌を切削除去した後、表層を溶融再凝固し、さらに表面を切削して溶融再凝固層の厚みを0.5mm深さに調整し、ついで熱間圧延したものである。部分的にやや粗大な表面疵が見られたが、表層溶融無しのNo.2に比べて改善されていた。   No. In Example 4, after using an industrial pure titanium type 2 material to cut and remove the casting surface of the ingot, the surface layer was melted and re-solidified, and the surface was further cut so that the thickness of the melt-resolidified layer was 0.5 mm. The depth is adjusted and then hot rolled. A slightly coarse surface flaw was observed, but no surface melting occurred. Compared to 2, it was improved.

No.5の実施例は、工業用純チタン2種材を用いて、インゴットの鋳肌を切削除去した後、表層を溶融再凝固し、さらに表面を切削して溶融再凝固層の厚みを表面から1mm深さに調整し、ついで熱間圧延したものである。表面疵は軽微で大幅に改善されており、従来の分塊工程を経る方法と同等のレベルであった。   No. Example 5 uses industrial pure titanium type 2 material and cuts and removes the casting surface of the ingot, then melts and resolidifies the surface layer, and further cuts the surface so that the thickness of the melted and resolidified layer is 1 mm from the surface. The depth is adjusted and then hot rolled. The surface wrinkles were slight and greatly improved, and the level was the same as that of the conventional method of passing through the lump process.

No.6の実施例は、工業用純チタン2種材を用いて、インゴットの鋳肌を切削除去した後、表面から4mm深さまで溶融再凝固層を形成し、熱間圧延したものである。表面疵は軽微であり、従来の分塊工程を経る方法と同等のレベルであった。   No. In Example 6 of the present invention, the cast surface of the ingot was cut and removed by using two types of industrial pure titanium, and then a molten resolidified layer was formed from the surface to a depth of 4 mm and hot rolled. The surface wrinkles was slight and was at the same level as the method through the conventional lump process.

No.7の実施例は、工業用純チタン2種材を用いて、インゴットの鋳肌を切削除去した後、表面から20mm深さまで溶融再凝固層を形成し、熱間圧延したものである。表層溶融は電子ビーム溶接装置を使用して行った。表面疵は軽微であり、従来の分塊工程を経る方法と同等のレベルであった。   No. In Example 7, after using an industrial pure titanium two-type material to cut and remove the cast surface of the ingot, a molten resolidified layer was formed from the surface to a depth of 20 mm and hot rolled. Surface melting was performed using an electron beam welding apparatus. The surface wrinkles was slight and was at the same level as the method through the conventional lump process.

No.8の実施例は、工業用純チタン2種材を用いて、β域に加熱し30分保持後に冷却し、表層スケール層を切削除去した後、表層を溶融再凝固し、さらに表面を切削して溶融再凝固層の厚みを表面から深さ1mmに調整し、ついで熱間圧延したものである。この場合でも、表層溶融再凝固の効果があり、表面疵は軽微で、従来の分塊工程を経る方法と同等のレベルであった。   No. Example 8 uses two types of industrial pure titanium, heated to the β region, cooled after holding for 30 minutes, cut off the surface scale layer, melted and resolidified the surface layer, and further cut the surface Then, the thickness of the melt-resolidified layer was adjusted to a depth of 1 mm from the surface, and then hot-rolled. Even in this case, there was an effect of surface melting and re-solidification, the surface flaws were slight, and the level was the same as that of the conventional method of passing through the lump process.

No.9の比較例は、Ti−1%Fe−0.36%O合金を用いて、従来の分塊工程を経る方法で製造した場合である。   No. A comparative example 9 is a case where a Ti-1% Fe-0.36% O alloy is used and manufactured by a method that undergoes a conventional lump process.

No.10の比較例は、Ti−1%Fe−0.36%O合金を用いて、分塊工程を省略して、熱間圧延を行った場合であり、熱延酸洗板には粗大な表面疵が観察された。   No. Comparative example 10 is a case where Ti-1% Fe-0.36% O alloy is used and the hot-rolling is performed by omitting the lump process, and the hot rolled pickled plate has a rough surface. A wrinkle was observed.

No.11の実施例は、Ti−1%Fe−0.36%O合金を用いて、インゴットの鋳肌を切削除去した後、表層を溶融再凝固し、さらに表面を切削して溶融再凝固層の厚みを0.5mm深さに調整し、ついで熱間圧延したものである。部分的にやや粗大な表面疵が見られたが、表層溶融無しのNo.10に比べて改善されていた。   No. In Example 11, the Ti-1% Fe-0.36% O alloy was used to cut and remove the cast surface of the ingot, and then the surface layer was melted and re-solidified, and the surface was further cut to form a melt-re-solidified layer. The thickness is adjusted to a depth of 0.5 mm, and then hot rolled. A slightly coarse surface flaw was observed, but no surface melting occurred. Compared to 10, it was improved.

No.12の実施例は、Ti−1%Fe−0.36%O合金を用いて、インゴットの鋳肌を切削除去した後、表層を溶融再凝固し、さらに表面を切削して溶融再凝固層の厚みを表面から深さ1mmに調整し、ついで熱間圧延したものである。表面疵は軽微であり、従来の分塊工程を経る方法と同等のレベルであった。   No. In Example 12, the Ti-1% Fe-0.36% O alloy was used to cut and remove the casting surface of the ingot, and then the surface layer was melted and re-solidified, and the surface was further cut to form the melt-resolidified layer. The thickness is adjusted from the surface to a depth of 1 mm, and then hot rolled. The surface wrinkles was slight and was at the same level as the method through the conventional lump process.

No.13の実施例は、Ti−1%Fe−0.36%O合金を用いて、β域に加熱し30分保持後に冷却し、表層スケール層を切削除去した後、表層を溶融再凝固し、さらに表面を切削して溶融再凝固層の厚みを表面から深さ1mmに調整し、ついで熱間圧延したものである。この場合でも、表層溶融再凝固の効果があり、表面疵は軽微で、従来の分塊工程を経る方法と同等のレベルであった。   No. Example 13 uses a Ti-1% Fe-0.36% O alloy, heats to the β region, cools after holding for 30 minutes, cuts and removes the surface scale layer, melts and resolidifies the surface layer, Further, the surface is cut to adjust the thickness of the melt-resolidified layer to a depth of 1 mm from the surface, and then hot rolled. Even in this case, there was an effect of surface melting and re-solidification, the surface flaws were slight, and the level was the same as that of the conventional method of passing through the lump process.

表のNo.14から20に示す実施例および比較例において、チタンインゴットの製造は、電子ビーム溶解法で行い、円筒鋳型にて鋳造した。直径170mm×12m長のインゴットから、熱間圧延により直径13mmの線材を製造した。酸洗後、目視にて表面疵の評価を行った。表層溶融はTIG溶接で行い、200Aで溶加材を用いないで行った。   No. in the table. In the examples and comparative examples shown in 14 to 20, the titanium ingot was manufactured by an electron beam melting method and cast in a cylindrical mold. A wire rod having a diameter of 13 mm was manufactured from an ingot having a diameter of 170 mm × 12 m by hot rolling. After pickling, surface defects were visually evaluated. Surface layer melting was performed by TIG welding, and was performed at 200 A without using a filler metal.

No.14の比較例は、工業用純チタン2種材を用いて、従来の分塊工程を経る方法で製造した場合である。   No. The comparative example of 14 is a case where it manufactured by the method through a conventional lump process using 2 types of industrial pure titanium.

No.15の比較例は、工業用純チタン2種材を用いて、分塊工程を省略して熱間圧延を行った場合であり、熱延後酸洗を行った板には粗大な表面疵が観察された。   No. The comparative example of 15 is a case where the hot-rolling is performed by omitting the lumping process using the industrial pure titanium two-type material, and the plate subjected to pickling after hot rolling has a rough surface flaw. Observed.

No.16の実施例は、工業用純チタン2種材を用いて、インゴットの鋳肌を研削除去した後、表層を溶融再凝固し、さらに表面を研削して溶融再凝固層の厚みを0.5mm深さに調整し、ついで熱間圧延したものである。部分的にやや粗大な表面疵が見られたが、表層溶融無しのNo.15に比べて改善されていた。   No. Example 16 uses industrial pure titanium two-type material, and after grinding and removing the casting surface of the ingot, the surface layer is melted and re-solidified, and the surface is ground to make the thickness of the melt-resolidified layer 0.5 mm The depth is adjusted and then hot rolled. A slightly coarse surface flaw was observed, but no surface melting occurred. Compared to 15, it was improved.

No.17の実施例は、工業用純チタン2種材を用いて、インゴットの鋳肌を研削除去した後、表層を溶融再凝固し、さらに表面を研削して溶融再凝固層の厚みを表面から1mm深さに調整し、ついで熱間圧延したものである。表面疵は軽微で大幅に改善されており、従来の分塊工程を経る方法と同等のレベルであった。   No. In Example 17, two types of industrial pure titanium were used to grind and remove the casting surface of the ingot, then the surface layer was melted and re-solidified, and the surface was further ground to give a thickness of 1 mm from the surface. The depth is adjusted and then hot rolled. The surface wrinkles were slight and greatly improved, and the level was the same as that of the conventional method of passing through the lump process.

No.18の比較例は、Ti−3%Al−2.5%V合金を用いて、従来の分塊工程を経る方法で製造した場合である。   No. The 18 comparative example is a case where it manufactures by the method of passing through the conventional lump process using Ti-3% Al-2.5% V alloy.

No.19の実施例は、Ti−3%Al−2.5%V合金を用いて、インゴットの鋳肌を研削除去した後、表層を溶融再凝固し、さらに表面を研削して溶融再凝固層の厚みを0.5mm深さに調整し、ついで熱間圧延したものである。部分的にやや粗大な表面疵が見られたが、表層溶融無しのNo.18に比べて改善されていた。   No. In 19 examples, a casting surface of an ingot was ground and removed using a Ti-3% Al-2.5% V alloy, and then the surface layer was melted and re-solidified, and the surface was further ground to form a molten re-solidified layer. The thickness is adjusted to a depth of 0.5 mm, and then hot rolled. A slightly coarse surface flaw was observed, but no surface melting occurred. Compared to 18, it was improved.

No.20の実施例は、Ti−3%Al−2.5%V合金を用いて、インゴットの鋳肌を研削除去した後、表層を溶融再凝固し、さらに表面を研削して溶融再凝固層の厚みを表面から深さ1mmに調整し、ついで熱間圧延したものである。表面疵は軽微であり、従来の分塊工程を経る方法と同等のレベルであった。   No. In the 20th embodiment, the casting surface of the ingot was ground and removed using a Ti-3% Al-2.5% V alloy, the surface layer was melted and re-solidified, and the surface was further ground to form a molten re-solidified layer. The thickness is adjusted from the surface to a depth of 1 mm, and then hot rolled. The surface wrinkles was slight and was at the same level as the method through the conventional lump process.

チタンインゴットの鋳造まま組織を断面図で模式的に示す図である。It is a figure which shows typically a structure by a sectional view with a cast titanium ingot. チタンインゴットの表層を溶融再凝固した組織を示す断面図である。It is sectional drawing which shows the structure | tissue which melted and resolidified the surface layer of the titanium ingot.

符号の説明Explanation of symbols

1 インゴット表面   1 Ingot surface

Claims (6)

インゴットの少なくとも圧延面にあたる面の表層を溶融再凝固させた後、熱間圧延を行うことを特徴とする、チタン材の製造方法。   A method for producing a titanium material, comprising performing hot rolling after melting and re-solidifying a surface layer corresponding to at least a rolling surface of an ingot. 表層の溶融再凝固層の深さが、インゴット最表面から1mm以上であることを特徴とする、請求項1に記載のチタン材の製造方法。   2. The method for producing a titanium material according to claim 1, wherein the depth of the melt-resolidified layer of the surface layer is 1 mm or more from the outermost surface of the ingot. 表層の溶融を、誘導加熱、アーク加熱、プラズマ加熱、電子ビーム加熱、およびレーザ加熱のうちの一種または二種以上を組み合わせて行うことを特徴とする、請求項1または2に記載のチタン材の製造方法。   The titanium material according to claim 1 or 2, wherein melting of the surface layer is performed by combining one or more of induction heating, arc heating, plasma heating, electron beam heating, and laser heating. Production method. 溶融部を真空もしくは不活性ガス雰囲気とすることを特徴とする、請求項1ないし3のいずれか1項に記載のチタン材の製造方法。   The method for producing a titanium material according to any one of claims 1 to 3, wherein the melting part is set to a vacuum or an inert gas atmosphere. β変態点超から融点未満の温度に加熱後に空冷以上の冷却速度で冷却したインゴットを用いることを特徴とする、請求項1ないし4のいずれか1項に記載のチタン材の製造方法。   The method for producing a titanium material according to any one of claims 1 to 4, wherein an ingot that is heated to a temperature lower than the melting point from the β transformation point and then cooled at a cooling rate equal to or higher than air cooling is used. 少なくとも圧延面にあたる面の表層から深さ1mm以上が溶融再凝固した組織であり、下部が鋳造まま組織あるいは鋳造後β域に加熱後に冷却された組織であることを特徴とする、チタンの熱間圧延用素材。   At least 1 mm deep from the surface layer corresponding to the rolling surface is a melted and re-solidified structure, and the lower part is a structure as cast or a structure cooled after heating to the β zone after casting, Rolling material.
JP2006165720A 2006-06-15 2006-06-15 Titanium material manufacturing method and hot rolling material Active JP4414983B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006165720A JP4414983B2 (en) 2006-06-15 2006-06-15 Titanium material manufacturing method and hot rolling material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006165720A JP4414983B2 (en) 2006-06-15 2006-06-15 Titanium material manufacturing method and hot rolling material

Publications (2)

Publication Number Publication Date
JP2007332420A JP2007332420A (en) 2007-12-27
JP4414983B2 true JP4414983B2 (en) 2010-02-17

Family

ID=38932172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006165720A Active JP4414983B2 (en) 2006-06-15 2006-06-15 Titanium material manufacturing method and hot rolling material

Country Status (1)

Country Link
JP (1) JP4414983B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012144561A1 (en) * 2011-04-22 2012-10-26 新日本製鐵株式会社 Titanium slab for hot rolling and process for producing same
TWI617670B (en) * 2015-07-29 2018-03-11 Nippon Steel & Sumitomo Metal Corp Titanium material for hot rolling

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2010211605A1 (en) 2009-02-09 2011-08-25 Toho Titanium Co., Ltd. Titanium slab for hot rolling produced by electron-beam melting furnace, process for production thereof, and process for rolling titanium slab for hot rolling
KR101238144B1 (en) 2009-02-09 2013-02-28 도호 티타늄 가부시키가이샤 Titanium slab for hot-rolling, and smelting method and rolling method therefor
CN105102679B (en) * 2013-04-01 2018-04-10 新日铁住金株式会社 Hot rolling titanium strand and its manufacture method
JP2016128172A (en) * 2013-04-01 2016-07-14 新日鐵住金株式会社 Titanium hot rolling ingot being hard to cause surface flaw and its manufacturing method
JP2016128171A (en) * 2013-04-01 2016-07-14 新日鐵住金株式会社 Titanium hot rolling slab being hard to cause surface flaw and its manufacturing method
JP2014233753A (en) * 2013-06-05 2014-12-15 新日鐵住金株式会社 Industrial pure titanium ingot excellent in surface properties after hot rolling even if blooming process or fine arrangement process is omitted and method for manufacturing the same
JP6171836B2 (en) * 2013-10-22 2017-08-02 新日鐵住金株式会社 Titanium alloy slab for hot rolling and manufacturing method thereof
JP6277871B2 (en) * 2014-06-10 2018-02-14 新日鐵住金株式会社 Titanium welded tube for heat transfer tube and manufacturing method thereof
KR101953042B1 (en) 2014-09-30 2019-02-27 신닛테츠스미킨 카부시키카이샤 Cast titanium slab for use in hot rolling and exhibiting excellent surface properties after hot rolling, even when omitting blooming and purifying steps, and method for producing same
KR101953043B1 (en) 2014-09-30 2019-02-27 신닛테츠스미킨 카부시키카이샤 Titanium slab for hot rolling, and production method therefor
KR101953487B1 (en) 2014-09-30 2019-02-28 신닛테츠스미킨 카부시키카이샤 Cast titanium slab for use in hot rolling and unlikely to exhibit surface defects, and method for producing same
KR20170047339A (en) * 2014-09-30 2017-05-04 신닛테츠스미킨 카부시키카이샤 Titanium slab for hot rolling, and production method therefor
WO2016051482A1 (en) * 2014-09-30 2016-04-07 新日鐵住金株式会社 Titanium cast piece for hot rolling and method for producing same
EA201790448A1 (en) * 2014-09-30 2017-07-31 Ниппон Стил Энд Сумитомо Метал Корпорейшн TITANIUM CASTING FOR HOT ROLLING WITH LITTLE PROBABILITY OF APPEARANCE OF SURFACE DEFECTS AND ITS MANUFACTURE METHOD
JPWO2017018523A1 (en) * 2015-07-29 2017-12-21 新日鐵住金株式会社 Titanium material for hot rolling
TWI637065B (en) 2015-07-29 2018-10-01 日商新日鐵住金股份有限公司 Titanium composite and titanium for hot work
WO2017018454A1 (en) * 2015-07-29 2017-02-02 新日鐵住金株式会社 Titanium slab for surface melting treatment and titanium material for hot rolling using same
TWI608104B (en) * 2015-07-29 2017-12-11 Nippon Steel & Sumitomo Metal Corp Titanium for hot rolling
UA125157C2 (en) 2017-10-26 2022-01-19 Ніппон Стіл Корпорейшн Method for producing hot-rolled titanium plate
CN108486513B (en) * 2018-03-08 2020-01-24 上海工程技术大学 TiBw/TC4 composite material surface nano remelted layer and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012144561A1 (en) * 2011-04-22 2012-10-26 新日本製鐵株式会社 Titanium slab for hot rolling and process for producing same
JP5168434B2 (en) * 2011-04-22 2013-03-21 新日鐵住金株式会社 Titanium slab for hot rolling and manufacturing method thereof
KR101494998B1 (en) 2011-04-22 2015-02-23 신닛테츠스미킨 카부시키카이샤 Titanium slab for hot rolling and process for producing same
US10179944B2 (en) 2011-04-22 2019-01-15 Nippon Steel & Sumitomo Metal Corporation Titanium slab for hot rolling use and method of production of same
TWI617670B (en) * 2015-07-29 2018-03-11 Nippon Steel & Sumitomo Metal Corp Titanium material for hot rolling
US10913242B2 (en) 2015-07-29 2021-02-09 Nippon Steel Corporation Titanium material for hot rolling

Also Published As

Publication number Publication date
JP2007332420A (en) 2007-12-27

Similar Documents

Publication Publication Date Title
JP4414983B2 (en) Titanium material manufacturing method and hot rolling material
JP5754559B2 (en) Titanium cast for hot rolling and method for producing the same
JP2014233753A (en) Industrial pure titanium ingot excellent in surface properties after hot rolling even if blooming process or fine arrangement process is omitted and method for manufacturing the same
WO2014163087A1 (en) Titanium cast piece for hot rolling use, and method for producing same
WO2014163086A1 (en) Titanium slab for hot rolling and production method therefor
JP5168434B2 (en) Titanium slab for hot rolling and manufacturing method thereof
JPWO2017018517A1 (en) Titanium material for hot rolling
JP6075384B2 (en) Titanium cast for hot rolling and method for producing the same
KR101953042B1 (en) Cast titanium slab for use in hot rolling and exhibiting excellent surface properties after hot rolling, even when omitting blooming and purifying steps, and method for producing same
JP6075387B2 (en) Titanium slab for hot rolling in which surface flaws are unlikely to occur and method for producing the same
JP6171836B2 (en) Titanium alloy slab for hot rolling and manufacturing method thereof
KR102332457B1 (en) Manufacturing method of titanium hot-rolled sheet
JP6372373B2 (en) Production method of titanium material mainly containing α phase and titanium hot rolling material
JP6075385B2 (en) Titanium cast for hot rolling and method for producing the same
JP6075386B2 (en) Titanium slab for hot rolling in which surface flaws are unlikely to occur and method for producing the same
JP6897521B2 (en) Hot rolling method of titanium material
WO2016051482A1 (en) Titanium cast piece for hot rolling and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4414983

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350